COLOR DEGREE AND ALTERNATING CYCLES IN EDGE-COLORED GRAPHS

LI H / WANG G

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud - LRI

11/2006
Rapport de Recherche $\mathbf{N}^{\circ} 1461$

CNRS - Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490
91405 ORSAY Cedex (France)

Color degree and alternating cycles in edge-colored graphs *

Hao Li ${ }^{1,2}$, Guanghui Wang ${ }^{1,3}$
${ }^{1}$ Laboratoire de Recherche en Informatique
UMR 8623, C.N.R.S.-Université de Paris-sud
91405-Orsay cedex, France
e-mail: li@lri.fr, wgh@lri.fr
${ }^{2}$ School of Mathematics and Statistics
Lanzhou University
Lanzhou 730000, China
${ }^{3}$ School of Mathematics and System Science
Shandong University
250100 Jinan, Shandong, China

Abstract

Given a graph G and an edge coloring C of G, an alternating cycle of G is such a cycle of G in which any adjacent edges have distinct colors. Let $d^{c}(v)$, named the color degree of a vertex v, be defined as the maximum number of edges incident with v, that have distinct colors. In this paper, some color degree conditions for the existence of alternating cycles of length 3 or 4 are obtained. We also give a bound on the length of a maximum alternating cycle under conditions of color degrees.

Keywords: alternating cycle, color neighborhood, color degree

[^0]
1 Introduction and notation

We use [4] for terminology and notations not defined here. Let $G=(V, E)$ be a graph. An edge-coloring of G is a function $C: E \rightarrow N(N$ is the set of nonnegative integers). If G is assigned such a coloring C, then we say that G is an edge-colored graph, or simply colored graph. Denote by (G, C) the graph G together with the coloring C and by $C(e)$ the color of the edge $e \in E$. For a subgraph H of G, let $C(H)=\{C(e): e \in E(H)\}$ and $c(H)=|C(H)|$. For a color $i \in C(H)$, let $i_{H}=\mid\{e: C(e)=i$ and $e \in E(H)\} \mid$ and say that color i appears i_{H} times in H. For an edge colored graph G, if $c(G)=c$, we call it a c-edge colored graph.

For a vertex $v \in V(G)$, a color neighbourhood of v is defined as a set $T \subseteq N(v)$ such that the colors of the edges between v and T are distinct pairwise. A maximum color neighborhood $N^{c}(v)$ of v is a color neighborhood of v with maximum size. And we denote $d^{c}(v)=\left|N^{c}(v)\right|$ and call it the color degree of v.

If $P=v_{1} v_{2} \cdots v_{p}$ is a path, we let $P\left[v_{i}, v_{j}\right]$ be the subpath $v_{i} v_{i+1} \cdots v_{j}$, and $P^{-}\left[v_{i}, v_{j}\right]=$ $v_{j} v_{j-1} \cdots v_{i}$.

A path or cycle in an edge-colored graph is called alternating if any adjacent edges have distinct colors. Besides a number of applications in graph theory and algorithms, the concept of alternating paths and cycles, appears in various other fields: genetics (cf. $[8,9,10]$), social sciences (cf.[7]). A good resource on alternating paths and cycles is the survey paper [2] by J. Bang-Jensen and G. Gutin.

Grossman and Häggkvist[11] were the first to study the problem of the existence of the alternating cycles in c-edge colored graphs. They proved Theorem 1 below in the case $c=2$. The case $c \geq 3$ was proved by Yeo [14]. Let v be a cut vertex in an edge colored graph G. We say that v separates colors if no component of $G-v$ is joined to v by at least two edges of different colors.

Theorem 1 (Grossman and Häggkvist [11], and Yeo [14]). Let G be an c-edge colored graph, $c \geq 2$, such that every vertex of G is incident with at least two edges of different colors. Then either G has a cut vertex separating colors, or G has an alternating cycle.

Consider the edge colored complete graph, we use the notation K_{n}^{c} to denote a complete graph on n vertices, each edge of which is colored by a color from the set $\{1,2, \cdots, c\}$. And $\Delta\left(K_{n}^{c}\right)$ is the maximum number of edges of the same color adjacent to a vertex of K_{n}^{c}. And we have the following conjecture due to B. Bollobás and P. Erdős [3].

Conjecture 1 (B. Bollobás and P. Erdős [3]). If $\Delta\left(K_{n}^{c}\right)<\left\lfloor\frac{n}{2}\right\rfloor$, then K_{n}^{c} contains a Hamiltonian alternating cycle.
B. Bollobás and P. Erdős managed to prove that $\Delta\left(K_{n}^{c}\right)<\frac{n}{69}$ implies the existence of a Hamiltonian alternating cycle in K_{n}^{c}. This result was improved by C.C. Chen and
D.E. Daykin [6] to $\Delta\left(K_{n}^{c}\right)<\frac{n}{17}$ and by J. Shearer [13] to $\Delta\left(K_{n}^{c}\right)<\frac{n}{7}$. So far the best asymptotic estimate was obtained by Alon and Gutin [1].

Theorem 2(Alon and Gutin[1]). For every $\epsilon>0$ there exists an $n_{o}=n_{0}(\epsilon)$ so that for every $n>n_{o}$, K_{n}^{c} satisfying $\Delta\left(K_{n}^{c}\right) \leq\left(1-\frac{1}{\sqrt{2}}-\epsilon\right) n$ has a Hamiltonian alternating cycle.

2 Main results

We study some color degree condition for the existence of the alternating cycles, in particular the shortest alternating cycles and the longest alternating cycles.

We begin with a study of the existence of an alternating cycle with good property. Under color degree conditions, we have

Theorem 3. Let G be a colored graph with order $n \geq 3$. If $d^{c}(v) \geq \frac{n+1}{3}$ for every $v \in V(G)$, then G has an alternating cycle $A C$ such that each color in $C(A C)$ appears at most two times in $A C$.

Moreover, for the existence of an alternating cycle, we have the following proposition.
Proposition. For any integer i, there exists a colored graph G_{i} such that $d^{c}(v) \geq i$, for every vertex v of G_{i}, and G_{i} has no alternating cycles.

To show the above proposition, we construct the following example by induction.
Let G_{1} be an edge e with color $C(e)=1$. Given G_{i}, we construct G_{i+1} as follows. First, make $(i+1)$ copies of G_{i} and denote them by $G_{i}^{1}, G_{i}^{2}, \cdots, G_{i}^{i+1}$. Let $\left\{c_{1}, c_{2}, \cdots, c_{i+1}\right\}$ be the colors such that $\left\{c_{1}, c_{2}, \cdots, c_{i+1}\right\} \cap C\left(G_{i}\right)=\phi$. Add a new vertex v_{i+1}. For each $G_{i}^{j}, 1 \leq j \leq i+1$, join v_{i+1} to each vertex of G_{i}^{j}, then color these edges with color c_{j}. Then G_{i} is a colored graph such that $d^{c}(v) \geq i$, for every vertex v of G_{i}, and clearly G_{i} contains no alternating cycles.

For the shortest alternating cycles, we get result on alternating triangles or alternating quadrilaterals with minimum color degree conditions.

Theorem 4. Let G be a colored graph with order $n \geq 3$. If $d^{c}(v) \geq \frac{37 n-17}{75}$ for every $v \in$ $V(G)$, then G contains at least one alternating triangle or one alternating quadrilateral.

We also give a bound for the longest alternating cycles.
Theorem 5. Let G be a colored graph with order n. If $d^{c}(v) \geq d \geq \frac{n}{2}$, for every vertex of $v \in V(G)$, then G has an alternating cycle with length at least $\left\lceil\frac{d}{2}\right\rceil+1$.

In fact, we think that the bound in Theorem 5 is not sharp, and we propose the following conjecture.

Conjecture 2. Let G be a colored graph with order n. If $d^{c}(v) \geq \frac{n}{2}$, for every vertex of $v \in V(G)$, then G has a Hamiltonian alternating cycle.

We have the following example to show that if the above conjecture is true, it would be best possible. For any integer m, let K_{m}, K_{m+1}^{\prime} be two edge-proper-colored complete graphs with order $m, m+1$, respectively. For every vertex $u \in K_{m}$ and every vertex $u^{\prime} \in K_{m+1}^{\prime}$, add the edges $u u^{\prime}$ and let $C\left(u u^{\prime}\right)=c_{0}$, where $c_{0} \notin C\left(K_{m}\right) \cup C\left(K_{m+1}^{\prime}\right)$. The new colored graph is denoted by B. Clearly, $|V(B)|=n=2 m+1$. Moreover for every vertex v of B, it holds that $d^{c}(v) \geq m=\frac{n-1}{2}$, and B contains no Hamiltonian alternating cycle.

The proofs of the main results in Theorem 3, 4, 5 will be given in Section 3 .

3 Proofs of the main results

Proof of Theorem 4.

By contradiction. Suppose that G is a colored graph such that $d^{c}(v) \geq \frac{37 n-17}{75}$ for every vertex v of G, and G contains neither alternating triangles nor alternating quadrilaterals.

For an edge $u v$, let $N_{1}^{c}(u), N_{1}^{c}(v)$ denote a maximum color neighborhood of u, v, respectively, such that $v \in N_{1}^{c}(u)$ and $u \in N_{1}^{c}(v)$. Let $N^{c}(u, v)$ denote $N_{1}^{c}(u) \cup N_{1}^{c}(v)$ such $\left|N_{1}^{c}(u) \cup N_{1}^{c}(v)\right|$ is maximum. And choose an edge $u v \in E(G)$ such that $\left|N^{c}(u, v)\right|$ is maximum.

Assume that $N_{1}^{c}(u)=\left\{v, u_{1}, u_{2}, \cdots, u_{s}\right\}$ and $N_{1}^{c}(v) \backslash N_{1}^{c}(u)=\left\{u, v_{1}, v_{2}, \cdots, v_{t}\right\}$, in which $s=d^{c}(u)-1$. Let $X=\left\{u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{t}\right\}$. Note that $\left|N^{c}(u, v)\right|=s+t+2$. Consider the graph $G[X]$, and we have the following lemma.

Lemma 1.1. Suppose $e \in E(G[X])$, then the following hold:
(i) If $e=u_{i} u_{j}(1 \leq i, j \leq s)$, then $C(e) \in\left\{C\left(u u_{i}\right), C\left(u u_{j}\right)\right\}$.
(ii) If $e=v_{i} v_{j}(1 \leq i, j \leq t)$, then $C(e) \in\left\{C\left(v v_{i}\right), C\left(v v_{j}\right)\right\}$.
(iii) If $e=u_{i} v_{j}(1 \leq i \leq s, 1 \leq j \leq t)$ and $C\left(u u_{i}\right) \neq C\left(v v_{j}\right)$, then $C(e) \in\left\{C\left(u u_{i}\right), C\left(v v_{j}\right)\right\}$.

Proof. Clearly (i) and (ii) hold, otherwise we can obtain an alternating triangle, which gets a contradiction.

If (iii) does not hold, then there exists an edge $e=u_{i} v_{j}(1 \leq i \leq s, 1 \leq j \leq t)$ such that $C\left(u u_{i}\right) \neq C\left(v v_{j}\right)$ and $C(e) \notin\left\{C\left(u u_{i}\right), C\left(v v_{j}\right)\right\}$. Since $v, u_{i} \in N_{1}^{c}(u)$, then $C\left(u u_{i}\right) \neq$ $C(u v)$. Similarly, we obtain that $C\left(v v_{j}\right) \neq C(u v)$. Then we can get an alternating quadrilateral : $u v v_{j} u_{i} u$, a contradiction.

Construct a digraph as follows.
(1). In graph $G[X]$, do the following operation: deleting the edges $e=u_{i} v_{j}$ if $C\left(u u_{i}\right)=$ $C\left(v v_{j}\right), 1 \leq i \leq s$ and $1 \leq j \leq t$. (Note that if $C\left(u u_{i}\right)=C\left(v v_{j}\right)$ and $u_{i} v_{j} \in E(G[X])$, then $\left.C\left(u_{i} v_{j}\right)=C\left(u u_{i}\right)=C\left(v v_{j}\right)\right)$. After the operation, the graph is named $G_{1}[X]$.
(2). Then give an orientation of $G_{1}[X]$: For an edge $x y \in E\left(G_{1}[X]\right)$, if $C(x y)=C(u y)$ or $C(x y)=C(v y)$, then the orientation of $x y$ is from x to y. Otherwise, by Lemma 1.1, $C(x y)=C(u x)$ or $C(x y)=C(v x)$, then the orientation of $x y$ is from y to x.

After the orientation, the digraph is denoted by D_{1}. For any vertex $w \in V\left(D_{1}\right)$, let $N_{D_{1}}^{+}(w)$ denote the outneighbors of w in D_{1} and $d_{D_{1}}^{+}(w)=\left|N_{D_{1}}^{+}(w)\right|$. Let $G_{0}=$ $G[X \cup\{u, v\}]$.

Lemma 1.2. If there exists a directed cycle $\overrightarrow{C_{p}}$ in D_{1}, then C_{p} is an alternating cycle in G, moreover each color in $C\left(C_{p}\right)$ appears at most two times in C_{p}.

Proof. Firstly, we will prove that C_{p} is alternating. Assume that $x y$ and $y z$ are adjacent edges of C_{p}, and furthermore, in $\overrightarrow{C_{p}}$, the orientations of $x y, y z$ are from x to y, from y to z. By the orientation rule, we conclude that $C(x y)=C(u y)$ or $C(x y)=C(v y)$ and $C(y z)=C(u z)$ or $C(y z)=C(v z)$.

If $C(x y)=C(u y)$ and $C(y z)=C(u z)$ or $C(x y)=C(v y)$ and $C(y z)=C(v z)$, then by the definition of the maximum color neighborhood, it holds that $C(u y) \neq C(u z)$ and $C(v y) \neq C(v z)$, Thus we have that $C(x y) \neq C(y z)$.

Otherwise, without loss of generality, assume that $C(x y)=C(u y)$ and $C(y z)=C(v z)$. Then by (1) and Lemma 1.1(iii), we have that $C(u y) \neq C(v z)$. It follows that $C(x y) \neq$ $C(y z)$.

Thus C_{p} is an alternating cycle. Moreover by the definition of $N^{c}(u, v)$, we can conclude that each color in $C\left(C_{p}\right)$ appears at most two times in C_{p}.

The girth of a digraph D containing directed cycles is the length of the smallest directed cycle in D. Since G has neither alternating triangles nor alternating quadrilaterals, it follows that the girth of D_{1} is at least 5 .

Lemma 1.3[5]. Let D be a digraph on m vertices with girth 5 . Then $\delta^{+}<\frac{9(m-1)}{28}$.
Let $\alpha=\frac{9}{28}$. By Lemma 1.3, there is a vertex w of D_{1} such that $d_{D_{1}}^{+}(w)<\alpha\left(\left|V\left(D_{1}\right)\right|-\right.$ 1) $=\alpha(s+t-1)=\alpha\left(d^{c}(u)+t-2\right)$. Without loss of generality, assume that $w \in$ $N_{1}^{c}(u)$. Denote a maximum color neighborhood of w in G_{0} by $N_{G_{0}}^{c}(w)$. Then it holds that $\left|N_{G_{0}}^{c}(w)\right|=\left|N_{D_{1}}^{+}(w)\right|+|v|(o r|u|)=d_{D_{1}}^{+}(w)+1$. It follows that

$$
\left|N^{c}(w) \backslash(X \cup\{u, v\})\right| \geq d^{c}(w)-\left|N_{G_{0}}^{c}(w)\right|>d^{c}(w)-\alpha\left(d^{c}(u)+t-2\right)-1 .
$$

If $d^{c}(w)-\alpha\left(d^{c}(u)+t-2\right)-1>t$, then consider the edge $u w$ and it holds that

$$
\begin{aligned}
\left|N^{c}(u, w)\right| & \geq\left|\left\{v, u_{1}, u_{2}, \cdots, u_{s}\right\}\right|+\left|N^{c}(w) \backslash(X \cup\{u, v\})\right|+|w| \\
& >s+t+2 \\
& =\left|N^{c}(u, v)\right|,
\end{aligned}
$$

a contradiction with the choice of $u v$.

Then $d^{c}(w)-\alpha\left(d^{c}(u)+t-2\right)-1 \leq t$, that is $t \geq \frac{d^{c}(w)}{1+\alpha}-\frac{\alpha d^{c}(u)}{1+\alpha}+\frac{2 \alpha-1}{1+\alpha}$. It follows that

$$
\begin{aligned}
n & \geq|X|+|u|+|v|+\left|N^{c}(w) \backslash(X \cup\{u, v\})\right| \\
& >d^{c}(u)+t-1+2+d^{c}(w)-\alpha\left(d^{c}(u)+t-2\right)-1 \\
& \geq \frac{1-\alpha}{1+\alpha} d^{c}(u)+\frac{2}{1+\alpha} d^{c}(w)+\frac{5 \alpha-1}{1+\alpha} .
\end{aligned}
$$

Since $d^{c}(v) \geq \frac{37 n-17}{75}$ for every vertex $v \in V(G)$ and $\alpha=\frac{9}{28}$, the above inequality is

$$
n>\frac{3-\alpha}{1+\alpha} \frac{37 n-17}{75}+\frac{5 \alpha-1}{1+\alpha} \geq n
$$

This contradiction completes the proof of Theorem 4.

Proof of Theorem 3.

We use the same notations and same technique as in the proof of Theorem 4, and omit some details. By contradiction. Suppose that G is a colored graph such that $d^{c}(v) \geq \frac{n+1}{3}$, for every vertex v of G, and G contains no alternating cycles with the prescribed property.

Similarly, choose an edge $u v \in E(G)$ such that $N^{c}(u, v)$ is maximum. Assume that $N^{c}(u, v)=N_{1}^{c}(u) \cup N_{1}^{c}(v)=X \cup\{u, v\}$. After the deleting and orienting operations in $G[X]$ by the same rule as above, the digraph is denoted by D_{1}. By Lemma 1.2 , there exist no directed cycles in D_{1}. And we have the following fact.

Fact 2.4. Every simple m-vertex digraph with minimum out-degree at least 1 has a directed cycle.

By Fact 2.4, there is a vertex w such that $d_{D_{1}}^{+}(w)=0$. Without loss of generality, assume that $w_{1} \in N_{1}^{c}(u)$. Let $N^{c}(w)$ be a maximum color neighbor of w_{1} in G, then it holds that $\left|N^{c}\left(w_{1}\right) \backslash(X \cup\{u, v\})\right| \geq d^{c}(w)-1$. Then it follows that $d^{c}(w)-1<t$ by the choice of the edge $u v$. It follows that

$$
\begin{aligned}
n & \geq|X|+|u|+|v|+\left|N^{c}(w) \backslash(x \cup\{u, v\})\right| \\
& \geq d^{c}(u)+t-1+2+d^{c}(w)-1 \\
& >d^{c}(u)+2 d^{c}(w)-1 \\
& \geq 3\left(\frac{n+1}{3}\right)-1=n
\end{aligned}
$$

This contradiction completes the proof of Theorem 3.

Proof of Theorem 5.
If $n=3$, the conclusion holds clearly. So we assume that $n \geq 4$.

By contradiction. Otherwise, let $P=v_{1} v_{2} \cdots v_{l}$ be an alternating path of G such that $|P|$ is maximum. Then choose a maximum color neighborhood $N^{c}\left(v_{1}\right)$ of v_{1} such that $v_{2} \in N^{c}\left(v_{1}\right)$. By the maximum of $|P|$, we have $N^{c}\left(v_{1}\right) \in V(P)$. It follows that $l \geq d+1$, since $\left|N^{c}\left(v_{1}\right)\right|=d^{c}(v) \geq d$. Choose v_{s} satisfying the followings:
$\mathbf{R}_{\mathbf{1}} . v_{s} \in N^{c}\left(v_{1}\right)$.
$\mathbf{R}_{\mathbf{2}} . s \geq\left\lceil\frac{d}{2}\right\rceil+1$.
$\mathbf{R}_{\mathbf{3}}$. subject to R_{1}, R_{2}, s is minimum.
Since $n \geq 4$ and $d \geq \frac{n}{2}$, we can deduce that $s<l$.
Lemma 3.1. If $v_{i} \in N^{c}\left(v_{1}\right)$ and $i \geq s$, then $C\left(v_{i} v_{i+1}\right) \neq C\left(v_{1} v_{i}\right)$.
Proof. Otherwise, there exists $i \geq s$ such that $C\left(v_{i} v_{i+1}\right)=C\left(v_{1} v_{i}\right)$. Since P is an alternating path, $C\left(v_{i-1} v_{i}\right) \neq C\left(v_{i} v_{i+1}\right)$, thus, $P\left[v_{1}, v_{i}\right] v_{i} v_{1}$ is an alternating cycle with length $i \geq s \geq\left\lceil\frac{d}{2}\right\rceil+1$, a contradiction.

Now choose a maximum color neighborhood of $N^{c}\left(v_{l}\right)$ of v_{l} such that $v_{l-1} \in N^{c}\left(v_{l}\right)$. Similarly, we conclude that $N^{c}\left(v_{l}\right) \in V(P)$. Then choose t satisfying the followings:
$\mathbf{R}_{\mathbf{1}}^{\prime} . v_{t} \in N^{c}\left(v_{l}\right)$.
$\mathbf{R}_{\mathbf{2}}^{\prime} . l-t \geq\left\lceil\frac{d}{2}\right\rceil$.
\mathbf{R}_{3}^{\prime}. subject to $R_{1}^{\prime}, R_{2}^{\prime}, t$ is maximum.
Similarly, it holds that $t>1$. And we have the following lemmas.
Lemma 3.2. If $v_{i} \in N^{c}\left(v_{l}\right)$ and $i \leq t$, then $C\left(v_{i-1} v_{i}\right) \neq C\left(v_{i} v_{l}\right)$.
Proof. Otherwise, as in the proof of Lemma 3.1, we can get an alternating cycle with length at least $\left\lceil\frac{d}{2}\right\rceil+1$, a contradiction.

Lemma 3.3. $s<t$.
Proof. Otherwise, we have that $s \geq t$. If $s>t$, then $A C^{0}=v_{1} v_{s} P\left[v_{s}, v_{l}\right] v_{l} v_{t} P^{-}\left[v_{t}, v_{1}\right]$ is an alternating cycle. And $\left|A C^{0}\right|=\left|P\left[v_{s}, v_{l}\right\rfloor\right|+\left|P\left[v_{1}, v_{t}\right\rfloor\right| \geq 2\left(d-\left\lceil\frac{d}{2}\right\rceil+1\right)=2\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)=$ $2\left\lfloor\frac{d}{2}\right\rfloor+2>\left\lceil\frac{d}{2}\right\rceil+1$, a contradiction.

So we assume that $s=t$. If there exists $v_{j} \in N^{c}\left(v_{1}\right)$ such that $s+1 \leq j \leq l-1$, then there is an alternating cycle $A C^{1}=v_{1} v_{j} P\left[v_{j}, v_{l}\right] v_{l} v_{s} P^{-}\left[v_{s}, v_{1}\right]$ with length $\left|A C^{1}\right| \geq$ $2+\left|P\left[v_{1}, v_{s}\right]\right| \geq 3+\left\lceil\frac{d}{2}\right\rceil$, which gives a contradiction. Similarly, if there exists $v_{j} \in N^{c}\left(v_{l}\right)$ such that $2 \leq j \leq s-1$, we obtain an alternating cycle $v_{1} v_{s} P\left[v_{s}, v_{l}\right] v_{l} v_{j} P^{-}\left[v_{j}, v_{1}\right]$ with length $3+\left\lceil\frac{d}{2}\right\rceil$, which also get a contradiction.

Thus we can conclude that $v_{j} \notin N^{c}\left(v_{1}\right)$ if $s+1 \leq j \leq l-1$ and $v_{j} \notin N^{c}\left(v_{l}\right)$ if $2 \leq j \leq s-1$. On the other hand, by R_{3} it holds that $\left|V\left(P\left[v_{s+1}, v_{l}\right]\right) \cap N^{c}\left(v_{1}\right)\right| \geq$ $d-\left\lceil\frac{d}{2}\right\rceil=\left\lfloor\frac{d}{2}\right\rfloor \geq 1$. Clearly $v_{l} \in N^{c}\left(v_{1}\right)$. Similarly, we have that $v_{1} \in N^{c}\left(v_{l}\right)$. (Note that it holds that $d=2,3)$. That is, $C\left(v_{1} v_{l}\right) \neq C\left(v_{1} v_{2}\right)$ and $C\left(v_{1} v_{l}\right) \neq C\left(v_{l-1} v_{l}\right)$. Then
$P\left[v_{1}, v_{l}\right] v_{l} v_{1}$ is an alternating cycle with length at least $l \geq d+1>\left\lceil\frac{d}{2}\right\rceil+1$, a contradiction.

Lemma 3.4. For $2 \leq j \leq s-1, v_{j} \notin N^{c}\left(v_{l}\right)$; And for $t+1 \leq j \leq l-1, v_{j} \notin N^{c}\left(v_{1}\right)$.
Proof. Without loss of generality, we only prove the first part. Otherwise, there exists $v_{j} \in N^{c}\left(v_{l}\right)$ such that $2 \leq j \leq s-1$. Clearly, $j \leq t$, thus by Lemma 3.2 we have that $C\left(v_{j-1} v_{j}\right) \neq C\left(v_{j} v_{l}\right)$. Then we get an alternating cycle $A C^{2}=v_{1} v_{s} P\left[v_{s}, v_{l}\right] v_{l} v_{j} P^{-}\left[v_{j}, v_{1}\right]$. And it holds that $\left|A C^{2}\right| \geq\left|P\left[v_{s}, v_{l}\right\rfloor\right|+2 \geq\left\lfloor\frac{d}{2}\right\rfloor+2 \geq\left\lceil\frac{d}{2}\right\rceil+1$, a contradiction.

Denote $N^{c}\left(v_{1}\right) \cap V\left(P\left[v_{s}, v_{t}\right]\right), N^{c}\left(v_{l}\right) \cap V\left(P\left[v_{s}, v_{t}\right]\right)$ by A, B respectively.
Lemma 3.5. $|A|+|B| \geq 2\left\lfloor\frac{d}{2}\right\rfloor+1$.
Proof. By $R_{1},\left|N^{c}\left(v_{1}\right) \cap V\left(P\left[v_{s}, v_{l}\right]\right)\right| \geq d-\left(\left|P\left[v_{1}, v_{s-1}\right]\right|-1\right) \geq d-\left(\left\lceil\frac{d}{2}\right\rceil-1\right)=\left\lfloor\frac{d}{2}\right\rfloor+1$. Then by Lemma 3.4, we obtain that $N^{c}\left(v_{1}\right) \cap V\left(P\left[v_{s}, v_{l}\right]\right)=N^{c}\left(v_{1}\right) \cap\left(V\left(P\left[v_{s}, v_{t}\right]\right) \cup\left\{v_{l}\right\}\right)=$ $A \cup\left(N^{c}\left(v_{1}\right) \cap\left\{v_{l}\right\}\right)$. It follows that $|A| \geq\left\lfloor\frac{d}{2}\right\rfloor+1-\left|N^{c}\left(v_{1}\right) \cap\left\{v_{l}\right\}\right|$. Similarly, we can obtain that $|B| \geq\left\lfloor\frac{d}{2}\right\rfloor+1-\left|N^{c}\left(v_{l}\right) \cap\left\{v_{1}\right\}\right|$. Then $|A|+|B| \geq 2\left\lfloor\frac{d}{2}\right\rfloor+2-\left(\left|N^{c}\left(v_{1}\right) \cap\left\{v_{l}\right\}\right|+\right.$ $\left.\left|N^{c}\left(v_{l}\right) \cap\left\{v_{1}\right\}\right|\right)$.

If $\left|N^{c}\left(v_{1}\right) \cap\left\{v_{l}\right\}\right|+\left|N^{c}\left(v_{l}\right) \cap\left\{v_{1}\right\}\right|=2$, this means that $v_{l} \in N^{c}\left(v_{1}\right)$ and $v_{1} \in N^{c}\left(v_{l}\right)$. Thus, by the definition of a maximum color neighborhood, it holds that $C\left(v_{l} v_{l}\right) \neq C\left(v_{1} v_{2}\right)$ and $C\left(v_{1} v_{l}\right) \neq C\left(v_{l-1} v_{l}\right)$. Then $P\left[v_{1}, v_{l}\right] v_{l} v_{1}$ is an alternating cycle with length $l \geq d+1>$ $\left\lceil\frac{d}{2}\right\rceil+1$, a contradiction. Thus it holds that $\left|N^{c}\left(v_{1}\right) \cap\left\{v_{l}\right\}\right|+\left|N^{c}\left(v_{l}\right) \cap\left\{v_{1}\right\}\right| \leq 1$, then $|A|+|B| \geq 2\left\lfloor\frac{d}{2}\right\rfloor+1$.

Now we completes the proof as follows. We have that $\left|V\left(P\left[v_{s}, v_{t}\right]\right)\right| \leq n-\left|V\left(P\left[v_{1}, v_{s-1}\right]\right)\right|-$ $\left|V\left(P\left[v_{t+1}, v_{l}\right\rceil\right)\right| \leq n-\left\lceil\frac{d}{2}\right\rceil-\left\lceil\frac{d}{2}\right\rceil \leq 2 d-2\left\lceil\frac{d}{2}\right\rceil \leq 2\left\lfloor\frac{d}{2}\right\rfloor$. And by Lemma 3.5, $\mid N^{c}\left(v_{1}\right) \cap$ $V\left(P\left[v_{s}, v_{t}\right]\right)\left|+\left|N^{c}\left(v_{l}\right) \cap V\left(P\left[v_{s}, v_{t}\right]\right)\right|=|A|+|B| \geq 2\left\lfloor\frac{d}{2}\right\rfloor+1\right.$, then it follows that there exists $v_{j}(s+1 \leq j \leq t)$ such that $v_{j} \in N^{c}\left(v_{1}\right)$ and $v_{j-1} \in N^{c}\left(v_{l}\right)$. So we get an alternating cycle $v_{1} v_{j} P\left[v_{j}, v_{l}\right] v_{l} v_{j-1} P^{-}\left[v_{j-1}, v_{1}\right]$ with length $l \geq\left|P\left[v_{1}, v_{s}\right]\right| \geq l \geq d+1 \geq\left\lceil\frac{d}{2}\right\rceil+1$, a contradiction. This completes the proof.

References

[1] N. Alon and G. Gutin, Properly colored Hamiltonian cycles in edge colored complete graphs, Random Structures and Algorithms 11(1997), 179-186
[2] J. Bang-Jensen and G. Gutin, Alternating cycles and paths in edge-colored multigraphs: a survey, Discrete Math. 165-166 (1997), 39-60.
[3] B. Bollobás and P. Erdős, Alternating Hamiltonian cycles Israel J. Math. 23(1976) 126-131.
[4] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications, Macmillan Press [M]. New York, 1976.
[5] L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, in "Proceedings, Ninth S-E Conference on Combinatorics, Graph Theory and Computing, 1978", pp. 181-187.
[6] C.C. Chen ands D.E. Daykin, Graphs with Hamiltonian cycles having adjacent lines different colors. J. Combin. Th. Ser. B21(1976)135-139.
[7] W.S. Chow, Y. Manoussakis, O.megalakaki, M. Spyratos and Z. Tuza, Paths through fixed vertices in edge-colored graphs, J. des Mathematqiues, Informatique et Science, Humaines 32(1994) 49-58
[8] D. Dorninger, On permutations of chromosomes, in: Contributions to General Algebra, vol. 5(Verlag Hölder-Pichler-Tempsky, Wien; Teubner, Stuttgart, 1987) 95-103.
[9] D. Dorninger, Hamiltonian circuits determing the order of chromosomes, Discrete Appl. Math. 50 (1994)159-168.
[10] D. Dorninger and W. Timischl, Geometrical constraints on Bennett's predictions of chromosome order. Heredity 58 (1987)321-325.
[11] J.W. Grossman and R. Häggkvist, Alternating cycles in edge-partitioned graphs. J. Combin. Theory Ser. B34(1983)77-81
[12] G. Hahn and C. Thomassen, Path and cycle sub-Ramsey numbers and edge-coloring conjecture, Discrete Math. 62(1)(1986), 29-33.
[13] J. Shearer, A property of the colored complete graph. Discrete Math. 25(1979) 175178.
[14] A. Yeo, Alternating cycles in edge-coloured graphs. J.Combin. Theory Ser B 69 (1997) 222-225

[^0]: *This research is supported by the $\operatorname{NSFC}(60373012$ and 10471078), $\operatorname{SRSDP}(20040422004)$ and PDSF(2004036402)

