
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

AN AUTOMATIC KEY DISCOVERY APPROACH

FOR DATA LINKING

PERNELLE N / SAIS F / SYMEONIDOU D

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

04/2013

Rapport de Recherche N° 1559

An Automatic Key Discovery Approach for Data
Linking

Written by

Nathalie Pernelle*
Fatiha Säıs*

Danai Symeonidou*

april 2013

* LRI (Laboratoire de Recherche en Informatique)
Paris Sud University, France

{firstName.lastName}@lri.fr

An Automatic Key Discovery Approach for Data Linking

Nathalie Pernelle, Fatiha Saïs, Danai Symeonidou

LRI, Paris Sud University, Bât. 650, F-91405 Orsay, FRANCE

Abstract

In the context of Linked Data, different kinds of semantic links can be established between data. However when
data sources are huge, detecting such links manually is not feasible. One of the data linking problems consists of
detecting identity links between data expressing that different identifiers refer to the same real world entity. Some
automatic data linking approaches use key constraints to infer identity links, nevertheless this kind of knowledge is
rarely available. In this work we propose KD2R, an approach which allows the automatic discovery of composite key
constraints in RDF data sources that may conform to different schemas. We only consider data sources for which the
Unique Name Assumption is fulfilled. The obtained keys are correct with respect to the RDF data sources in which
they are discovered. The proposed algorithm is scalable since it allows this discovery without having to scan all the
data. KD2R which has been tested on real data sets of the international contest OAEI 2010 and on data sets available
on the web of data, obtains promising results.

Keywords: Data Linking, Identity Links, Key Constraints, Ontology

1. Introduction

Over the past four years, the number of RDF data
sources available on the Web has led to an explosive
growth of the global data space (more than 31x109 RDF
triples as of September 20111). In this data space, es-
tablishing semantic links between data items can be re-
ally useful, since it allows crawlers, browsers and appli-
cations to combine information from different sources.
These links can be set manually. However, considering
the large amount of data available in the Web, some ap-
proaches propose methods that generate these links be-
tween RDF data sources automatically. Among the dif-
ferent kinds of semantic links that can be established,
same-as links express that different identifiers refer to
the same world entity (e.g. the same restaurant, the
same gene, the same person).

There are a lot of approaches that aim to detect iden-
tity links between data items (see [5],[4] or [30] for
a survey). Knowledge based approaches need experts

Email addresses: pernelle@lri.fr (Nathalie Pernelle),
sais@lri.fr (Fatiha Saïs), symeonidou@lri.fr (Danai
Symeonidou)

1http://www4.wiwiss.fu-berlin.de/lodcloud/state/

who declare knowledge that is used to infer identity
links between data items. Some of these approaches use
rules that specify conditions that two data items must
fulfill in order to be linked. In [11, 28, 1] these rules are
manually defined. In [10, 15, 16] linkage rules are learnt
using genetic programming techniques. [10, 15] need a
set of reference links to learn these rules while [16] is
unsupervised and exploits assumptions on data sets and
similarity functions. [14] uses mathematical character-
istics of metric spaces to estimate the similarity between
instances and filter out instance pairs.

Other approaches such as [22, 8] exploit the seman-
tics of the ontology such as key constraints, function-
ality of properties and cardinality restrictions. Indeed,
these approaches give higher importance to combina-
tions of properties that represent key constraints or de-
clared as (inverse) functional during the data linking
process. In LN2R data linking approach [22] a set of
declared keys is exploited by a logical method to gen-
erate a set of logical inference rules and by a numerical
method to generate a set of similarity functions. The
approach ObjectCoref [8] exploits the semantic knowl-
edge like sameAs, (inverse) functional properties and
cardinalities to build a seed set of reference links. The
links are then used to learn discriminative property–

Preprint submitted to Journal of Web Semantics November 8, 2012

value pairs.
Nevertheless, when the ontology represents many

concepts and data are numerous, the linking rules or the
keys that are needed for the linking step are not often
available and cannot easily be specified by a human ex-
pert. Therefore, we need methods that discover them
automatically from the data. Moreover, to the best of
our knowledge, in the semantic Web community the ap-
proaches that focus on key discovery [2, 25] or learning
linking rules [16, 10, 15] either use labeled data to learn
the rules [10, 15] or assume that different URIs refer
to different world entities (Unique Name Assumption
–UNA) [16, 2, 25]. If we consider the overall Linked
Open Data cloud (LOD), UNA is obviously not satis-
fied, since we can find two different URIs that refer to
the same entity. However, it is not uncommon that some
datasets considered separately fulfill UNA. It can be as-
sumed at least for all the data sets generated from re-
lational databases and those created in a way to avoid
duplicates like [26]. Recently, W3C has announced the
recommendation R2RML2 as a language for expressing
customized mappings from relational databases to RDF
data sets.

When data are heterogeneous, the key discovery
problem becomes much more complex. Hence, syn-
tactic variations or errors in literal values may lead to
missing keys or to discovering erroneous keys. Fur-
thermore, in the semantic Web context, RDF data may
be incomplete and asserting the Closed World Assump-
tion (CWA), i.e. what is not currently known to be true
is false, as it is proposed in [2], may not be meaning-
ful. Hence, discovering keys on incomplete information
needs the use of heuristics to interpret the absence of
information.

In this paper, we present an extension of KD2R [27],
an automatic approach for key discovery in RDF data
sources that conform to OWL ontologies. We aim to
discover key constraints that are composed of several
properties. Indeed, non composite keys (e.g. ISBN for
books or SSN for persons) are rare in real data. Further-
more, we focus on the discovery of key constraints that
are valid against the considered data. Unlike [2], in this
work we do not aim to discover pseudo-keys, that are
properties for which some instances are allowed to have
the same values.

Like [2, 25], KD2R discover keys from data sources
where UNA is fulfilled. As for the Open World As-
sumption (OWA), in KD2R we used heuristics to inter-
pret the absence of information.

2http://www.w3.org/TR/r2rml/

Moreover, the more numerous the data are, the more
accurate the discovered keys are. In case of different
data sources that are conform to distinct ontologies we
use ontology alignment tools that create mappings be-
tween the ontology elements (see [19] for a recent sur-
vey on ontology alignment). These mappings will be
used when the keys that are discovered on the different
data sources are merged to obtain valid keys for all data
sources.

To avoid scanning all the data, KD2R discovers first
maximal non keys before inferring the keys. In addition
to this, KD2R exploits key inheritance between classes
in order to prune the non key search space.

The approach has been implemented and evaluated
on four different data sets. To evaluate the quality of the
discovered keys, we have used them in a linking pro-
cess on benchmark datasets. The results obtained by
LN2R using KD2R keys showed that the use of these
keys has led to infer more relevant identity links than
when LN2R is used without keys. Furthermore, KD2R
has been applied on DBPedia data and it has shown that
it can scale to millions of triples.

The remainder of this paper is organized as follows.
We first describe the data and the ontology model in
Section 2 and formalize the problem in Section 3. We
present the KD2R approach in Section 4 and the key
discovery algorithms in Section 5, which are evaluated
in Section 6. We conclude our presentation with an
overview of related work (Section 7) and concluding re-
marks (Section 8).

2. Ontology and Data Model

We consider RDF3 data sources, each conforming
to an OWL4 ontology. The Web Ontology Language
(OWL) allows to declare classes and (data or object)
properties which can be organized in a hierarchy using
the subsumption relation. A set of constraints can also
be declared in the ontology. In Figure 1, we present a
part of DBpedia ontology concerning restaurants (name
space db5). The class db:Restaurant is described by
its name, its telephone number, its address and finally
the city and the country where it is located. The class
db:Restaurant is a subclass of the class db:Building.

OWL2 allows us to express key constraints
for a given class: a key constraint hasKey
(CE(ope1, . . . , opem) (dpe1, . . . , dpen)) states that

3www.w3.org/RDF
4http://www.w3.org/TR/owl2-overview
5http://dbpedia.org/ontology/

http://dbpedia.org/ontology/
http://www.w3.org/TR/r2rml/
file://localhost/Users/fatihasais/Downloads/www.w3.org/RDF
http://www.w3.org/TR/owl2-overview

Figure 1: A small part of DBPedia ontology for the restaurants

each instance of the class expression CE6 is uniquely
identified by the object property expressions opei and
the data property expressions dpe j. This means that
there is no couple of distinct instances of CE that
shares values for all object property expressions opei
and all data property expressions dpe j. An Object-
Property Expression is either an ObjectProperty or
Inverse ObjectProperty. The only allowed data property
expression is a dataTypeProperty.
For example, we can express that the property expres-
sion {db:address} is a key for the class db:Restaurant
using hasKey(db:Restaurant(()(db:address)).

An RDF data source contains a set of class instances
described by a set of class facts and property facts.
Henceforth, we will use the relational notation: C(X)
is used to express that X is an instance of C and p(X,Y)
expresses that the couple (X,Y) is an instance of p.

We assume that OWL entailment rules [18] are ap-
plied on the RDF facts. This allows to obtain all the
facts that can be inferred from the data using the OWL
entailment rules expressing the semantics of the sub-
class-of relation, the sub-property-of relation and of the
definition of the the domains and the ranges of the prop-
erties.

For example, the following RDF source s1 contains the
RDF descriptions of four db:Restaurant instances.

6We consider only the class expressions that represent OWL
classes

Source s1:
db:Restaurant(r1), db:name(r1,′′ Arzak′′), db:city(r1, c1),
db:address(r1,′′ 800 Decatur S treet′′), db:country(r1,′′ S pain′′),
db:Restaurant(r2), db:name(r2,′′ Park Grill′′), db:city(r2, c2),
db:address(r2,′′ 11 North Michigan Avenue′′),
db:country(r2, ′′US A′′),
db:Restaurant(r3), db:name(r3,′′Geno′s S teaks′′),
db:country(r3,′′ US A′′), db:telephone(r3,′′ 884 − 4083′′),
db:telephone(r3,′′ 884 − 4084′′), db:address(r3,′′ 35 cedar Avenue′′),
db:Restaurant(r4), db:name(r4,′′ joy Hing′′), db:city(r4, c4),
db:address(r4,′′ 265 Hennessy Road′′), db:country(r4,′′ China′′)

3. Problem Statement

In a context where the aim is to infer identity links
between instances, key constraints are used in some
data linking approaches [22, 17, 28]. Indeed, keys ex-
press combinations of properties that uniquely identify
each instance. The key constraints are rarely available
and not obvious to declare for a human expert. We
focus here on the automatic discovery of composite key
constraints from data sources where information can be
incomplete. We are interested in discovering keys that
are valid in several data sources. A key is said valid in
a data source if, for all pairs of distinct instances, there
exists at least a value of a property expression belong-
ing to the key that is different. However, when UNA
is not fulfilled, we do not know if two instances are
distinct or not. Hence, it is not obvious to distinguish
the following two cases: (i) redundant property values
describing data items that refer to the same real world
entity and (ii) redundant property values describing
data items that refer to two distinct real world entities,
i.e. these values instantiate a property expression(s)
that is (are) not a key.

Example: Consider an additional instance
db:Restaurant(r5), in the source s1, with the same
value for the property db:name(r5,′′Geno′s S teaks′′)
as r3. If the UNA is not fulfilled, the probability for
the property db:name to be a key will depend on the
probability of r3 and r5 to refer to the same restaurant.

Since, we are interested in the discovery of valid keys,
we only consider data sources where the UNA is ful-
filled.

The data sources may not be described using the same
ontology. This is why we assume equivalence mappings
between classes and properties that are declared or com-
puted by an ontology alignment tool. If we consider
that all the data sources gathered in a single data source
under an integrated ontology, UNA would be no longer
guaranteed. Therefore, we tackle the problem where the

keys are first discovered in each data source and then
merged according to the given mapping set.

Let s1 and s2 be two RDF data sources that conform
to two OWL ontologies o1, o2 respectively.

We consider in each data source si the set of instan-
tiated property expressions Pei = {pei1, pei2, . . . , peiN}.
Let Ci = {ci1, ci2, . . . , ciL} be set of classes of the the on-
tology oi. Let M be the set of equivalence mappings
between the elements (property expressions or classes)
of the ontologies o1 and o2. Let Pe1c (resp. Pe2c) be the
set of properties of Pe1 (resp. of Pe2) such that there
exists an equivalence mapping with a property of Pe2
(resp. of Pe1).

The problem of key discovery that we address in this
work is defined as follows:

1. for each data source si and each class ci j ∈ Ci of the
ontology oi, such that it exists a mapping between
a class ci j and a class cks of the other ontology ok,
discover the parts of Pei that are keys in the data
source si

2. find all the parts of Peic that are keys for equiva-
lent classes in the two data sources s1 and s2 with
respect to the property mappings inM.

4. KD2R: Key Discovery approach for Data Linking

Given two RDF data sources and two domain ontolo-
gies, KD2R approach aims at finding automatically key
constraints for each instantiated class of each ontology
of each considered data source. The obtained keys are
then merged in order to find keys that are valid in all the
considered data sources.

In this section, we will first present an overview of
KD2R approach then we will give preliminary defini-
tions needed to present the approach.

4.1. KD2R overview
The most naive automatic way to discover the key

constraints is to check all the possible combinations of
property expressions that refer to a class. Let assume
that we have a class that is described by 15 properties,
in which case, the number of candidate keys is 215−1. In
order to minimize the number of computations, we pro-
pose a method inspired by [23] which first retrieves the
set of maximal non keys (i.e. combinations of property
expressions that share the same values for at least two
instances) and then computes the set of minimal keys,
based on this set of non-keys. Indeed, to make sure that
a set of property expressions is a key, we have to scan
the whole set of instances of a given class. On the other
hand, finding two instances that share the same values

for the considered set of property expressions would
suffice to be sure that this set is a non-key.

Since real RDF data sources might contain descrip-
tions that are incomplete, we have defined the notion of
undetermined keys which represent sets of property ex-
pressions that cannot be considered neither as keys nor
as non-keys.

In Figure 2 we show the main steps of KD2R ap-
proach. Our method discovers the key constraints for
each RDF data source independently. In each data
source, KD2R is applied on the classes in topologically
sorted order. This way, the keys that are discovered in
the superclasses are exploited in the processing of their
subclasses. For a given data source si and a given class c
we apply Key-Finder (Algorithm 1) which aims at find-
ing keys for the class c that are valid in the data source
si. Key-Finder starts by building a prefix tree for this
class to represent its instances (see Figure 2(a)). Using
this representation the sets of maximal undetermined
keys and maximal non keys are computed. These sets
of undetermined keys and non-keys, are used to derive
the set of minimal keys. The obtained keys are then
merged in order to compute the set of key constraints
that are valid for both data sources (see Figure 2(b)).

4.2. Keys, Non Keys and Undetermined Keys
We consider that a set of property expressions is a

key (c.f. definition 1) for a class if for all pairs of distinct
instances of this class, there exists a property expression
in this set such that all the values are distinct (objects
or literal values). We consider that a set of property
expressions is a non-key (c.f. definition 2) for a class if
there exist two distinct instances of this class that share
the same values for all the property expressions of this
set.

Since real RDF data sources might contain descrip-
tions that are incomplete, some combinations of prop-
erty expressions are neither keys nor non keys. More
precisely, a set of property expressions is called an un-
determined key (c.f. definition 3) for a class if it is not a
non-key and there exist two instances of the class such
that the instances share the same values for a subset
of the property expressions, and the remaining property
expressions are unknown for at least one of the two in-
stances.

Distinguishing undetermined keys from keys and non
keys allows a data linking tool to use them differently.
Using a pessimistic heuristic, the property for which no
value is given can take all the values that appear in the
data source. Therefore, the undetermined keys will not
be considered as keys. Using an optimistic heuristic,
the not given property values are different from all the

(a) Key finder for one data source (b) Key merge for two data sources

Figure 2: Key Discovery for two data sources

values that appear in the data source for this property.
This leads to consider the undetermined keys as keys.
Furthermore, these undetermined keys can be used by a
human expert in a validation process. Indeed, it allows
a system to propose to the expert all the candidate keys
that can be valid regarding to the data set(s).

Let si be an RDF data source for which the UNA is
declared and that conforms to an OWL ontology oi.

Definition 1. – Keys. A set of property expressions
ksi.c = {pe1, . . . , pen} is a key for the class c in si if:

∀X ∀Y ((X ! Y) ∧ c(X) ∧ c(Y))⇒

∃pe j ∀Z ∀W (pe j(X,Z) ∧ pe j(Y,W) ∧ (Z ! W))

We denote Ksi.c the set of keys of the class c w.r.t the
data source si.
Example. {db:address} ∈ Ks1.db:Restaurant since the
addresses of all the restaurants that appear in the data
source s1 are distinct.

A key ksi.c is minimal if it does not exist a key k′si.c
such that k′si.c ⊂ ksi.c.

Definition 2. – Non keys. A set of property expressions
nksi.c = {pe1, . . . , pen} is a non key for the class c in one
data source si if:

∃X ∃Y ∃Z1, . . . ,∃Zn (pe1(X,Z1) ∧ pe1(Y,Z1) ∧ . . .∧

pen(X,Zn) ∧ pen(Y,Zn) ∧ (X ! Y) ∧ c(X) ∧ c(Y))

We denote NKsi.c the set of non keys of the class c w.r.t
the data source si.
Example. {db:country} ∈ NKs1.Restaurant since there are
two restaurants that are located in the same country
(USA) in the data source s1.
A non key nksi.c is maximal if it does not exist a non
key nk′s.c such that nks.c ⊂ nk′s.c.

Definition 3. – Undetermined Keys. A set of property
expressions uksi.c = {pe1, . . . , pen} is an undetermined
key for the class c in si if:

• (i) uksi.c " NKsi.c and

• (ii)∃X ∃Y (c(X) ∧ c(Y) ∧ (X ! Y) ∧ ∀pe j

((∃Z (pe j(X,Z) ∧ pe j(Y,Z))∨

!W (pe j(X,W) ∨ !W pej(Y,W))))

We denote UKsi.c the set of undetermined keys of the
class c w.r.t the data source s.
Example. {db:country, db:city} ∈ UKs1.Restaurant since
it is not a non key and there are two restaurants in the
same country(USA) but one of them doesn’t contain
any information about the city where it is located.

An undetermined key uksi.c is maximal if it does not
exist an undetermined key uk′si.c such that uksi.c ⊂ uk′si.c.

5. KD2R algorithms

The main algorithm of KD2R approach is KeyFinder
(Algorithm 1), which retrieves for each RDF data
source, that is conform to an OWL ontology, the min-
imal key constraints that can be added to the classes of
the ontology. KeyFinder, starts by computing the topo-
logical order of the classes by exploiting the subsump-
tion relation between them.

For each class, KeyFinder builds an intermediate
prefix-tree (see Algorithm 2) which is a compact repre-
sentation of the class instances in the data source. Then
the final prefix-tree (see Algorithm 3) is generated in or-
der to take into account the possible unknown property
values. Then UNKFinder method is called to retrieve
the maximal non keys and the maximal undetermined
keys possibly using inherited keys. Finally, KeyFinder
computes the complete set of minimal keys for each
class. The minimal keys are derived from this set and
the set of inherited keys.

KeyFinder (Algorithm 1) corresponds to the pes-
simistic heuristic. To consider the optimistic one, it suf-
fices to call the keyDerivation (6), method with the set
of non keys NKs.c only.

5.1. Prefix-Tree creation.

We now describe the creation of the prefix-tree which
represents the instances of a given class in one data
source. We consider that the RDF descriptions of the
instances are saturated using the OWL entailment rules
[18].

In the prefix tree each level corresponds to a property
expression pe. Each node contains a set of cells and a
variable number of cells. Each cell contains:

1. a cell value: (i) when pe is a property, the cell value
is one literal value, one URI instantiating its range
or a null value and (ii) in case pe is a inverse prop-
erty, the cell value is one URI instantiating its do-
main or an artificial null value.

Algorithm 1: Key Finder
input : s: RDF Data source, O: Ontology
output : Keys: the set of minimal keys for each class c of O

1 classList ← topologicalS ort(O);
2 while (classList ! ∅) do
3 c← getFirst(classList) //get and delete the first element;
4 tripleList ← instanceDescriptions(c);
5 if tripleList ! ∅ then
6 IPT ← createIntermediatePre f ixTree(tripleList);
7 FPT ← createFinalPre f ixTree(IPT);
8 level← 0; UKs.c ← ∅; NKs.c ← ∅; curUNKey← ∅;
9 inheritedKeys←

getMinimalKeys(Keys, c.superClasses);
10 UNKFinder(FPT.root, level, inheritedKeys,UKs.c,
11 NKs.c, curUNKey);
12 keys← keyDerivation(UKs.c,NKs.c);
13 Ks.c ← getMinimalKeys(inheritedKeys.add(keys));
14 Keys.c← Ks.c //store the minimal keys of c;

15 return Keys

2. a URI list (UL): (i) when pe is a property the URI
list is the set of URIs instantiating its domain and
having as range the cell value, and (ii) in case pe is
an inverse property, the URI list is the set of URIs
instantiating its range and having as domain the
cell value.

3. a URI list (NUL): the list of URIs for which
the property expression value is unknown and for
which we have assigned the cell value (null or not).

4. a pointer to a single child node.

Each prefix path corresponds to the set of instance
URIs that share the cell values for all the property ex-
pressions involved in the path.

In order to consider the cases where property values
are not given in the data source, we create first an inter-
mediate prefix-tree. In this intermediate prefix-tree, an
artificial null value is created for those properties. Then,
the final prefix-tree is generated by assigning all the ex-
isting cell values of one node to the cell that contains
the artificial null value.

5.1.1. Intermediate Prefix-Tree creation
In order to create the intermediate prefix-tree we use

the set of all property expressions that appear at least
in one instance description of the considered class. For
each property expression, instance and for each value, if
there is no existing cell value which corresponds to the
property expression value a new cell is created and the
URI list UL is initialized with the instance URI. When
a property expression does not appear in the description
of an instance, we create or update, in the same way,
a cell with an artificial null value. This intermediate

prefix-tree creation is done by scanning the data only
once.

Algorithm 2: Intermediate prefix-tree creation
input : RDF DataSet s , Class c
output : root of the intermediate prefix-tree

1 root ← newNode();
2 Pe← getPropertyExpressions(c, s);
3 for each c(i) ∈ s do
4 node← root;
5 for each pek ∈ Pe do
6 if pek is inverse then
7 pek(i)← getValues(Range);

8 else
9 pek(i)← getValues(Domain);

10 if pek(i) = ∅ then
11 if (there is a cell cell1 in node with null value)

then node.cell1.UL.add(i);
12 else cell1 ← newCell();
13 node.cell1.value←null;
14 node.cell1.UL.add(i);

15 else
16 for (each value v ∈ pek(i)) do
17 if (there exists a cell cell1with value v) then

node.cell1.UL.add(i) ;
18 else cell1 ← newCell();
19 node.cell.value← v;
20 node.cell.UL.add(i);

21 if (pek is not the last property) then
22 if cell1 hasChild then node← cell.child.node();
23 else node← cell.child.newNode();

24 return root;

Example of intermediate Prefix-Tree creation. The cre-
ation of the intermediate prefix-tree (see Figure 3) starts
with the first entity which is the db:Restaurant r1. A
new cell is created in the root node describing the name
of the country in which the restaurant is located. The
next information concerning this restaurant is the city
where it is located. To store this information a new node
will be created as a child node of the cell “Spain”. A
new cell is created in this node to store the value c1. The
process continues until all the information about an en-
tity are represented in the tree. When the next entity is
to be inserted in the tree the insertion begins again from
the root.

In figure 3, we give the intermediate prefix-tree for
the class db : Restaurant instances of the RDF data
source s1 described in section 2.

5.1.2. Final Prefix-Tree creation
We generate a final prefix-tree from the intermediate

prefix-tree (see Algorithm 3) by assigning the set

of the possible values contained in the cells of one
node to the artificial null value of this node, if it
exists. We use the URI list NUL to store the URIs for
which the property expression value was unknown.
This information will be used by UNKFinder (Algo-
rithm 5) to distinguish non keys and undetermined keys.

For example, we can see in Fig. 3 that there are
two restaurants in USA: r2 and r3. The restaurant r2
is located in c2 while there is no information about
the location of r2. That is why a null cell has been
created in the intermediate prefix tree (see Figure 3).
Therefore, we assign the value c2 for the property
db : city of r3. The URI list NUL is now {r2, r3} and
r3 is stored in the list NUL (see Figure 5(b)). This
assignation is performed using mergeCells function.
This process will be applied recursively to the children
of this node (see Figure 5(c)) in order to: (i) merge the
cells of the child nodes that contain the same value and
(ii) to replace the null values by the possible values. In
figure 4, we give the final prefix-tree of the RDF data
described in section 2.

Algorithm 3: Final prefix tree creation
input : IPT : intermediate prefix tree
output : FPT : final prefix tree

1 FPT.root ← mergeCells(getCells(IPT.root)) ;
2 foreach cell c in FPT.root do
3 nodeList ← getS electedChildren(IPT.root, c.value);
4 nodeList.add(getS electedChildren(IPT.root, null));
5 c.child ← mergeNodeOperation(nodeList);

6 return FPT ;

Algorithm 4: Merge Node Operation
input : (in) nodeList, a list of nodes to be merged
output : mergedNode, the merged node and its

descendants
1 cellList ← getCells(nodeList);
2 mergedNode← mergeCells(cellList);
3 if nodeList contains non leaf nodes then
4 foreach cell c in mergedNode do
5 childrenNodeList.add(getS electedChildren(nodeList, null));

6 childrenNodeList.add(getS electedChildren(nodeList, c.value));

7 c.child ←
mergeNodeOperation(childrenNodeList);

8 return mergedNode;

Figure 3: Intermediate prefix-tree for the db : Restaurant class instances

Figure 4: Final prefix-tree for the db:Restaurant class instances

Figure 5: Example of merge Node Operation

5.2. Undetermined and non-key discovery (UNK-
Finder)

UNKFinder algorithm aims at retrieving the maxi-
mal undetermined keys UKs.c and the maximal non keys
NKs.c from a final prefix tree built for a given data set
and a given class, using a set of inherited keys (see Al-
gorithm 3). This method searches the biggest combi-
nation of property expressions having values that are
shared by more than one instance in the data set, using
a depth-first traversal of the tree. This means that this
combination of property expressions represents either a

non-key or an undetermined key.
More precisely, when a leaf node is reached we

know that the constructed list of property expressions
(curUNKey) is either a non-key or an undetermined key
if one of the cells of this leaf node contains a list of URIs
(UL) with size >1. If one of the URIs of UL is obtained
by a merge operation with a null value then curUNKey
is an undetermined key otherwise it is a non-key.

Figure 6: Example 1

In the example of Figure 6, the combination of prop-

erty expressions {pe1, . . . , pem} is an undetermined key.

In addition to this, when the size of the union of all
the URI lists UL of the leaf node is greater than 1, we
know that curUNKey that is constructed before adding
the leaf level is a non-key or an undetermined key (same
criteria than above to distinguish them).

Figure 7: Example 2

In the example of Figure 7, for the node n2,
| {i1} ∪ {i2} |> 1, then {pe1, . . . , pem−1} is a non-key or
an undetermined key.

In order to generate some combinations of property
expressions, we need to ignore some of them (i.e.,
level(s) in the prefix-tree). Therefore the descendants of
the ignored level(s) have to be merged using the merge
node operation (see Algorithm 4).

Figure 8: Example 3

In the example of Figure 8 we illustrate how the
merge node operation is used to build all the possible
prefix-trees corresponding to the possible combinations
of property expressions. The first list of property ex-
pressions {pe1, . . . , pem−1, pem} is tested successively
on the leaf nodes n3, n4 and n5.

Then, pem−1 is suppressed from this combination
thanks to the merge node operation applied on the chil-
dren of n2. The new prefix tree is shown bellow in Fig-
ure 9, where n6 represents the result of the merge op-

eration on n3, n4 and n5. This operation is reapplied
recursively on the new prefix trees obtained from the
merge.

Figure 9: Example 4

To ensure the scalability of the undetermined and
non-key discovery, UNKFinder performs three kinds of
pruning:

(A) The subsumption relation between classes is ex-
ploited to prune the prefix-tree traversal. Indeed,
when a key is already discovered for a class using
one data source, then this key is also valid for all
the subclasses in this data source. Thus, parts of
the prefix-tree are not explored.
Example: let ks.c1 = {{pe1, pe3}, {pe2, pe4}} be the
set of keys of c1. Let c2 be a subclass of c1 in
the ontology. Let consider the prefix-tree for c2
showed in Figure 10.

Figure 10: Example 5

When curUNKey = {pe1, pe2, pe3} the pruning
is applied because curUNKey include one of the
keys of c1 (i.e., {pe1, pe3}). Therefore, the subtree
rooted at n3 is not explored.

Algorithm 5: UNKFinder
input : (in) root: node of the prefix tree;

(in) level: property expression number;
(in) inheritedKeys: keys inherited from super-classes;
(in/out) UKs.c: set of undetermined keys ; (in/out) NKs.c: set of non keys ;
(in/out) curUNKeys.c: candidate undetermined or non key

1 curUNKey.add(level)
2 if (root is a leaf) then
3 foreach cell c in root do
4 if (c.UL.size() > 1) then
5 if (one of the cells of the prefix path comes from a merge with null value (NUL.size()>1)) then UKs.c.add(curUNKey)
6 else
7 NKs.c.add(curUNKey)
8 UKs.c.delete(curUNKey)
9 break

10 curUNKey.remove(level)
11 if ((root has more that one cell) AND (union(getUL(root.cells))).size() > 1)) then
12 if (one of the cells of the prefix path comes from a merge with null value (NUL.size()>1)) then
13 UKs.c.add(curUNKey)

14 else
15 NKs.c.add(curUNKey)

16 else
17 //pruning: monotonic characteristic of keys (curUNKey is a key for the current path)
18 if (UL of each cell of root contains the same URI) then
19 return
20 //pruning: monotonic characteristic of inherited keys and anti-monotonic characteristic of non-keys
21 if ((a key of inheritedKeys is not included in curUNKey) AND (new maximal non keys are achievable through the current path)) then
22 foreach cell c in root do
23 //pruning: monotonic characteristic of keys
24 if (c.UL.size() >1) then
25 UNKFinder(c.getChild,level+1,inheritedKeys, UKs.c, NKs.c)

26 curUNKey.remove(level)
27 //pruning: anti-monotonic characteristic of non-keys
28 if (new maximal non keys are not achievable through the current path) then
29 return
30 childNodeList ← getChildren(root)
31 mergedTree← mergeNodeOperation(childNodeList)
32 UNKFinder(mergedTree,level+1, inheritedKeys, UKs.c, NKs.c)

(B) When all the further new combinations of prop-
erty expressions in a given path cannot lead to new
maximal non-keys then the exploration of this path
is stopped.
Example: let NKs.c = {{pe1, pe2, pe3}} be the
set of already discovered non-keys. Suppose that
curNKey = {pe1}. If the remaining levels of the
prefix-tree do only correspond to the property ex-
pressions pe2 and/or pe3 then the children of the
current node are not explored.

(C) The monotonic characteristic of keys, i.e. if {AB}
is a key then all the supersets of {AB} are also
keys. Thus, when a node describes only one in-
stance we are sure that adding more property ex-
pressions in the current path will not lead to non
keys.

For instance, on the RDF data source s1 described in
section 2, we obtain the following sets of maximal un-
determined keys and maximal non keys, for the class
db :Restaurant:
UKs1.db:Restaurant = {{db:telephone, db:city, db:country}}
NKs1.db:Restaurant = {{db:country}}

5.2.1. Key derivation.
Once the sets of maximal undetermined keys and

maximal non-keys are discovered from a given data
source for one class, we derive the set of minimal keys.
The main idea is that a key is a set of property expres-
sions that is not included or equal to any maximal non-
key or undetermined key. Thus, to build all these sets
of property expressions, for each maximal non-key and
undetermined key, we retain the property expressions
that do not belong to this non-key or undetermined key.
Then, the obtained property expressions are combined
using a cartesian product and the minimal sets are kept.

More precisely, to derive the minimal keys Ks.c, we
first compute the union of NKs.c and UKs.c and select
the maximal sets of property expressions (see Algo-
rithm 6). For each selected set of property expressions,
we compute the complement set with respect to the
whole set of instantiated property expressions. Then we
apply the cartesian product on the obtained complement
sets. Finally, we remove the non-minimal keys ks.c from
the obtained multi-set Ks.c.

Example. In the db:Restaurant example we have:
UKs1.db:Restaurant = {{db:telephone,
db:city, db:country}} and
NKs1.db:Restaurant = {{db:country}}.

Algorithm 6: Key Derivation
input : UKs.c: set of maximal undetermined keys

NKs.c: set of maximal non keys
output : Ks.c: set of minimal keys

1 Ks.c ← ∅
2 UNKs.c ← getMaximalUNKeys(UKs.c ∪ NKs.c)
3 foreach (set of property expressions unk in UNKs.c) do
4 complementS et ← complement(unk)
5 if Ks.c=∅ then
6 Ks.c ← complementS et

7 else
8 newS et ← ∅
9 foreach (property expression pek in complementS et)

do
10 foreach (set of property expressions ks.c in Ks.c)

do
11 newS et.insert(ks.c.add(pek))

12 newS et ← getMinimalKeys(newS et)
13 Ks.c ← newS et

14 return Ks.c

The set of maximal set of property expressions is:
{{db:telephone, db:city, db:country}}.

Its complement set is:
{db:address},{db:name}.
Since there is only one set of property expressions, we
obtain: Ks1.db:Restaurant = {{db:address}, {db:name}}.

5.2.2. Multi-source Keys
When keys are discovered from two data sources

which conform to two different ontologies, we compute
the keys that are valid in both data sources. The keys
are expressed using the common vocabulary. First,
for each data source and class we delete from Ks.c
all keys which contains property expressions that do
not belong to Peic (i.e., the set of mapped properties).
Then, for each pair of equivalent classes we compute
the cartesian product between their set of minimal keys.
Finally, we select only the minimal ones. This way we
guarantee that the obtained keys are valid in both data
sources.

For example, consider two data sources D = {s1, s2},
if Ks1.db:Restaurant = {{db : address},
{db : name}} and
Ks2.db:Restaurant = {{db : telephone,
db : city}, {db : name}}

then the multi-source keys will be:
KD:Restaurant = {{db : telephone, db : address, db :
city}, {db : name}}.

6. Experiments

In this section we present the results of the experi-
ments obtained on different datasets. First, we give the
obtained keys for each dataset using the pessimistic and
the optimistic heuristics. We show on two datasets ex-
tracted from DBpedia that the optimistic approach scale
to datasets with millions of triples. Then, we show that
when we use the obtained keys in a data linking task, we
obtain results that are better than those obtained with-
out keys and comparable to those obtained using expert
keys.

6.1. Evaluation of key discovery

We have tested KD2R on five RDF data sets 7. The
two first data sets have been used in the OAEI–Ontology
Alignment Evaluation Initiative 2010 8, in the Instance
Matching track. The three last dataset has been col-
lected for the Web of data. Each data set contains two
RDF data sources and two OWL ontologies. UNA is
declared for each RDF data source of the three datasets.
For each dataset, we discovered the key constraints us-
ing KD2R. In table 1 we present some statistics on the
used datasets: the number of triples, the number of in-
stances per class, the number of properties per class.

6.1.1. KD2R results on OAEI 2010 datasets
The first dataset D1 consists of 2000 instances of the

classes Person and Address (see Table 1). In the Ontol-
ogy:

• a Person instance is described by the data
type properties: givenName, state, surname,
dateO f Birth, socS ecurityId, phoneNumber, age
and the object property hasAddress.

• an Address instance is described by the data
type properties: street, houseNumber, postCode,
isInS uburb9 and the object property hasAddress.

Each of the RDF data sources contains 500 instances
of the class Person and 500 instances of Address.

KD2R has discovered the four following keys for the
Person and Address classes in the dataset D1, using

7http://www.lri.fr/~sais/KD2R-DataSets
8http://oaei.ontologymatching.org/2010/
9in the ontology of the second data source isInS uburb is declared

as an object property. Since, it was the unique difference between
the two ontologies, we have chosen to rewrite the second data source
using the first ontology. An analogous processing has been performed
on the second data set.

the pessimistic heuristic:
KD1.Person= {{socS ecurityId}, {hasAddress}}
KD1.Address= {{isInS uburb, postcode, houseNumber},
{inverse(hasAddress)}}.

KD2R has discovered the thirteen following keys
for the Person and Address classes in the dataset D1,
using the optimistic heuristic:
KD1.Person= {{socS ecurityId}, {hasPhone}
{hasAddress}, {dateO f Birth, givenName},
{dateO f Birth, age},
{surname, dateO f Birth}, {surname, givenName}}
KD1.Address= {{street, houseNumber}, {street, isInSub-
urb}, {houseNumber, isInS uburb},{postCode, isInS uburb},
{street, postCode}, {inverse(hasAddress)}}.

Using the optimistic heuristic, the undetermined keys
are considered as keys. In the Person dataset D1, there
are a lot of not instantiated properties. Thus, we have
obtained a lot of undetermined keys. This has led to a
set of keys that is bigger than the one obtained using
the pessimistic heuristic.

The second dataset D2 describes 1730 instances of
Restaurant and Address classes (see Table 1). It corre-
sponds to the first version of the OAEI 2010 restaurant
dataset that contains bugs. In the provided ontology we
have:

• a Restaurant instance is described using
the datatype properties properties name,
phoneNumber, hasCategory and the object
property hasAddress.

• an Address instance is described using the
datatype properties street, city and the object prop-
erty hasAddress.

The first RDF data source s1 describes 113 Address
instances and 113 Restaurant instances. The second
RDF data source s2 describes 752 Restaurant instances
and 752 Address instances.

The five keys that are obtained for Restaurant and
Address classes in the dataset D2, using the pessimistic
heuristic, are as follows:
KD2.Restaurant= {{phoneNumber, name},
{phoneNumber, hasCategory},
{name, hasCategory}, {hasAddress}}
KD2.Address= {{inverse(hasAddress)}}.

Since there are no undetermined keys in D2, the ob-
tained results are the same for the optimistic heuristic
(see section 4.2).

http://www.lri.fr/~sais/KD2R-DataSets
http://oaei.ontologymatching.org/2010/

dataset source #triples #instances (per class) #properties (per class)
Person 1 (D1) s1 5801 Person: 500 Person: 7

Address: 500 Address: 6
Person 1 (D1) s2 6230 Person: 500 Person: 7

Address: 500 Address: 6
Restaurant (D2) s1 891 Restaurant: 113 Restaurant: 4

Address: 113 Address: 3
Restaurant (D2) s2 3347 Restaurant: 752 Restaurant: 4

Address: 752 Address: 3
GFT & ChefMoz (D3) s1 (GFT) 4494 Restaurant: 1349 Restaurant: 4
GFT & ChefMoz (D3) s2 (ChefMoz) 153300 Restaurant: 32686 Restaurant: 4

Table 1: Statistics on OAEI 2010 and GFT & ChefMoz datasets

6.1.2. KD2R results on GFT-ChefMoz dataset
The GFT-ChefMoz data set is composed of two RDF

data sources and two OWL ontologies. The first data
source has been extracted from the ChefMoz repository
published on the Linked Open Data Cloud (LOD). The
second data source was obtained from Google Fusion
tables service [7], by [20]. In order to enforce UNA
in the ChefMoz dataset we used the linking tool LN2R
without keys (see Section 6.3.1). We have validated
the results manually and suppressed the duplicates. For
each dataset, we have discovered the key constraints us-
ing KD2R.

The GFT data source s1 collected from the LOD,
consists of 1575 instances of the class Restaurant (see
1). In the ontology a restaurant is described by the data
type properties: title, address, cuisine, city.

The ChefMoz data source s2 describes 32586
instances of the class Restaurant (see Table 1). In
the provided ontology, restaurants are described using
more properties than in the s1 data source. Equivalence
mappings have been declared between the four proper-
ties of GFT (s1) and the properties of ChefMoz (s2).

KD2R has discovered the following key for the
Restaurant class in the data source s1, using the
pessimistic heuristic:
Ks1.Restaurant= {{address},{city, title}}

The key that is obtained for Restaurant in the data
source s2 is the following composite key, using the pes-
simistic heuristic:
Ks2.Restaurant= {{title, address},
After the merge, the obtained multi-source key is:
KD3.Restaurant = {{title, address}.

Using the optimistic heuristic, the keys obtained on
each data source are different but the key obtained af-

ter their merge is equal to the one obtained using pes-
simistic heuristic.

6.1.3. KD2R results on DBPedia dataset
In order to show the scalability, we have applied

KD2R on two datasets extracted from DBpedia10: the
first dataset concerns the persons and the second one
concerns the natural places (see table 2). One of the
characteristics of DBpedia is that UNA is not fulfilled.
All the keys that can be discovered on such a dataset
would remain valid even if the duplicates are removed.
However, some of the possible minimal keys can be
missed. In the worst case scenario, two duplicates are
represented by the same property values. Hence, no
keys can be found using these properties. In DBpedia,
we can find people that are represented several times
using distinct URIs, but in different contexts (e.g. one
soccer-player is represented using several URIs, but for
each URI the description concerns its transfer into an
new club). Therefore, in such cases keys can be discov-
ered.

On small data sources such as OAEI data sources or
GFT (less than 10 000 triples), KD2R can be applied us-
ing the pessimistic or the optimistic heuristic. Neverthe-
less, on large datasets such as DBpedia persons (more
than 5.6 millions of triples) or DBpedia natural places
(more than 1.6 millions of triples), the pessimistic ap-
proach cannot by used. Indeed, such datasets contain a
lot of properties that are rarely instantiated which leads
to a final prefix-tree that contains too many nodes (i.e.
assignation of all the possible values to the artificial
“null” values in the prefix tree). Hence, in such cases
only the optimistic heuristic can be used. Moreover,

10http://dbpedia.org/Downloads37

we have considered only the properties that are instan-
tiated for at least T distinct Person and NaturalPlace
instances.

The first dataset contains the set of 763644 instances
of the class Person which corresponds to 5639680 RDF
triples. The second dataset contains the set of 49887
instances of the class NaturalPlace which corresponds
to 1604347 RDF triples. To show how the inherited
keys are exploited, KD2R has been applied on the class
NaturalPlace, its subclass BodyO f Water and on the
class Lake which is a subclass of BodyO f Water.

For the class Person of D4, when T is equal
to 20%, the set of obtained keys is as fol-
lows: KD4.Person = {{squadnumber, birthplace},
{squadnumber, birthdate}, {currentmember,
birthplace}, {currentmember, name}, {squadnumber,
name}, {currentmember, birthdate}}

When T is equal to 10%, KD2R obtains 17 addition-
nal composite keys, such as {name, position, deathdate}
and {name, occupation, birthdate, activeyearstartyear,
birthplace}}

For the class NaturalPlace of D5, when T is equal to
20%, the set of obtained keys is:

KD5.NaturalPlace = {{name, district, elevation},
{sourcecountry, location}, {country, district,
long}, {district, sourcecountry, elevation},
{sourcecountry, long}, {district, location},
{name, lat, district}, {country,locatedinarea}, {lat,
district, elevation}, {lat, sourcecountry}, {location,
locatedinarea}, {sourcecountry, locatedinarea},
{district,locatedinarea}, {name, district, point},
{country, lat, district}, {name, district, long},
{district, elevation, long}, {country, sourcecountry,
elevation}, {country, district, point}, {district, point,
elevation}, {sourcecountry, point}}

For the 33993 instances of the class BodyO f Water,
we have found 13 keys, four of them are subsets of some
minimal keys that are inherited from NaturalPlace like
{lat, district}. The other minimal keys belong to the set
of minimal keys inherited from NaturalPlace.

For the 9438 instances of the class Lake, we have
found 7 minimal keys, three of them are subsets of some
minimal keys that are inherited from BodyO f Water like
{sourceCountry}. The other minimal keys belong to the
set of minimal keys inherited from BodyO f Water.

6.2. Scalability Evaluation

The complexity of the prefix-tree exploration is ex-
ponential in terms of the number of the property expres-
sion values. We have checked experimentally on the

seven data sources the benefits of the different kinds of
pruning that are used during the prefix-tree exploration.
More specifically, as it is already mentioned, the prun-
ing that is used in KD2R can be grouped in three cate-
gories:

1. Key Inheritance (see section 5.2 (A))
2. NonKey Antimonotonicity (see section 5.2 (B))
3. Key Mononotonicity (see section 5.2 (C))

In tables 3 and 4, we give the results of KD2R in
terms of runtime and search space pruning for the seven
data sources. The given results correspond to the sum of
those obtained for each class in the dataset. For exam-
ple, for the data source s1, the results correspond to the
results obtained for the Person and Address classes.

The pruning techniques enable KD2R to be more ef-
ficient and scalable in big datasets. Tables 3 and 4 show
that on the five smallest data sources, the execution
times of keyFinder (using pessimistic or optimistic) is
less than 8 seconds. For the two DBpedia data sources,
the execution times is less than 441 seconds. Thanks
to the different kinds of pruning, less than 50% of the
nodes of the prefix tree are explored for all datasets.
Furthermore, we can notice that the more the triples are
numerous the more the pruning is efficient. It should be
also mentioned that for the instances of the class DB-
pedia Person, less than 5% of the nodes are explored,
and for the class DBpedia NaturalPlace, less than 0.5%
of the nodes are explored.The dataset D5, is the only
one in the experiments that contain sumbsumption re-
lations between the classes. This experiment has been
executed to show the importance of the Key inheritance
pruning. 13% of the all the prunings that takes place in
this dataset are obtained thanks to the Key Inheritance
(4).

Nevertheless, even if the pruning clearly improves the
execution time, the bottleneck of the approach is the
computation of the minimal keys from the set of maxi-
mal non-keys and undetermined keys. Indeed, the com-
plexity of this step is quadratic in terms of the number of
non-keys when the number of keys is linear with respect
to the number of non-keys and undermined keys.

6.3. Evaluation of the key quality

To evaluate the quality of the obtained keys, we have
used an existing data linking tool to show the benefits
of using discovered key constraints in the data linking
process. More precisely, we have compared the results
that are obtained by the linking tool when the keys that
are discovered by KD2R are used and when no keys are
used.

Dataset Threshold T #properties #instances #triples
DBpedia: Person (D4) 20% 7 740689 2952706
DBpedia: Person (D4) 10% 10 742233 3332207

DBpedia: NaturalPlace (D5) 20% 11 49887 836960

Table 2: DBpedia dataset description

dataset source pruning category #not-
visited-
nodes

not-visited
rate

#nodes
without
pruning

time with
pruning (s)

time without
pruning (s)

OAEI Person s1 Key monotonicity 764478 60% 1252994 4 8
OAEI Person s2 Key monotonicity 1679956 75% 2234738 8 10

OAEI Restaurant s1 Key monotonicity 228 81% 280 1 2
OAEI Restaurant s2 Key monotonicity 103 71% 146 1 2

GFT s1 Key monotonicity 84 10% 827 1 3
ChefMoz s2 Key monotonicity 71754 55% 129569 570 625

Table 3: Pessimistic heuristic: search space pruning and runtime results

dataset source pruning category #not-
visited-
nodes

not-visited
rate

#nodes
without
pruning

time with
pruning (s)

time without
pruning (s)

OAEI Person s1 Key monotonicity 12156 88% 13750 3 7
OAEI Person s2 Key monotonicity 16225 89% 18276 3 5

OAEI Restaurant s1 Key monotonicity 228 81% 280 1 2
OAEI Restaurant s2 Key monotonicity 103 71% 146 1 2

GFT s1 Key monotonicity 108 22% 499 1 3
ChefMoz s2 Key monotonicity 27026 55% 49351 5 8

DBpedia (Person) s1 (T=20%) Key monotonicity 27302986 5% 28803153 441 634
DBpedia (NaturalPalce) s1 (T=20%) Key monotonicity 40907348 0.5% 47716771 42 222

NonKey Antimonotonicity 159538
Key Inheritance 6153252

Table 4: Optimistic heuristic: search space pruning and runtime results

6.3.1. Brief presentation of N2R
N2R is a knowledge based approach which exploits

the key constraints that are declared in the ontology to
infer identity links (reconciliation decisions) between
class instances.

It exploits keys in order to generate a function that
computes similarity scores for pairs of instances. This
numerical approach is based on equations that model the
influence between similarities. In the equations, each
variable represents the (unknown) similarity between
two instances while the similarities between values of
data properties are constants (obtained using standard
similarity measures on strings or on sets of strings). Fur-
thermore, ontology and data knowledge (disjunction,
UNA) is exploited by N2R in a filtering step to reduce
the number of reference pairs that are considered in the
equation system.

More precisely, for each reference pair, the similar-
ity score is modeled by a variable xi and the way it de-
pends on other similarity scores is modeled by an equa-
tion: xi = fi(X), where i ∈ [1..n] and n is the num-
ber of reference pairs for which we apply N2R, and
X = (x1, x2, . . . , xn) is the set of their corresponding
variables. Each equation xi = fi(X) is of the form:

fi(X) = max(fi−d f (X), fi−nd f (X))

The function fi−d f (X) is the maximum of the similar-
ity scores obtained for the instances of the data proper-
ties and the object properties that belong to a key de-
scribing the i-th reference pair. In case of a combined
key we compute first the average of the similarity scores
of the property instances involved in that combined key.
The maximum function allows to propagate the similar-
ity scores of the values and the instances having a strong
impact. The function fi−nd f (X) is defined by a weighted
average of the similarity scores of the literal value pairs
(and sets) and the instance pairs (and sets) of data prop-
erties and object properties describing the i-th instance
pair and not belonging to a key constraint. See [22] for
the detailed definition of fi−d f (X) and fi−nd f (X). Solv-
ing this equation system is done by an iterative method
inspired by the Jacobi method [6], which is fast con-
verging on linear equation systems.

The instance pairs for which the similarity is greater
than a given threshold TRec are reconciled, i.e, an iden-
tity link is created between the two instances.

We have checked the obtained results against the
available gold-standard using the following standard
measures: precision, recall and F-measure. Then, we
have compared these results to those that are obtained
by N2R: (i) when no keys are declared in the ontology

and (ii) when expert keys manually defined for the
OAEI’10 contest are declared in the ontology.

6.4. Obtained results on OAEI 2010 datasets
Tables 5 and 6 show the results obtained by N2R in

terms of recall, precision and F-measure when: (i) no
keys are used, (ii) all KD2R keys are used and (iii) keys
defined by experts are used [21]. Since the domains
concerning persons and restaurants are rather common,
the expert keys have been declared manually by one of
the participants of the OAEI contest 2010, for LN2R
tool. If several experts are involved, a kappa coefficient
[3] can be computed to measure their agreement. Since
D1 contains not instantiated properties, both the opti-
mistic and pessimistic heuristic have been performed.
In Table 5 we define as KD2R-O the results obtained
using keys discovered with the optimistic heuristic and
KD2R-P the results obtained using key discovered with
the pessimistic heuristic. It should be mentioned that
for the datasets D2 and D3 the results given for KD2R
are both of the results of KD2R-O and KD2R-P, since
there are no undetermined keys. We show the results
when the threshold TRec varies from 1 to 0.8. Since
the F-measure expresses the trade-off between the re-
call and the precision, we first discuss the obtained re-
sults according to this measure. Across all datasets and
values of TRec, the F-measure obtained using KD2R
keys is greater than the F-Measure obtained when keys
are unknown. We can notice that, the results obtained
for the Person dataset (D1) are better when we use keys
obtained by either KD2R-O or KD2R-P than when the
keys are not used. When the threshold is bigger than
0.95 the F-Measure of LN2R using KD2R-O keys is
100%. This is an example that shows that the results
using keys found with the optimistic heuristic can be
better than the ones found with the pessimistic heuristic.
For the restaurant dataset (D2), when TRec ≥ 0.9, the F-
measure is almost three times higher than the F-measure
obtained when keys are unknown. This big difference
is due to the fact that the recall is much higher when
KD2R keys are added. Indeed, even when some prop-
erty values are syntactically different, it suffices that it
exists one key for which the property values are similar,
to infer the identity link. For example, when TRec = 1,
the KD2R recall is 95% for the persons dataset while
without the keys the recall is 0%. Hence, the more nu-
merous the key constraints are, the more identity links
can be inferred.

Furthermore, our results are very close to the ones ob-
tained using expert keys. For both datasets, the largest
difference between KD2R F-measure and the expert’s

one is 6%. For both data sets, KD2R precision is higher
than the expert precision. Indeed, some expert keys are
not verified in the dataset. For example,while the ex-
pert has declared phoneNumber as a key constraint for
the Restaurant class, some restaurants have the same
phone number in the data set, i.e, they are managed by
the same organization.

TRec Keys Recall Precision F-Measure
1 without 0% - % - %

KD2R-O 100% 100% 100%
KD2R-P 95.00% 100% 97.44%

expert 98.40% 100% 99.19%
0.95 without 61.20% 100% 75.93%

KD2R-O 100% 100% 100%
KD2R-P 95.00% 100% 97.44%

expert 98.60% 100% 99.30%
0.9 without 64.2% 100% 78.20%

KD2R-O 100% 98.04% 99.01%
KD2R-P 95.00% 100% 97.44%

expert 98.60% 100% 99.30%
0.85 without 65.20% 100% 78.93%

KD2R-O 100% 81.30% 89.68%
KD2R-P 99.80% 100% 99.90%

expert 99.80% 100% 99.90%
0.8 without 90.20% 100% 94.85%

KD2R-O 100% 35.71% 52.63%
KD2R-P 99.80% 100% 99.90%

expert 100% 100% 100%

Table 5: Recall, Precision and F-measure for D1

These results show that the data linking results are
significantly improved, especially in terms of recall,
when we compare them to results that can be obtained
when the keys are not defined.

In table 7, we give a comparison between the re-
sults obtained by LN2R using KD2R keys with other
tools that have used the Person-Restaurant (PR) dataset
of OAEI 2010–Instance Matching track. We can no-
tice that the obtained results in terms of F-measure are
comparable to those obtained by semi-supervised ap-
proaches like ObjectCoref [8]. It is nevertheless less
efficient than approaches that lear linkage rules that are
specific to the dataset like KoFuss+GA.

6.5. Obtained results for GFT-ChefMoz data set
Table 8 show the results obtained by N2R in terms of

recall, precision and F-measure when: (i) no keys are
used and (ii) KD2R keys are used. We show the re-
sults when the threshold TRec takes values in the inter-
val [0.7..1]. For both datasets and for every TRec value,

TRec Keys Recall Precision F-Measure
1 without 0% - % - %

KD2R 62.50% 80.46% 70.35%
expert 76.79% 74.78% 75.77%

0.95 without 14.29% 80.00% 24.24%
KD2R 62.50% 80.46% 70.35%
expert 77.68% 75.00% 76.32%

0.9 without 14.29% 80.00% 24.24%
KD2R 62.50% 80.46% 70.35%
expert 77.68% 75.00% 76.32%

0.85 without 14.29% 80.00% 24.24%
KD2R 65.17% 80.22% 71.92%
expert 77.68% 75.00% 76.32%

0.8 without 37.5% 80.76% 51.21%
KD2R 66.96% 79.78% 72.81%
expert 77.68% 75.00% 76.32%

Table 6: Recall, Precision and F-measure for D2

the F-measure obtained using KD2R keys is greater than
the F-Measure obtained when keys are unknown.

This difference is due to the fact that the recall is al-
ways higher when KD2R keys are added. Indeed, even
when some property values are syntactically different,
it suffices that it exists one key for which the property
values are similar, to infer the reconciliation. For ex-
ample, when TRec = 1, the KD2R recall is 60% for the
persons dataset while without the keys the recall is 45%.
Hence, the more numerous the key constraints are, the
more reconciliation decisions can be inferred.

As it happened in the experiments on the data sets
D1 and D2, the above results show that the data linking
results are significantly improved, in particular in terms
of recall, when we compare them to results that can be
obtained when the keys are not defined.

7. Related Work

The problem of key discovery from RDF datasets
in the setting of the semantic web and is similar to
the key discovery problem in relational databases.
Nevertheless, in database area, the approaches do not
have to consider the semantics defined in the ontology
(e.g. the subsumption relation that can be defined
between classes). Besides, in the relational context, the
key discovery problem is a sub-problem of Functional
Dependencies (FDs) discovery from data. Indeed, a

Dataset LN2R+KD2R-P LN2R+KD2R-O ASMOV LN2R CODI ObjectCoref RIMOM KnoFuss+GA
Person 1 0.99 1.00 1.00 1.00 0.91 1.00 1.00 1.00

Restaurant 0.728 – 0.70 0.75 0.72 0.73 0.81 0.78

Table 7: Comparison of F-Measure with other tools on PR dataset of OAEI 2010 benchmark

TRec Keys Recall Precision F-Measure
1 without 45.67% 100% 62.71%

KD2R 60.49% 100% 75.38%
0.95 without 50.61% 100% 67.21%

KD2R 60.49% 100% 75.38%
0.9 without 50.61% 100% 67.21%

KD2R 60.49% 100% 75.38%
0.85 without 50.61% 100% 67.21%

KD2R 60.49% 100% 75.38%
0.8 without 54.32% 100% 70.39%

KD2R 60.49% 100% 75.38%
0.75 without 54.32% 100% 70.39%

KD2R 60.49% 100% 75.38%
0.7 without 60.49% 100% 75.38%

KD2R 61.72% 100% 76.33%

Table 8: Recall, Precision and F-measure for D3

FD states that the value of one attribute is uniquely
determined by the values of some other attributes.

Keys or FDs can be used for different purposes.
Some approaches focus on finding approximate keys
or FDs. Blocking methods aim at using approximate
keys to reduce the number of instance pairs that have to
be compared by a data linking tool ([13],[24]). In [24],
discriminating data type properties (i.e approximate
keys) are discovered from a data set. Then, only the
instance pairs that have similar litteral values for these
discriminating properties are selected. These properties
are chosen using unsupervised learning techniques and
keys of size n are explored only if there is no key of
size n − 1 with a discriminative power enough higher.
Indeed, the aim here is to find the best approximate
keys to construct blocks of instances and not to dis-
cover the largest set of valid minimal keys that can be
used to link data. Other approaches use approximate
keys to infer probable identity links. In [25], the
authors discover (inverse) functional properties from
data sources where the UNA is fullfilled (i.e. non
composite keys). The functionality degree of a property
is computed to generate probable identity links. More
precisely, for one instance, the local functionality

degree of a property is the number of distinct values (or
instances) that are the object of the property when the
considered instance is the subject. The functionality
degree of one property is the harmonic mean of the
local functionality degrees across all the instances; the
inverse functionality degree is defined analogously. In a
data mining setting, the framework defined by [12] can
be used to discover approximate keys. In this approach,
a levelwise algorithm starts from the longuest keys and
the partial order that can be defined between keys is
used to avoid exploring subsets of non keys.
Functional dependencies can be used in reverse
engineering, query optimization or for data mining
purposes. [29] proposes a way of retrieving non
composite probabilistic FDs from a set of data sources.
Two strategies are proposed: the first merges the data
before discovering FDs, while the second merges
the FDs obtained from each data source. In order
to find the approximated FDs that hold in a relation,
TANE [9] partitions the tuples into groups based on
their attribute values. When the size of the partition is 1,
the partition is eliminated based on the fact that its data
cannot represent counter-examples of more complex
functional dependencies, so the partition is eliminated.
In this work, the FD is associated to an error measure
which is the minimal fraction of tuples to remove for
the key to hold in the data set. In all these aproaches,
to compute the confidence degree or the error measure
that can be associated to a key or a FD, all the data have
to be explored.

Other approaches aim to enrich the ontology and/or
use the keys to generate identity links between pairs of
instances that can be propagated to other pairs of in-
stances ([22, 1]). Such approaches, are called collective
or global approaches of data linking. For example, if
the approach can find that two paintings are the same,
then their museums can be linked and this link will lead
to generate identity links between the cities where the
museums are located in. Other approaches, such as [31]
discover keys or semantic dependencies to detect erro-
neous data. For these kinds of approaches, only keys
that are as correct as possible (i.e. valid with regard to
the data set) are useful.

In the context of Open Linked Data, [17] have pro-

posed a supervised approach to learn (inverse) func-
tional properties on a set of reconciled data.

In the relational context, the Gordian method [23]
allows discovering composite keys that can be used
in tasks related to data integration, anomaly detection,
query formulation, query optimization, or indexing. In
order to avoid checking all the possible combinations
of candidate keys, the method discovers first the maxi-
mal non-keys and use them to derive the minimal keys.
To optimize the prefix tree exploration, this method ex-
ploits the anti-monotonicity property of a non key. Nev-
ertheless, it is assumed that the data are completely de-
scribed (without null values). Furthermore, multivalued
attributes are not taken into account.

KD2R aims to discover keys that are correct with re-
gard to a set of data sources. The approach does not
need training data and exploits data sources where the
UNA is fullfilled. One important feature of KD2R is
that it can discover composite keys. Indeed, non com-
posite keys are not frequent in real data sets, and the
more numerous the keys are, the more the number of
decisions is large. Furthermore, KD2R do not need to
explore all the data for each property expression combi-
nation. Since the approach is defined in the setting of the
semantic Web, it takes into account the subsumption re-
lation defined between classes, multivaluations and in-
complete data.

[16, 10, 15] discover expressive linkage rules which
specify the conditions two data items must fulfill to
be linked: data transformations, similarity measures,
thresholds and the aggregation function. These rules are
learnt on a set of existing links [10, 15] or on a data set
where UNA is fulfilled [16] using genetic programming
techniques. These rules are specific to the vocabulary
used in the data sets while keys do not take into ac-
count such kind of information. Keys express concep-
tual knowledge that can be used either to infer identity
links logically or to generate similarity functions as in
[22].

8. Conclusions and Future Work

In this paper, we have described the method KD2R
which aims to discover keys in RDF data in order to use
them in data linking. These data conform to distinct on-
tologies that are aligned and are described in RDF files
for which the UNA is fulfilled. KD2R takes into account
the properties that the RDF files may have: incomplete-
ness and multi-valuation. Since the data may be numer-
ous, the method discovers maximal undetermined/non
keys that are used to compute keys and merge them

if keys are discovered using different datasets. Fur-
thermore, the approach exploits key inheritance due to
subsumption relations between classes to prune the key
search for a given class.

The experiments have been conducted on five
datasets. Two datasets have been used in OAEI eval-
uation initiative and three datasets have been collected
from the Web of data. These experiments showed that
the use of KD2R keys significantly improve the results
obtained by a knowledge-based data linking method, in
terms of recall. Furthermore, the experiments showed
that KD2R can handle big datasets that contain millions
of triples.

We plan to define heuristics that determine the best
order of the property expressions to create the prefix-
tree. Furthermore, it would be interesting to study more
deeply the automatic key discovery problem when the
UNA is not fulfilled and in case of erroneous data. This
can be done by relaxing the validity constraint and find-
ing keys for which exceptions are allowed. Therefore,
KD2R approach will be extended to find maximal non
keys having at least α (a threshold fixed by the user) re-
dundancies. Those maximal non-keys will be used to
derive keys that are valid with β exceptions. Finally,
we are interested in studying how paths of property ex-
pressions, that can uniquely identify an entity, can be
automatically discovered.

9. Acknowledgment

This work is supported by the French National Research
Agency: “Quality and Interoperability of Large Catalogues of
Documents” project (QUALINCA-ANR-2012-CORD-012-
02).

References
[1] Arasu, A., Ré, C., Suciu, D., 2009. Large-scale deduplication

with constraints using dedupalog, in: ICDE, pp. 952–963.
[2] Atencia, M., David, J., Scharffe, F., 2012. Keys and pseudo-

keys detection for web datasets cleansing and interlinking, in:
EKAW, pp. 144–153.

[3] Cohen, J., 1968. Weighted kappa: Nominal scale agreement
provision for scaled disagreement or partial credit. Psychologi-
cal Bulletin .

[4] Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S., 2007. Dupli-
cate record detection: A survey. IEEE Transactions on Knowl-
edge and Data Engineering 19, 1–16.

[5] Ferrara, A., Nikolov, A., Scharffe, F., 2011. Data linking for the
semantic web. Int. J. Semantic Web Inf. Syst. 7, 46–76.

[6] Golub, G.H., Loan, C.F.V., 1996. Matrix computations (3rd ed.).
Johns Hopkins University Press, Baltimore, MD, USA.

[7] Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Mad-
havan, J., Shapley, R., Shen, W., Goldberg-Kidon, J., 2010.
Google fusion tables: web-centered data management and col-
laboration, in: SIGMOD Conference, pp. 1061–1066.

[8] Hu, W., Chen, J., Qu, Y., 2011. A self-training approach for
resolving object coreference on the semantic web, in: WWW,
pp. 87–96.

[9] Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H., 1999.
Tane: An efficient algorithm for discovering functional and ap-
proximate dependencies. The Computer Journal 42, 100–111.

[10] Isele, R., Bizer, C., 2012. Learning expressive linkage rules
using genetic programming. PVLDB 5, 1638–1649.

[11] Low, W.L., Lee, M.L., Ling, T.W., 2001. A knowledge-based
approach for duplicate elimination in data cleaning. Information
Systems 26, 585–606.

[12] Mannila, H., Toivonen, H., 1997. Levelwise search and borders
of theories in knowledge discovery. Data Min. Knowl. Discov.
1, 241–258.

[13] Michelson, M., Knoblock, C.A., 2006. Learning blocking
schemes for record linkage, in: AAAI, pp. 440–445.

[14] Ngomo, A.C.N., Auer, S., 2011. Limes a time-efficient approach
for large-scale link discovery on the web of data, in: IJCAI, pp.
2312–2317.

[15] Ngomo, A.C.N., Lyko, K., 2012. Eagle: Efficient active learn-
ing of link specifications using genetic programming, in: 9th
Extended Semantic Web Conference (ESWC), pp. 149–163.

[16] Nikolov, A., d’Aquin, M., Motta, E., 2012. Unsupervised learn-
ing of link discovery configuration, in: 9th Extended Semantic
Web Conference (ESWC), Springer-Verlag, Berlin, Heidelberg.
pp. 119–133.

[17] Nikolov, A., Motta, E., 2010. Data linking: Capturing and util-
ising implicit schema-level relations, in: Proceedings of Linked
Data on the Web workshop at 19th International World Wide
Web Conference(WWW)’2010.

[18] Patel-Schneider, P.F., Hayes, P., Horrocks, I., 2004. OWL Web
Ontology Language Semantics and Abstract Syntax Section 5.
RDF-Compatible Model-Theoretic Semantics. Technical Re-
port. W3C.

[19] Pavel, S., Euzenat, J., 2011. Ontology matching: State of the art
and future challenges. IEEE Transactions on Knowledge and
Data Engineering 99.

[20] Quercini, G., Setz, J., Sonntag, D., Reynaud, C., 2012. Facetted
browsing on extracted fusion tables data for digital cities, in:
proceedings of the Web of Linked Entities (WoLE) workshop in
conjonction with ISWC 2012 conference, pp. 94–105.

[21] Saïs, F., Niraula, N.B., Pernelle, N., Rousset, M.C., 2010. Ln2r
a knowledge based reference reconciliation system: Oaei 2010
results, in: Proceedings of the 5th International Workshop on
Ontology Matching (OM-2010).

[22] Saïs, F., Pernelle, N., Rousset, M.C., 2009. Combining a logical
and a numerical method for data reconciliation. Journal on Data
Semantics 12, 66–94.

[23] Sismanis, Y., Brown, P., Haas, P.J., Reinwald, B., 2006. Gor-
dian: efficient and scalable discovery of composite keys, in: Pro-
ceedings of the 32nd International conference Very Large Data
Bases (VLDB), VLDB Endowment. pp. 691–702.

[24] Song, D., Heflin, J., 2011. Automatically generating data link-
ages using a domain-independent candidate selection approach,
in: International Semantic Web Conference (1), pp. 649–664.

[25] Suchanek, F.M., Abiteboul, S., Senellart, P., 2011. Paris: Prob-
abilistic alignment of relations, instances, and schema. The Pro-
ceedings of the VLDB Endowment(PVLDB) 5, 157–168.

[26] Suchanek, F.M., Kasneci, G., Weikum, G., 2007. Yago: a core
of semantic knowledge, in: Proceedings of the 16th Interna-
tional Conference on World Wide Web (WWW), pp. 697–706.

[27] Symeonidou, D., Pernelle, N., Saïs, F., 2011. Kd2r: A key dis-
covery method for semantic reference reconciliation, in: OTM
Workshops, pp. 392–401.

[28] Volz, J., Bizer, C., Gaedke, M., Kobilarov, G., 2009. Discover-

ing and maintaining links on the web of data, in: Proceedings
of the 8th International Semantic Web Conference, Springer-
Verlag, Berlin, Heidelberg. pp. 650–665.

[29] Wang, D.Z., Dong, X.L., Sarma, A.D., Franklin, M.J., Halevy,
A.Y., 2009. Functional dependency generation and applications
in pay-as-you-go data integration systems, in: 12th International
Workshop on the Web and Databases.

[30] Winkler, W.E., 2006. Overview of record linkage and current
research directions. Technical Report. Bureau of the Census.

[31] Yu, Y., Li, Y., Heflin, J., 2011. Detecting abnormal semantic
web data using semantic dependency, in: ICSC, pp. 154–157.

	RR1559entete
	RR1559rapp

