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Abstract

In a peer-to-peer inference system, each peer can reason locally but can also solicit
some of its acquaintances, which are peers sharing part of its vocabulary. In this paper,
we consider peer-to-peer inference systems in which the local theory of each peer is a set of
propositional clauses defined upon a local vocabulary. An important characteristic of peer-
to-peer inference systems is that the global theory (the union of all peer theories) is not
known (as opposed to partition-based reasoning systems). The main contribution of this
paper is to provide the first consequence finding algorithm in a peer-to-peer setting: DeCA.
It is anytime and computes consequences gradually from the solicited peer to peers that are
more and more distant. We exhibit a sufficient condition on the acquaintance graph of the
peer-to-peer inference system for guaranteeing the completeness of this algorithm. Another
important contribution is to apply this general distributed reasoning setting to the setting
of the Semantic Web through the Somewhere semantic peer-to-peer data management
system. The last contribution of this paper is to provide an experimental analysis of the
scalability of the peer-to-peer infrastructure that we propose, on large networks of 1000
peers.

1. Introduction

Recently peer-to-peer systems have received considerable attention because their under-
lying infrastructure is appropriate to scalable and flexible distributed applications over
Internet. In a peer-to-peer system, there is no centralized control or hierarchical organi-
zation: each peer is equivalent in functionality and cooperates with other peers in order
to solve a collective task. Peer-to-peer systems have evolved from simple keyword-based
peer-to-peer file sharing systems like Napster (http://www.napster.com) and Gnutella
(http://gnutella.wego.com) to semantic peer-to-peer data management systems like
Edutella (Nejdl, Wolf, Qu, Decker, Sintek, & al., 2002) or Piazza (Halevy, Ives, Tatari-
nov, & Mork, 2003a), which handle semantic data description and support complex queries
for data retrieval. In those systems, the complexity of answering queries is directly related
to the expressivity of the formalism used to state the semantic mappings between peers
schemas (Halevy, Ives, Suciu, & Tatarinov, 2003b).
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In this paper, we are interested in peer-to-peer inference systems in which each peer can
answer queries by reasoning from its local (propositional) theory but can also ask queries
to some other peers with which it is semantically related by sharing part of its vocabulary.
This framework encompasses several applications like peer-to-peer information integration
systems or intelligent agents, in which each peer has its own knowledge (about its data or its
expertise domain) and some partial knowledge about some other peers. In this setting, when
solicited to perform a reasoning task, a peer, if it cannot solve completely that task locally,
must be able to distribute appropriate reasoning subtasks among its acquainted peers. This
leads to a step by step splitting of the initial task among the peers that are relevant to
solve parts of it. The outputs of the different splitted tasks must then be recomposed to
construct the outputs of the initial task.

We consider peer-to-peer inference systems in which the local theory of each peer is
composed of a set of propositional clauses defined upon a set of propositional variables
(called its local vocabulary). Each peer may share part of its vocabulary with some other
peers. We investigate the reasoning task of finding consequences of a certain form (e.g.,
clauses involving only certain variables) for a given input formula expressed using the local
vocabulary of a peer. Note that other reasoning tasks like finding implicants of a certain
form for a given input formula can be equivalently reduced to the consequence finding task.

It is important to emphasize that the problem of distributed reasoning that we consider
in this paper is quite different from the problem of reasoning over partitions obtained
by decomposition of a theory (Dechter & Rish, 1994; Amir & McIlraith, 2000). In that
problem, a centralized large theory is given and its structure is exploited to compute its
best partitioning in order to optimize the use of a partition-based reasoning algorithm. In
our problem, the whole theory (i.e., the union of all the local theories) is not known and the
partition is imposed by the peer-to-peer architecture. As we will illustrate it on an example
(Section 2), the algorithms based on transmitting clauses between partitions in the spirit
of the work of Amir and McIlraith (2000), Dechter and Rish (1994) or del Val (1999) are
not appropriate for our consequence finding problem. Our algorithm splits clauses if they
share variables of several peers. Each piece of a splitted clause is then transmitted to the
corresponding theory to find its consequences. The consequences that are found for each
piece of splitted clause must then be recomposed to get the consequences of the clause that
had been splitted.

The main contribution of this paper is to provide the first consequence finding algorithm
in a peer-to-peer setting: DeCA. It is anytime and computes consequences gradually from
the solicited peer to peers that are more and more distant. We exhibit a sufficient condi-
tion on the acquaintance graph of the peer-to-peer inference system for guaranteeing the
completeness of this algorithm.

Another important contribution is to apply this general distributed reasoning setting
to the setting of the Semantic Web through the Somewhere semantic peer-to-peer data
management system. Somewhere is based on a simple data model made of taxonomies
of atomic classes and mappings between classes of different taxonomies, which we think
are the appropriate common semantic support needed for most of the future semantic web
applications. The Somewhere data model can be encoded into propositional logic so that
query answering in Somewhere can be equivalently reduced to distributed reasoning over
logical propositional theories.
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The last contribution of this paper is to provide an experimental analysis of the scala-
bility of our approach, when deployed on large networks. So far, the scalability of a system
like Piazza goes up to about 80 peers. Piazza uses a more expressive language than the
one used in our approach, but its results rely on a wide range of optimizations (mappings
composition, paths pruning Tatarinov & Halevy, 2004) made possible by the centralized
storage of all the schemas and mappings in a global server. In contrast, we have stuck to a
fully decentralized approach and performed our experiments on networks of 1000 peers.

An important point characterizing peer-to-peer systems is their dynamicity: peers can
join or leave the system at any moment. Therefore, it is not feasible to bring all the
information to a single server in order to reason with it locally using standard reasoning
algorithms. Not only would it be costly to gather the data available through the system
but it would be a useless task because of the changing peers connected to the network. The
dynamicity of peer-to-peer inference systems imposes to revisit any reasoning problem in
order to address it in a completely decentralized manner.

The paper is organized as follows. Section 2 defines formally the peer-to-peer inference
problem that we address in this paper. In Section 3, we describe our distributed consequence
finding algorithm and we state its properties. We describe Somewhere in Section 4.
Section 5 reports the experimental study of the scalability of our peer-to-peer infrastructure.
Related work is summarized in Section 6. We conclude with a short discussion in Section 7.

2. Consequence Finding in Peer-to-peer Inference Systems

A peer-to-peer inference system (P2PIS) is a network of peer theories. Each peer P is a
finite set of propositional formulas of a language LP . We consider the case where LP is
the language of clauses without duplicated literals that can be built from a finite set of
propositional variables VP , called the vocabulary of P . Peers can be semantically related by
sharing variables with other peers. A shared variable between two peers is in the intersection
of the vocabularies of the two peers. We do not impose however that all the variables in
common in the vocabularies of two peers are shared by the two peers: two peers may not
be aware of all the variables that they have in common but only of some of them.

In a P2PIS, no peer has the knowledge of the global P2PIS theory. Each peer only knows
its own local theory and the variables that it shares with some other peers of the P2PIS (its
acquaintances). It does not necessarily knows all the variables that it has in common with
other peers (including with its acquaintances). When a new peer joins a P2PIS it simply
declares its acquaintances in the P2PIS, i.e., the peers it knows to be sharing variables with,
and it declares the corresponding shared variables.

2.1 Syntax and Semantics

A P2PIS can be formalized using the notion of acquaintance graph and in the following we
consider P2PIS and acquaintance graphs as equivalent.
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Definition 1 (Acquaintance graph) Let P = {Pi}i=1..n be a collection of clausal theo-
ries on their respective vocabularies VPi, let V = ∪i=1..nVPi. An acquaintance graph over V
is a graph Γ = (P,acq) where P is the set of vertices and acq ⊆ V × P × P is a set of
labelled edges such that for every (v, Pi, Pj) ∈ acq, i %= j and v ∈ VPi ∩ VPj .

A labelled edge (v, Pi, Pj) expresses that peers Pi and Pj know each other to be sharing
the variable v. For a peer P and a literal l, acq(l, P ) denotes the set of peers sharing with
P the variable of l.

In contrast with other approaches (Ghidini & Serafini, 2000; Calvanese, De Giacomo,
Lenzerini, & Rosati, 2004), we do not adopt an epistemic or modal semantics for interpreting
a P2PIS but we interpret it with the standard semantics of propositional logic.

Definition 2 (Semantics of a P2PIS) Let Γ = (P,acq) be a P2PIS with P = {Pi}i=1..n,

• An interpretation I of P is an assignement of the variables in
⋃

i=1..n Pi to true or
false. In particular, a variable which is common to two theories Pi and Pj of a given
P2PIS is interpreted by the same value in the two theories.

• I is a model of a clause c iff one of the literals of c is evaluated to true in I.

• I is a model of a set of clauses (i.e., a local theory, a union of a local theories, or a
whole P2PIS) iff it is a model of all the clauses of the set.

• A P2PIS is satisfiable iff it has a model.

• The consequence relation for a P2PIS is the standard consequence relation |=: given
a P2PIS P, and a clause c, P |= c iff every model of P is a model of c.

2.2 The Consequence Finding Problem

For each theory P , we consider a subset of target variables T VP ⊆ VP , supposed to represent
the variables of interest for the application, (e.g., observable facts in a model-based diagnosis
application, or classes storing data in an information integration application). The goal is,
given a clause provided as an input to a given peer, to find all the possible consequences
belonging to some target language of the input clause and the union of the peer theories.

The point is that the input clause only uses the vocabulary of the queried peer, but
that its expected consequences may involve target variables of different peers. The target
languages handled by our algorithm are defined in terms of target variables and require that
a shared variable has the same target status in all the peers sharing it. It is worth noting
that this requirement is a local property: the peers sharing variables with a given peer
are its acquaintances and, by definition, they are its direct neighbours in the acquaintance
graph.

Definition 3 (Target Language) Let Γ = (P,acq) be a P2PIS, and for every peer P ,
let T VP be the set of its target variables such that if (v, Pi, Pj) ∈ acq then v ∈ T VPi iff
v ∈ T VPj . For a set SP of peers of P, we define its target language T arget(SP ) as the
language of clauses (including the empty clause) involving only variables of

⋃
P∈SP T VP .
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The reasoning problem that we are interested in is to compute logical consequences of
an input clause given a P2PIS. It corresponds to the notion of proper prime implicates of
a clause w.r.t. a clausal (distributed) theory, which if formally defined in Definition 4.

Definition 4 (Proper prime implicate of a clause w.r.t. a clausal theory) Let P be
a clausal theory and q be a clause. A clause m is said to be:

• an implicate of q w.r.t. P iff P ∪ {q} |= m.

• a prime implicate of q w.r.t. P iff m is an implicate of q w.r.t. P , and for any other
clause m′ implicate of q w.r.t. P , if m′ |= m then m′ ≡ m.

• a proper prime implicate of q w.r.t. P iff it is a prime implicate of q w.r.t. P but
P %|= m.

The problem of finding prime implicates from a new clause and a theory, a.k.a. Φ-prime
implicates, corresponds exactly to the problem of computing proper prime implicates of
a clause w.r.t. a clausal theory. It has been extensively studied in the centralized case
(see the work of Marquis, 2000, for a survey). Note that deciding whether a clause is a
Φ-prime implicate of a clausal theory is BH2-complete (Marquis, 2000), i.e., both in NP
and coNP . The problem we address may be viewed as a further refinement, restricting to
the computation of proper prime implicates of a given target language. It corresponds to
〈L,Φ〉-prime implicates in the work of Marquis (2000) and has the same complexity.

Definition 5 (The consequence finding problem in a P2PIS) Let Γ = (P,acq) be
a P2PIS, where P = {Pi}i=1..n is a collection of clausal theories with respective target
variables. The consequence finding problem in Γ is, given a peer P , its acquaintances in Γ,
and a clause q ∈ LP , to find the set of proper prime implicates of q w.r.t.

⋃
i=1..n Pi which

belong to T arget(P).

From an algorithmic point of view, the consequence finding problem in a P2PIS is new
and significantly different from the consequence finding problem in a single global theory.
According to the semantics, in order to be complete, a peer-to-peer consequence finding
algorithm must obtain the same results as any standard consequence finding algorithm
applied to the union of the local theories, but without having it as a global input: it just
has a partial and local input made of the theory of a single peer and of its acquaintances.
The reasoning must be distributed appropriately among the different theories without a
global view of the whole P2PIS. In a full peer-to-peer setting, such a consequence finding
algorithm cannot be centralized (because it would mean that there is a super-peer controlling
the reasoning). Therefore, we must design an algorithm running independently on each peer
and possibly distributing part of reasoning that it controls to acquainted peers: no peer has
control on the whole reasoning.

Among the possible consequences we distinguish local consequences, involving only target
variables of the solicited peer, remote consequences, which involve target variables of a
single peer distant from the solicited peer, and combined consequences which involve target
variables of several peers.
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2.3 Example

The following example illustrates the main characteristics of our message-based distributed
algorithm running on each peer, which will be presented in detail in Section 3.

Let us consider 4 interacting peers. P1 describes a tour operator. Its theory expresses
that its current Far destinations are either Chile or Kenya. These far destinations are
international destinations (Int) and expensive (Exp). The peer P2 is only concerned with
police regulations and expresses that a passport is required (Pass) for international des-
tinations. P3 focuses on sanitary conditions for travelers. It expresses that, in Kenya,
yellow fever vaccination (Y ellowFev) is strongly recommended and that a strong protec-
tion against paludism should be taken (Palu) when accomodation occurs in Lodges. P4

describes travel accommodation conditions : Lodge for Kenya and Hotel for Chile. It also
expresses that when anti-paludism protection is required, accommodations are equipped
with appropriate anti-mosquito protections (AntiM). The respective theories of each peer
are described on Figure 1 as the nodes of the acquaintance graph. Shared variables are men-
tioned as edge labels. Target variables are defined by : T VP1 = {Exp}, T VP2 = {Pass},
T VP3 = {Lodge, Y ellowFev, Palu} and T VP4 = {Lodge,Hotel, Palu,AntiM}.

P1 :
¬Far ∨ Exp ¬Far ∨ Int
¬Far ∨ Chile ∨ Kenya

P2 :
¬Int ∨ Pass

Int

P3 :
¬Kenya ∨ YellowFev
¬Lodge ∨ ¬Kenya ∨ Palu

Kenya

P4 :
¬Kenya ∨ Lodge
¬Chile ∨ Hotel
¬Palu ∨ AntiM

Kenya,Chile

Lodge,Palu

Figure 1: Acquaintance graph for the tour operator example

We now illustrate the behavior of the algorithm when the input clause Far is provided
to peer P1 by the user. Describing precisely the behavior of a distributed algorithm on a
network of peers is not easy. In the following we present the propagation of the reasoning
as a tree structure, the nodes of which correspond to peers and the branches of which
materialize the different reasoning paths induced by the initial input clause. Edges are
labelled on the left side by literals which are propagated along paths and/or on the right
side by consequences that are transmitted back. A downward arrow on an edge indicates
the step during which a literal is propagated from one peer to its neighbor. For instance,
the initial step can be represented here by the following tree :

P1 :

Far

Local consequences of a literal propagated on a peer are then explicited within the
peer node. Target literals are outlined using a grey background, as well as transmitted
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back consequences. Vertical arrows preceding consequences distinguish the last returned
consequences from earlier ones. Although the successive trees presented here have increasing
depth, as if all reasoning paths were explored synchronously and in parallel, the reader
should keep in mind that all messages are exchanged in an asynchronous way and that the
order in which consequents are produced cannot be predicted.

In our example, consequences of Far derived by local reasoning on P1 are Exp, Int
and Chile ∨ Kenya. Since Exp is in T arget(P1) it is a local consequence of Far. Int is
not a target literal but is shared with P2, it is therefore transmitted to P2. The clause
Chile∨Kenya is also made of shared variables. Such clauses are processed by our algorithm
using a split/recombination approach. Each shared literal is processed independently, and
transmitted to its appropriate neighbors. Each literal is associated with some queue data
structure, where transmitted back consequences are stored. As soon as at least one conse-
quent has been obtained for each literal, the respective queued consequents of each literal
are recombined, to produce consequences of the initial clause. This recombination process
continues, as new consequences for a literal are produced. Note that since each literal is
processed asynchronously, the order in which the recombined consequences are produced is
unpredictable. Here, the component Chile is transmitted to P4 and Kenya is transmitted to
P3 and P4. Let us note that the peer P4 appears two times in the tree, because two different
literals are propagated on this peer, which induces two different reasoning paths.

P1 :

Exp Int Chile ∨ Kenya

Far

P2 : P4 : P3 : P4 :

Int Chile Kenya Kenya

While Exp is transmitted back to the user as a first (local) consequence of Far.

• The propagation of Int on P2 produces the clause Pass, which is in T arget(P2) but is
not shared and therefore, cannot be further propagated.

• The clause Chile, when transmitted to P4, produces Hotel which is in T arget(P4) but
is not shared and cannot be further propagated.

• When transmitted to P3, the clause Kenya produces YellowFev as well as the clause
¬Lodge∨Palu. The three variables are in T arget(P3). Lodge and Palu are also shared
variables and therefore, after splitting of the second clause, their corresponding literals
are transmitted (independently) to P4.

• When transmitted to P4, Kenya produces Lodge, which is in T arget(P4) and is also
shared and therefore further transmitted to P3.
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P1 :

Exp Int Chile ∨ Kenya

Far ↑ Exp

P2 :

Pass

P4 :

Hotel

P3 :

YellowFev ¬Lodge ∨ Palu

P4 : P4 :

P4 :

Lodge

P3 :

Int Chile Kenya Kenya

¬Lodge Palu Lodge

• The clause Pass, produced on P2, is transmitted back to P1 as a consequence of Int
and then to the user as a remote consequence of Far.

• The clause Hotel, produced on P4, is transmitted back to P1 where it is queued as a
consequent of Chile, since it has to be combined with consequences of Kenya.

• The two local consequences of Kenya obtained on P3 contain only target variables.
They are transmitted back to P1 and queued there. They may now be combined
with Hotel to produce two new combined consequences of Far : Hotel ∨ YellowFev and
Hotel ∨ ¬Lodge ∨ Palu, which are transmitted back to the user.

• Similarly on P4, Lodge is a local target consequent of Kenya, that is transmitted back
to P1 as a consequent of Kenya, where it is combined with Hotel to produce a new
consequence of Far that, in turn, is transmitted back to the user.

Simultaneously, the reasoning further propagates in the network of peers. The propa-
gation of ¬Lodge and Palu on P4 respectively produces ¬Kenya, which is not a target literal
but is shared and thus further propagated on P1, as well as AntiM, which is a target literal,
but not shared. We do not detail here the propagation of Lodge in the right most branch
of the reasoning tree.
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P1 :

Exp Int Chile ∨ Kenya

Far

Exp

↑ Pass

↑ Hotel ∨ YellowFev

↑ Hotel ∨ ¬Lodge ∨ Palu

↑ Hotel ∨ Lodge

P2 :

Pass

P4 :

Hotel

P3 :

YellowFev ¬Lodge ∨ Palu

P4 :
¬Kenya

P1 :

P4 :

AntiM

P4 :

Lodge

P3 :
...

↑ Pass ↑ Hotel

↑ YellowFev

↑ ¬Lodge ∨ Palu
↑ Lodge

¬Lodge Palu Lodge

¬Kenya

Note on the deepest node that P1 is here asked to produce the implicates of ¬Kenya,
while the complementary literal Kenya is still under process. We will see in Section 3 that
such situations are handled in our algorithm by mean of histories keeping track of the
reasoning branches ending up to each transmitted literal. When a same history contains
two complementary literals, the corresponding reasoning branch is closed and the empty
clause ! is returned as a consequence of the literals in the history.

In our example, the consequence produced by P1 for ¬Kenya is thus !, which is sent
back to P4 and then to P3. After combination on P3 with Palu we thus obtain Palu as a
new consequent of Kenya, which subsumes the previously obtained ¬Lodge ∨ Palu. When
transmitted back to P1 and combined with Hotel we obtain Hotel∨Palu which subsumes the
previously obtained consequent Hotel∨¬Lodge∨Palu. Since AntiM is not a shared variable
it is the only consequent of Palu on P4. When transmitted back to P3 for combination with
!, we thus obtain AntiM which, in turn, is returned to P1 for combination with Hotel, thus
giving Hotel ∨ AntiM as a new consequent of Far.

277



Adjiman, Chatalic, Goasdoué, Rousset, & Simon

P1 :

Exp Int Chile ∨ Kenya

Far

Exp Pass

Hotel ∨ YellowFev

Hotel ∨ Lodge

↑ Hotel ∨ Palu

↑ Hotel ∨ AntiM

↑ Hotel ∨ ...

P2 :

Pass

P4 :

Hotel

P3 :

YellowFev ¬Lodge ∨ Palu

P4 :
¬Kenya

P1 :

P4 :

AntiM

P4 :

Lodge

P3 :
...

Pass Hotel

YellowFev

↑ Palu

↑ AntiM

Lodge

↑ . . .

↑ ! ↑ AntiM ↑ ...

↑ !

We have not detailed the production of consequences of Lodge on P3 in the right most
branch. The reader could check in a similar way that it also produces AntiM (which has
already been produced through P3/P4 in the third branch). Eventually, the whole set of
consequences of Far is {Exp,Pass,Hotel∨Lodge,Hotel∨Palu,Hotel∨AntiM,Hotel∨YellowFev}.
Among those consequences, it is important to note that some of them (e.g., Hotel∨YellowFev)
involve target variables from different peers. Such implicates could not be obtained by
partition-based algorithms like those in (Amir & McIlraith, 2000). This is made possible
thanks to the split/recombination strategy of our algorithm.

3. Distributed Consequence Finding Algorithm

The message passing distributed algorithm that we have implemented is described in Section
3.2. We show that it terminates and that it computes the same results as the recursive
algorithm described in Section 3.1. We exhibit a property of the acquaintance graph that
guarantees the completeness of this recursive algorithm, and therefore of the message passing
distributed algorithm (since both algorithms compute the same results).
For both algorithms, we will use the following notations :

• for a literal q, Resolvent(q, P ) denotes the set of clauses obtained by resolution from
the set P ∪ {q} but not from P alone. We call such clauses proper resolvents of q
w.r.t. P ,

• for a literal q, q̄ denotes its complementary literal,

• for a clause c of a peer P , S(c) (resp. L(c)) denotes the disjunction of literals of
c whose variables are shared (resp. not shared) with some acquaintance of P . The
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condition S(c) = ! thus expresses that c does not contain any variable shared with an
acquaintance of P ,

• a history hist is a sequence of triples (l, P, c) (where l is a literal, P a peer, and c
a clause). An history [(ln, Pn, cn), . . . , (l1, P1, c1), (l0, P0, c0)] represents a branch of
reasoning initiated by the propagation of the literal l0 within the peer P0, which either
contains the clause ¬l0 ∨ c0 (in that case c0 may have been splitted into its different
literals among which l1 is propagated in P1), or not (in that case l0 = c0 and l0 is
propagated into P1, and thus l0 = l1): for every i ∈ [0..n − 1], ci is a consequence of
li and Pi, and li+1 is a literal of ci, which is propagated in Pi+1,

• ! is the distribution operator on sets of clauses: S1 ! · · · ! Sn = {c1 ∨ · · · ∨ cn

|c1 ∈ S1, . . . , cn ∈ Sn}. If L = {l1, . . . , lp}, we will use the notation !l∈LSl to denote
Sl1 ! · · · ! Slp.

3.1 Recursive Consequence Finding Algorithm

Let Γ = (P,acq) be a P2PIS, P one of its peers, and q a literal whose variable belongs
to the vocabulary of P . RCF (q, P ) computes implicates of the literal q w.r.t. P, starting
with the computation of local consequences of q, i.e., implicates of q w.r.t. P , and then
recursively following the acquaintances of the visited peers. To ensure termination, it is
necessary to keep track of the literals already processed by peers. This is done by the
recursive algorithm RCFH(q, SP, hist), where hist is the history of the reasoning branch
ending up to the propagation of the literal q in SP , which is the set of acquaintances of the
last peer added to the history.

Algorithm 1: Recursive consequence finding algorithm
RCF (q, P )
(1)return RCFH(q, {P}, ∅)

RCFH(q, SP, hist)
(1)if there exists P ∈ SP s.t. q ∈ P or if for every P ∈ SP , (q, P, ) ∈ hist return ∅
(2)else if (q̄, , ) ∈ hist return {!}
(3)else for every P ∈ SP local(P ) ← {q} ∪ Resolvent(q, P )
(4)if there exists P ∈ SP s.t. ! ∈ local(P ) return {!}
(5)else for every P ∈ SP local(P ) ← {c ∈ local(P )|L(c) ∈ T arget(P )}
(6)if for every P ∈ SP and for every c ∈ local(P ), S(c) = !, return

⋃
P∈SPlocal(P )

(7)else
(8) result ←

⋃
P∈SP{c ∈ local(P )|S(c) ∈ T arget(P )}

(9) foreach P ∈ SP and c ∈ local(P ) s.t. S(c) %= !

(10) if ¬q ∨ c ∈ P , P ← P\{¬q ∨ c}
(11) foreach literal l ∈ S(c)
(12) answer(l) ← RCFH(l,acq(l, P ), [(q, P, c)|hist])
(13) disjcomb ← (!l∈S(c)answer(l)) ! {L(c)}
(14) result ← result ∪ disjcomb
(15) return result
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We now establish properties of this algorithm. Theorem 1 states that the algorithm
is guaranteed to terminate and that it is sound. Theorem 2 exhibits a condition on the
acquaintance graph for the algorithm to be complete. For the properties of soundness and
completeness, we consider that the topology and the content of the P2PIS do not change
while the algorithm is running. Therefore, those properties have the following meaning for
a P2PIS: the algorithm is sound (respectively, complete) iff for every P2PIS, the results
returned by RCF (q, P ), where P is any peer of the P2PIS and q any literal whose variable
belongs to the vocabulary of P , are implicates (respectively, include all the proper prime
implicates) of q w.r.t. the union of all the peers in the P2PIS, if there is no change in the
P2PIS while the algorithm is running.

The sufficient condition exhibited in Theorem 2 for the completeness of the algorithm
is a global property of the acquaintance graph: any two peers having a variable in common
must be either acquainted (i.e., must share that variable) or must be related by a path
of acquaintances sharing that variable. First, it is important to emphasize that even if
that property is global, it has not to be checked before running the algorithm. If it is not
verified, the algorithm remains sound but not complete. Second, it is worth noticing that
the modeling/encoding of applications into our general peer-to-peer propositional reasoning
setting may result in acquaintance graphs satisfying that global property by construction. In
particular, as it will be shown in Section 4 (Proposition 2), it is the case for the propositional
encoding of the Semantic Web applications that we deal with in Somewhere.

Theorem 1 Let P be a peer of a P2PIS and q a literal belonging to the vocabulary of P .
RCF (q, P ) is sound and terminates.

Proof: Soundness: We need to prove that every result returned by RCF (q, P ) belongs
to the target language and is an implicate of q w.r.t. P, where P is the union of all the
peers in the P2PIS. For doing so, we prove by induction on the number rc of recursive calls
of RCFH(q, SP, hist) that every result returned by RCFH(q, SP, hist) (where the history
hist, if not empty, is of the form [(ln, Pn, cn), . . . , (l0, P0, c0)]) is an implicate of q w.r.t.
P ∪ {ln, . . . , l0} which belongs to the target language.

• rc = 0: either one of the conditions of Line (1), Line (2), Line (4) or Line (6) is
satisfied.

- If the condition in Line (1) is satisfied, the algorithm returns an empty result.
- If either there exists a peer P such that (q̄, , ) ∈ hist or ! ∈ local(P ): in both

cases, ! is returned by the algorithm (in respectively Line (2) and Line (4)) and it is
indeed an implicate of q w.r.t. P ∪ {ln, . . . , l0} belonging to the target language.

- Let r be a result returned by the algorithm at Line (6): there exists P ∈ SP such
that r ∈ local(P ), and it is obvioulsy an implicate of q w.r.t. P ∪ {ln, . . . , l0} (as q
or a resolvent of q and of a clause of P ), and it belongs to the target language.

• Suppose the induction hypothesis true for rc ≤ p, and let SP be a set of peers of
a P2PIS and q a literal (belonging to the vocabulary of all the peers of SP ) such
that RCFH(q, SP, hist) requires p + 1 recursive calls to terminate. Let r be a result
returned by RCFH(q, SP, hist).
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- If r ∈ local(P ) for a P ∈ SP and is such that S(r) = ! or S(r) ∈ T arget(P ), it is
obviously an implicate of q w.r.t. P ∪ {ln, . . . , l0} belonging to the target language.

- If r %∈ local(P ) for any P ∈ SP , it is obtained at Line (13): there exist P ∈ SP and
a clause c of P of the form S(c)∨L(c) such that S(c) = ll1∨ · · ·∨ llk and r = r1 ∨ · · ·∨
rk ∨L(c), where every ri is a result returned by RCFH(lli,acq(lli, P ), [(q, P, c)|hist])
(Line (12)). According to the induction hypothesis (the number of recursive calls of
RCFH(lli,acq(lli, P ), [(q, P, c)|hist]) for every lli is less than or equal to p), every
ri belongs to the target language and is an implicate of lli w.r.t. P\{¬q ∨ c} ∪
{q, ln, . . . , l0}, or, equivalently, an implicate of q w.r.t. P\{¬q ∨ c} ∪ {lli, ln, . . . , l0}.
Therefore, r1 ∨ · · · ∨ rk belongs to the target language and is an implicate of q w.r.t.
P\{¬q ∨ c} ∪ {S(c), ln, . . . , l0}. Since L(c) belongs to the target language and c =
S(c)∨L(c), r (i.e, r1∨· · ·∨rk ∨L(c)) belongs to the target language, and is an implicate
of q w.r.t. P\{¬q∨ c}∪{c, ln, . . . , l0}, and a fortiori of q w.r.t. P ∪{c, ln, . . . , l0} Since
c ∈ local(P ), c is an implicate of q w.r.t. P, and therefore r is an implicate of q
w.r.t. P ∪ {ln, . . . , l0}.

Termination: at each recursive call, a new triple (sl, P, c) is added to the history. If the
algorithm did not terminate, the history would be infinite, which is not possible since the
number of peers, literals and clauses within a P2PIS is finite.

!

The following theorem exhibits a sufficient condition for the algorithm to be complete.

Theorem 2 Let Γ = (P,acq) be a P2PIS. If for every P , P ′ and v ∈ VP ∩VP ′ there exists
a path between P and P ′ in Γ, all edges of which are labelled with v, then for every literal
q ∈ LP , RCF (q, P ) computes all the proper prime implicates of q w.r.t. P which belong to
T arget(P).

Proof: In fact, we prove that RCF (q, P ) computes at least all the prime proper resolvents
of q w.r.t. P , i.e., the elements of Resolvent(q, P ) that are not strictly subsumed by other
elements of Resolvent(q, P ).

We first show that proper prime implicates of q w.r.t. P are prime proper resolvents of
q w.r.t. P . Let m be a proper prime implicate of q w.r.t. P . By definition P ∪ {q} |= m
and P %|= m. By completeness of resolution w.r.t. prime implicates, m can be obtained by
resolution from the set P ∪ {q} but not from P alone, i.e., it is a proper resolvent of q w.r.t.
P . Let us suppose that m is strictly subsumed by another element m′ of Resolvent(q, P ).
This means that P ∪ {q} |= m′ |= m and m %≡ m′, which contradicts that m is a prime
implicate of q w.r.t. P .

Now we prove by induction on the maximum number rc of recursive calls involving a
same literal when triggering RCFH(q, SP, hist) that RCFH(q, SP, hist) computes all the
proper prime implicates belonging to the target language of q w.r.t. P(hist), where P(hist)
is obtained from P by replacing each ¬li ∨ ci by li if li %= ci. Thus:

P(hist) = P if hist is empty,
otherwise:

P(hist) = P\{¬li ∨ ci|(li, Pi, ci) ∈ hist s.t. li %= ci} ∪{li|(li, Pi, ci) ∈ hist s.t. li %= ci}
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If the history hist is not empty, it is of the form [(ln, Pn, cn), . . . , (l0, P0, c0)]. According
to the algorithm, when RCFH(q, SP, hist) is triggered, there have been at least n + 1
previous calls of the algorithm RCFH: RCFH(l0, SP0, ∅) and RCFH(li, SPi, histi) for
i ∈ [1..n], where histi =[(li−1, Pi, ci−1) . . . , (l0, P0, c0)]), and Pi ∈ SPi for every i ∈ [0..n].
Since the P2PIS can be cyclic, it may be the case that when we call RCFH(q, SP, hist),
(q, P, q) ∈ hist. If that is the case, there have been previous calls of RCFH involving q,
i.e., of the form RCFH(q, SPi, histi).

• rc = 0: either one of the conditions of Line (1), Line (2), Line (4) or Line (6) is
satisfied.

- If the first condition is satisfied, since rc = 0, it cannot be the case that for every
P ∈ SP , (q, P, ) ∈ hist, and therefore there exists P ∈ SP such that q ∈ P : in this
case, there is no proper prime implicate of q w.r.t. P(hist), because q ∈ P(hist) and
all the prime implicates of q w.r.t. a theory containing q are consequences of that
theory.

- If either (q̄, , ) ∈ hist or ! ∈ local(P ) for a given peer P of SP : in both cases,
! is the only prime implicate of q w.r.t. P(hist) and therefore, if it is a proper prime
implicate, it is the only one too. It is returned by the algorithm (respectively Line (2)
and Line (4)).

- If for every P ∈ SP , every resolvent of q w.r.t. P has no shared variable with
any acquaintance of P : if P satisfies the property stated in the theorem, this means
that every prime implicate of q w.r.t. P has no variable in common with any other
theory of P. According to Lemma 1, the set of proper resolvents of q w.r.t. P(hist)
is included in

⋃
P∈SP local(P ), and thus in particular every proper prime implicate

of q w.r.t. P(hist), which is in the target language, is returned by the algorithm
(Line(6)).

• Suppose the induction hypothesis true for rc ≤ p, and let SP be a set of peers of a
P2PIS satisfying the property stated in the theorem, such that RCFH(q, SP, hist)
requires atmost p + 1 recursive calls involving q. Since there is at least one recursive
call, the condition of Line (1) is not satisfied. Let m be in the target language and a
proper prime implicate of q w.r.t. P(hist), where P(hist) = P\{¬li ∨ ci|(li, Pi, ci) ∈
hist s.t. li %= ci} ∪{li|(li, Pi, ci) ∈ hist s.t. li %= ci}. Let us show that m belongs to
the result returned by RCFH(q, SP, hist).

- If m is a proper resolvent of q w.r.t. a given P of SP , then m ∈ local(P ) and is
returned by the algorithm since it is in the target language.

-If m is not a proper resolvent of q w.r.t. a given P of SP , then, according to
Lemma 1, either (i) q has its variable in common with clauses in P(hist)\

⋃
P∈SP P ,

or (ii) there exists a clause ¬q ∨ c in
⋃

P∈SP P such that c has variables in common
with P(hist)\

⋃
P∈SP P and m is a proper resolvent of c w.r.t. P(hist)\{¬q ∨ c} ∪

{q}. In addition, it is a prime proper resolvent of c w.r.t. P(hist)\{¬q ∨ c} ∪ {q}.
Let us suppose that this is not the case. Then there exists some clause m′ ∈
Resolvent(c,P(hist)\{¬q ∨ c} ∪ {q}), such that m′ |= m and m′ %≡ m. By soundness,
P(hist)\{¬q∨c}∪{q}∪{c} |= m′. Since P(hist)\{¬q∨c}∪{q}∪{c} ≡ P(hist)∪{q},
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P(hist) ∪ {q} |= m′ with m′ |= m and m′ %≡ m, which contradicts that m is a prime
implicate of q w.r.t. P(hist).

(i) In the first case, according to the property stated in the theorem, the variable of
q is shared with other peers of the P2PIS than those in SP , and therefore q is involved
in an iteration of the loop of Line (9). According to the induction hypothesis (the
number of recursive calls to obtain answer(q) in Line (12) is less than or equal to
p) answer(q) includes the set of proper prime resolvents of q w.r.t. P(hist′), which
are in the target language, where hist′ = [(q, P, q)|hist], and thus P(hist′) = P(hist).
Therefore, answer(q) includes the set of proper prime resolvents of q w.r.t. P(hist),
in particular m.

(ii) In the second case, according to the property stated in the theorem, c shares
variables with other peers of the P2PIS than those in SP . In addition, since m is
in the target language, the local variables of c are target variables. Therefore c is
involved in an iteration of the loop of Line (9). According to the induction hypothesis
(the number of recursive calls to obtain answer(l) in Line (12) is less than or equal
to p), for every l ∈ S(c), answer(l) includes the set of all proper prime resolvents
of l w.r.t. P(hist′) and thus in particular, the set of all proper prime implicates
of l w.r.t. P(hist′) which are in the target language. Since hist′ = [(q, P, c)|hist]
with q %= c (because there is no duplicate literals in the clauses that we consider),
P(hist′) = P(hist)\{¬q ∨ c} ∪ {q}. We can apply Lemma 2 to infer that DisjComp,
which is computed in Line (13), includes the set of proper prime implicates of c w.r.t.
P(hist)\{¬q ∨ c} ∪ {q}, which are in the target language, and in particular m. !

Lemma 1 Let P be a set of clauses and q a literal. Let P ′ ⊆ P such that it contains clauses
having a variable in common with q. If m is a proper resolvent of q w.r.t. P , then :

• either m is a proper resolvent of q w.r.t. P ′,

• or the variable of q is common with clauses of P\P ′,

• or there exists a clause ¬q ∨ c of P ′ such that c has variables in common with clauses
of P\P ′ and m is a proper resolvent of c w.r.t. P\{¬q ∨ c} ∪ {q}.

Proof: Let m be a proper resolvent of q w.r.t. P . If m is different from q, there exists a
clause ¬q∨ c in P such that m is a proper resolvent of c w.r.t. P ∪ {q}. Since P\{¬q ∨ c}∪
{q} ≡ P ∪ {q}, m is a proper resolvent of c w.r.t. P\{¬q ∨ c} ∪ {q}.

• If such a clause does not exist in P ′, it exists in P\P ′ and therefore the variable of q
is common with clauses of P\P ′.

• If there exists a clause ¬q ∨ c in P ′ such that m is a proper resolvent of c w.r.t.
P\{¬q ∨ c} ∪ {q}, and m is not a proper resolvent of q w.r.t. P ′, then for every
proof of m there must exist a clause c′ in P\P ′ with which either q or ¬q ∨ c must be
resolved. Therefore, either q or c has variables in common with clauses of P\P ′. !
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Lemma 2 Let P be a set of clauses, and let c = l1 ∨ · · · ∨ ln be a clause. For every proper
prime implicate m of c w.r.t. P , there exists m1, . . . ,mn such that m ≡ m1 ∨ · · ·∨mn, and
for every i ∈ [1..n], mi is a proper prime implicate of li w.r.t. P .

Proof: Let m be a proper prime implicate of c w.r.t. P . For every literal li, let Mod(li)
be the set of models of P which make li true. If Mod(li) = ∅, that means that ! is
the only proper prime implicate of li w.r.t. P . For every i such that Mod(li) %= ∅, ev-
ery model in Mod(li) is a model of P ∪ {c}, and then a model of m ; therefore, m is a
proper implicate of li w.r.t. P , and, by definition of proper prime implicates, there exists
a proper prime implicate mi of li w.r.t. P such that mi |= m. Consequently, there exists
m1, . . . ,mn such that m1 ∨ · · · ∨ mn |= m, and for every i ∈ [1..n], mi is a proper prime
implicate of li w.r.t. P (mi may be !). Since P ∪ {l1 ∨ · · · ∨ ln} |= m1 ∨ · · · ∨ mn , and
m is a proper implicate of l1∨ · · ·∨ ln w.r.t. P , we necessarily get that m ≡ m1∨ · · ·∨mn. !

3.2 Message-based Consequence Finding Algorithm

In this section, we exhibit the result of the transformation of the previous recursive algo-
rithm into DeCA: a message-based Decentralized Consequence finding Algorithm running
locally on each peer. DeCA is composed of three procedures, each one being triggered by
the reception of a message. The procedure ReceiveForthMessage is triggered by the
reception of a forth message m(Sender,Receiver, forth, hist, l) sent by the peer Sender
to the peer Receiver which executes the procedure: on the demand of Sender, with which
it shares the variable of l, it processes the literal l. The procedure ReceiveBackMessage
is triggered by the reception of a back message m(Sender,Receiver, back, hist, r) sent by
the peer Sender to the peer Receiver which executes the procedure: it processes the conse-
quence r (which is a clause the variables of which are target variables) sent back by Sender
for the literal l (last added in the history) ; it may have to combine it with other conse-
quences of literals being in the same clause as l. The procedure ReceiveFinalMessage
is triggered by the reception of a final message m(Sender,Receiver, final, hist, true): the
peer Sender notifies the peer Receiver that computation of the consequences of the literal
l (last added in the history) is completed. Those procedures handle two data structures
stored at each peer: cons(l, hist) caches the consequences of l computed by the reasoning
branch corresponding to hist ; final(q, hist) is set to true when the propagation of q within
the reasoning branch of the history hist is completed.

The reasoning is initiated by the user (denoted by a particular peer User) sending to a
given peer P a message m(User, P, forth, ∅, q). This triggers on the peer P the local execu-
tion of the procedure ReceiveForthMessage(m(User, P, forth, ∅, q)). In the description
of the procedures, since they are locally executed by the peer which receives the message,
we will denote by Self the receiver peer.
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Algorithm 2: DeCA message passing procedure for propagating literals forth
ReceiveForthMessage(m(Sender, Self, forth, hist, q))
(1) if (q̄, , ) ∈ hist
(2) send m(Self, Sender, back, [(q, Self, !)|hist], !)
(3) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(4)else if q ∈ Self or (q, Self, ) ∈ hist
(5) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(6)else
(7) local(Self) ← {q} ∪ Resolvent(q, Self)
(8) if ! ∈ local(Self)
(9) send m(Self, Sender, back, [(q, Self, !)|hist], !)
(10) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(11) else
(12) local(Self) ← {c ∈ local(Self)| L(c) ∈ T arget(Self)}
(13) if for every c ∈ local(Self), S(c) = !

(14) foreach c ∈ local(Self)
(15) send m(Self, Sender, back, [(q, Self, c)|hist], c)
(16) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(17) else
(18) foreach c ∈ local(Self)
(19) if S(c) = !

(20) send m(Self, Sender, back, [(q, Self, c)|hist], c)
(21) else
(22) foreach literal l ∈ S(c)
(23) if l ∈ T arget(Self)
(24) cons(l, [(q, Self, c)|hist]) ← {l}
(25) else
(26) cons(l, [(q, Self, c)|hist]) ← ∅
(27) final(l, [(q, Self, c)|hist]) ← false
(28) foreach RP ∈ acq(l, Self)
(29) send m(Self, RP, forth, [(q, Self, c)|hist], l)

Algorithm 3: DeCA message passing procedure for processing the return of consequences
ReceiveBackMessage(m(Sender, Self, back, hist, r))
(1)hist is of the form [(l′, Sender, c′), (q, Self, c)|hist′]
(2)cons(l′, hist) ← cons (l′, hist) ∪ {r}
(3)result← !l∈S(c)\{l′}cons(l, hist) ! {L(c) ∨ r}
(4) if hist′ = ∅, U ← User else U ← the first peer P ′ of hist′

(5) foreach cs ∈ result
(6) send m(Self, U, back, [(q, Self, c)|hist′], cs)

Algorithm 4: DeCA message passing procedure for notifying termination
ReceiveFinalMessage(m(Sender, Self, final, hist, true))
(1)hist is of the form [(l′, Sender, true), (q, Self, c)|hist′]
(2)final(l′, hist) ← true
(3) if for every l ∈ S(c), final(l, hist) = true
(4) if hist′ = ∅ U ← User else U ← the first peer P ′ of hist′

(5) send m(Self, U, final, [(q, Self, true)|hist′], true)
(6) foreach l ∈ S(c)
(7) cons(l, [(l, Sender, ), (q, Self, c)|hist′]) ← ∅
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The following theorem states two important results: first, the message-based distributed
algorithm computes the same results as the algorithm of Section 3.1, and thus, is complete
under the same conditions as in Theorem 2 ; second the user is notified of the termination
when it occurs, which is crucial for an anytime algorithm.

Theorem 3 Let r be a result returned by RCF (q, P ). If P receives from the user the mes-
sage m(User, P, forth, ∅, q), then a message m(P,User, back, [(q, P, )], r) will be produced.
If r is the last result returned by RCF (q, P ), then the user will be notified of the termination
by a message m(P,User, final, [(q, P, true)], true).

Proof: We prove by induction on the number of recursive calls of RCFH(q, SP, hist) that:
(1) for any result r returned by RCFH(q, SP, hist), there exists P ∈ SP such that

P is bound to send a message m(P, S, back, [(q, P, )|hist], r) after receiving the message
m(S,P, forth, hist, q),

(2) if r is the last result returned by RCFH(q, SP, hist), all the peers P ∈ SP are
bound to send the message m(P, S, final, [(q, P, true)|hist], true), where S is the first peer
in the history.

• rc = 0: either one of the conditions of Lines (1), (2), (4) or (6) of the algorithm
RCFH(q, SP, hist) is satisfied. We have shown in the proof of Theorem 2 that if the
conditions of Lines (2) and (4) are satisfied, ! is the only result returned by the algo-
rithm. The condition of Line (2) of the algorithm RCFH(q, SP, hist) corresponds to the
condition of Line (1) of the algorithm ReceiveForthMessage(m(S,P, forth, hist, q))
for any P of SP , which triggers the sending of a message m(P, S, back, [(q, P,!)|hist],!)
(Line (2)) and of a message m(P, S, final, [(q, P, true)|hist], true) (Line(3)). If the condi-
tion of Line (4) of the algorithm RCFH(q, SP, hist) is satisfied, there exists P ∈ SP such
that ! ∈ P . That condition corresponds to the condition of Line (8) of the algorithm for
ReceiveForthMessage(m(S,P, forth, hist, q)), which triggers the sending of a message
m(P, S, back, [(q, P,!)|hist],!) (Line (9) and of a message m(P, S, final, [(q, P, true)|hist], true)
(Line (10)). The condition (1) of the algorithm RCFH(q, SP, hist), in which no result is re-
turned (see proof of Theorem 2), corresponds to the condition of Line (4) of the algorithm
ReceiveForthMessage(m(S,P, forth, hist, q)), for every P ∈ SP , which only triggers
the sending of a final message (Line (5)). Finally, if the condition of Line (6) of the algo-
rithm RCFH(q, SP, hist) is satisfied, there exists P ∈ SP such that r ∈ local(P ). The
condition of Line (6) of the algorithm RCFH(q, SP, hist) corresponds to the condition of
Line (13) in ReceiveForthMessage(m(S,P, forth, hist, q)), which triggers the sending of
all the messages m(P, S, back, [(q, P, c)|hist], c), where c is a clause of local(P ) (Line (15)),
and in particular the message m(P, S, back, [(q, P, r)|hist], r). It triggers too the sending of
a final message (Line (16)) for P . If r is the last result returned by RCFH(q, SP, hist),
such final messages has been sent by every P ∈ SP .

• Suppose the induction hypothesis true for rc ≤ p, and let Γ = (P,acq) a P2PIS such
that RCFH(q, SP, hist) requires p + 1 recursive calls to terminate.

- If there exists P ∈ SP such that r ∈ local(P ), r is not the last result returned by
the algorithm, and r is one of the clauses c involved in the iteration of the loop of Line
(18) of the algorithm ReceiveForthMessage(m(S,P, forth, hist, q)), and verifying the
condition of Line (19), which triggers the sending of the message m(P, S, back, [(q, P, r)|
hist], r) (Line (20)).
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-If there exists P ∈ SP and a clause c : l1 ∨ · · · ∨ lk ∨ L(c) of local(P ) such that c is
involved in the iteration of the loop of Line (9) of the algorithm RCFH(q, P, hist), and r
is an element r1 ∨ · · · ∨ rk ∨ L(c) of (!l∈S(c)answer(l)) ! {L(c)} computed at Line (12),
where each answer(l) is obtained as the result of RCFH(l,acq(l, P ), [(q, P, c)|hist]) (Line
(13)), which requires p or less than p recursive calls. By induction, for each literal li ∈ S(c),
there exists RPi ∈ acq(li, P ) such that RPi sends a message m(RPi, P, back, [(li, RPi, ),
(q, P, c)|hist], ri) if it has received the message m(P,RPi, forth, [(q, P, c)|hist], li). The loop
of Line (11) of the algorithm RCFH(q, SP, hist) corresponds to the loop of Line (22) of
the algorithm ReceiveForthMessage(m(S,P, forth,hist,q)), which triggers the sending
of the messages m(P, RPi , forth, [(q, P, c)|hist], li) for each literal li ∈ S(c) (Line (29)).
Therefore, according to the induction hypothesis, for every li ∈ S(c), RPi sends a message
m(RPi, P, back, [(li, RPi, ), (q, P, c)|hist], ri). When the last of those messages (let us say
m(RPj , P, back, [(lj , RPj , ), (q, P, c)|hist], rj)) is processed, r is produced by Line (3) of
ReceiveBackMessage(m(RPj, P , back, [(lj , RPj , ), (q, P, c)|hist], rj)), and there exists a
peer U such that P is bound to send to it the message m(P,U, back, [(q, P, c)|hist], r) (Line
(6)).

- If r is the last result returned by the algorithm RCFH(q, SP , hist), for every P ∈
SP , for every c ∈ local(P ), for every l ∈ S(c), RCFH(l,acq(l, P ), [(q, P, c)|hist]) has
finished, and, by induction, every peer RP of acq(l, P ) has sent a message m(RP,P, final,
[(l, RP, true), (q, P, c)|hist], true). Therefore, the condition of Line (3) of the algorithm
ReceiveFinalMessage(m(RP,P, final, [(l, RP, ), (q, P, c)|hist], true)) is satisfied, which
triggers the sending of a message m(P,U, final, [(q, P, true)|hist], true) (Line (5)).

!

For sake of simplicity, both recursive and distributed algorithms have been presented
as applying to literals. It does not mean that the formulas that we consider are limited
to literals. Clauses can be handled by splitting them into literals and then using the !
operator to recompose the results obtained for each literal.

It is also important to notice that ! can be returned by our algorithm as a proper prime
implicate because of the lines (1) to (3) and (8) to (10) in ReceiveForthMessage. In
that case, as a corollary of the above theorems, the P2PIS is detected unsatisfiable with
the input clause. Therefore, our algorithm can be exploited for checking the satisfiability
of the P2PIS at each join of a new peer theory.

4. Application to the Semantic Web: the somewhere Peer-to-peer Data
Management System

The Semantic Web (Berners-Lee, Hendler, & Lassila, 2001) envisions a world wide dis-
tributed architecture where data and computational resources will easily inter-operate based
on semantic marking up of web resources using ontologies. Ontologies are a formalization of
the semantics of application domains (e.g., tourism, biology, medicine) through the defini-
tion of classes and relations modeling the domain objects and properties that are considered
as meaningful for the application. Most of the concepts, tools and techniques deployed so
far by the Semantic Web community correspond to the ”big is beautiful” idea that high
expressivity is needed for describing domain ontologies. As a result, when they are applied,
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the current Semantic Web technologies are mostly used for building thematic portals but
do not scale up to the Web. In contrast, Somewhere promotes a ”small is beautiful”
vision of the Semantic Web (Rousset, 2004) based on simple personalized ontologies (e.g.,
taxonomies of atomic classes) but which are distributed at a large scale. In this vision of
the Semantic Web introduced by Plu, Bellec, Agosto, and van de Velde (2003), no user
imposes to others his own ontology but logical mappings between ontologies make possible
the creation of a web of people in which personalized semantic marking up of data cohabits
nicely with a collaborative exchange of data. In this view, the Web is a huge peer-to-peer
data management system based on simple distributed ontologies and mappings.

Peer-to-peer data management systems have been proposed recently (Halevy et al.,
2003b; Ooi, Shu, & Tan, 2003; Arenas, Kantere, Kementsietsidis, Kiringa, Miller, & My-
lopoulos, 2003; Bernstein, Giunchiglia, Kementsietsidis, Mylopoulos, Serafini, & Zaihraheu,
2002; Calvanese et al., 2004) to generalize the centralized approach of information integra-
tion systems based on single mediators. In a peer-to-peer data management system, there is
no central mediator: each peer has its own ontology and data or services, and can mediate
with some other peers to ask and answer queries. The existing systems vary according to
(a) the expressive power of their underlying data model and (b) the way the different peers
are semantically connected. Both characteristics have impact on the allowed queries and
their distributed processing.

In Edutella (Nejdl et al., 2002), each peer stores locally data (educational resources)
that are described in RDF relative to some reference ontologies (e.g., Dmoz - http://dmoz.org).
For instance, a peer can declare that it has data related to the concept of the dmoz tax-
onomy corresponding to the path Computers/Programming/Languages/Java, and that for
such data it can export the author and the date properties. The overlay network underly-
ing Edutella is a hypercube of super-peers to which peers are directly connected. Each
super-peer is a mediator over the data of the peers connected to it. When it is queried, its
first task is to check if the query matches with its schema: if that is the case, it transmits
the query to the peers connected to it, which are likely to store the data answering the
query ; otherwise, it routes the query to some of its neighbour super-peers according to a
strategy exploiting the hypercube topology for guaranteeing a worst-case logarithmic time
for reaching the relevant super-peer.

In contrast with Edutella, Piazza (Halevy et al., 2003b, 2003a) does not consider that
the data distributed over the different peers must be described relatively to some existing
reference schemas. In Piazza, each peer has its own data and schema and can mediate
with some other peers by declaring mappings between its schema and the schemas of those
peers. The topology of the network is not fixed (as the hypercube in Edutella) but
accounts for the existence of mappings between peers: two peers are logically connected if
there exists a mapping between their two schemas. The underlying data model of the first
version of Piazza (Halevy et al., 2003b) is relational and the mappings between relational
peer schemas are inclusion or equivalence statements between conjunctive queries. Such a
mapping formalism encompasses the local-as-views and the global-as-views (Halevy, 2000)
formalisms used in information integration systems based on single mediators. The price
to pay is that query answering is undecidable except if some restrictions are imposed on
the mappings or on the topology of the network (Halevy et al., 2003b). The currently
implemented version of Piazza (Halevy et al., 2003a) relies on a tree-based data model: the
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data is in XML and the mappings are equivalence and inclusion statements between XML
queries. Query answering is implemented based on practical (but not complete) algorithms
for XML query containment and rewriting. The scalability of Piazza so far does not go
up to more than about 80 peers in the published experiments and relies on a wide range of
optimizations (mappings composition, Madhavan & Halevy, 2003, paths pruning, Tatarinov
& Halevy, 2004), made possible by the centralized storage of all the schemas and mappings
in a global server.

In Somewhere, we have made the choice of being fully distributed: there are neither
super-peers (as in Edutella) nor a central server having the global view of the overlay
network (as in Piazza). In addition, we aim at scaling up to thousands of peers. To
make it possible, we have chosen a simple class-based data model in which the data is
a set of resource identifiers (e.g., URIs), the schemas are (simple) definitions of classes
possibly constrained by inclusion, disjunction or equivalence statements, and mappings are
inclusion, disjunction or equivalence statements between classes of different peer schemas.
That data model is in accordance with the W3C recommendations since it is captured by
the propositional fragment of the OWL ontology language (http://www.w3.org/TR/owl-
semantics). Note that OWL makes possible, through a declarative import mechanism, to
retrieve ontologies that are physically distributed. Using this transitive mechanism in peer
data management systems amounts in the worst case to centralized on a single peer the
whole set of peer ontologies, and to reason locally. Our feeling is that on very large networks
such a mechanism cannot scale up satisfactorily. Moreover, because of the dynamicity of
peer-to-peer settings, such imports would have to be re-actualized each time that a peer
joins or quit the network.

Section 4.1 defines the Somewhere data model, for which an illustrative example is
given in Section 4.2. In Section 4.3, we show how query rewriting in Somewhere, and thus
query answering, can be reduced by a propositional encoding to distributed reasoning in
propositional logic.

4.1 Somewhere Data model

In Somewhere, a new peer joins the network through some peers that it knows (its ac-
quaintances) by declaring mappings between its own ontology and the ontologies of its
acquaintances. Queries are posed to a given peer using its local ontology. The answers
that are expected are not only instances of local classes but possibly instances of classes of
peers distant from the queried peer if it can be infered from the peer ontologies and the
mappings that they satisfy the query. Local ontologies, storage descriptions and mappings
are defined using a fragment of OWL DL which is the description logic fragment of the
Ontology Web Language recommended by W3C. We call OWL PL the fragment of OWL
DL that we consider in Somewhere, where PL stands for propositional logic. OWL PL is
the fragment of OWL DL reduced to the disjunction, conjunction and negation constructors
for building class descriptions.

4.1.1 Peer ontologies

Each peer ontology is made of a set of class definitions and possibly a set of equivalence,
inclusion or disjointness axioms between class descriptions. A class description is either the
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universal class (/), the empty class (⊥), an atomic class or the union (1), intersection (2)
or complement (¬) of class descriptions.

The name of atomic classes is unique to each peer: we use the notation P :A for identi-
fying an atomic class A of the ontology of a peer P . The vocabulary of a peer P is the set
of names of its atomic classes.

Class descriptions
Logical notation OWL notation

universal class / Thing
empty class ⊥ Nothing
atomic class P :A classID
conjunction D1 2 D2 intersectionOf(D1 D2)
disjunction D1 1 D2 unionOf(D1 D2)
negation ¬D complementOf(D)

Axioms of class definitions
Logical notation OWL notation

Complete P :A ≡ D Class(P :A complete D)
Partial P :A 3 D Class(P :A partial D)

Axioms on class descriptions
Logical notation OWL notation

equivalence D1 ≡ D2 EquivalentClasses(D1 D2)
inclusion D1 3 D2 SubClassOf(D1 D2)
disjointness D1 2 D2 ≡ ⊥ DisjointClasses(D1 D2)

Taxonomies of atomic classes (possibly enriched by disjointness statements between
atomic classes) are particular cases of the allowed ontologies in Somewhere . Their speci-
fication is made of a set of inclusion (and disjointness) axioms involving atomic classes only:
there is no class definition using (conjunction, disjunction or negation) constructors.

4.1.2 Peer storage descriptions

The specification of the data that is stored locally in a peer P is done through the declaration
of atomic extensional classes defined in terms of atomic classes of the peer ontology, and
assertional statements relating data identifiers (e.g., URIs) to those extensional classes. We
restrict the axioms defining the extensional classes to be inclusion statements between an
atomic extensional class and a description combining atomic classes of the ontology. We
impose that restriction in order to fit with a Local-as-Views approach and an open-world
assumption within the information integration setting (Halevy, 2000). We will use the
notation P :V iewA to denote an extensional class V iewA of the peer P .

Storage description
declaration of extensional classes:
Logical notation OWL notation
P :V iewA 3 C SubClassOf(P :V iewA C)

assertional statements:
Logical notation OWL notation

P :V iewA(a) individual(a type(P :V iewA))
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4.1.3 Mappings

Mappings are disjointness, equivalence or inclusion statements involving atomic classes of
different peers. They express the semantic correspondence that may exist between the
ontologies of different peers.

4.1.4 Schema of a Somewhere network

In a Somewhere network, the schema is not centralized but distributed through the union
of the different peer ontologies and the mappings. The important point is that each peer has
a partial knowledge of the schema: it just knows its own local ontology and the mappings
with its acquaintances.

Let P be a Somewhere peer-to-peer network made of a collection of peers {Pi}i=1..n.
For each peer Pi, let Oi, Vi and Mi be the sets of axioms defining respectively the local
ontology of Pi, the declaration of its extensional classes and the set of mappings stated at Pi

between classes of Oi and classes of the ontologies of the acquaintances of Pi. The schema
of P, denoted S(P), is the union

⋃
i=1..n Oi ∪ Vi ∪ Mi of the ontologies, the declaration of

extensional classes and of the sets of mappings of all the peers.

4.1.5 Semantics

The semantics isis the standard semantics of first order logic defined in terms of interpreta-
tions. An interpretation I is a pair (∆I , .I) where ∆ is a non-empty set, called the domain
of interpretation, and .I is an interpretation function which assigns a subset of ∆I to every
class identifier and an element of ∆I to every data identifier.

An interpretation I is a model of the distributed schema of a Somewhere peer-to-
peer network P = {Pi}i=1..n iff for each axiom in

⋃
i=1..n Oi ∪ Vi ∪ Mi is satisfied by I.

Interpretations of axioms rely on interpretations of class descriptions which are inductively
defined as follows:

• /I = ∆I , ⊥I = ∅
• (C1 1 C2)I = CI

1 ∪ CI
2

• (C1 2 C2)I = CI
1 ∩ CI

2

• (¬C)I = ∆I\CI

Axioms are satisfied if the following holds:
• C 3 D is satisfied in I iff CI ⊆ DI

• C ≡ D is satisfied in I iff CI = DI

• C 2 D ≡ ⊥ is satisfied in I iff CI ∩ DI = ∅
A Somewhere peer-to-peer network is satisfiable iff its (distributed) schema has a

model.
Given a Somewhere peer-to-peer network P = {Pi}i=1..n, a class description C sub-

sumes a class description D iff for any model I of S(P) DI ⊆ CI .

4.2 Illustrative Example

We illustrate the Somewhere data model on a small example of four peers modeling four
persons Ann, Bob, Chris and Dora, each of them bookmarking URLs about restaurants
they know or like, according to their own taxonomy for categorizing restaurants.
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Ann, who is working as a restaurant critic, organizes its restaurant URLs according to
the following classes:

• the class Ann:G of restaurants considered as offering a ”good” cooking, among which
she distinguishes the subclass Ann:R of those which are rated: Ann:R 3 Ann:G

• the class Ann:R is the union of three disjoint classes Ann:S1, Ann:S2, Ann:S3 cor-
responding respectively to the restaurants rated with 1, 2 or 3 stars:

Ann:R ≡ Ann:S1 1 Ann:S2 1 Ann:S3
Ann:S1 2 Ann:S2 ≡ ⊥ Ann:S1 2 Ann:S3 ≡ ⊥
Ann:S2 2 Ann:S3 ≡ ⊥
• the classes Ann:I and Ann:O, respectively corresponding to Indian and Oriental

restaurants
• the classes Ann:C, Ann:T and Ann:V which are subclasses of Ann:O denoting Chi-

nese, Täı and Vietnamese restaurants respectively: Ann:C 3 Ann:O, Ann:T 3 Ann:O,
Ann:V 3 Ann:O
Suppose that the data stored by Ann that she accepts to make available deals with restau-
rants of various specialties, and only with those rated with 2 stars among the rated restau-
rants. The extensional classes declared by Ann are then:
Ann:V iewS2 3 Ann:S2, Ann:V iewC 3 Ann:C, Ann:V iewV 3 Ann:V ,
Ann:V iewT 3 Ann:T , Ann:V iewI 3 Ann:I

Bob, who is fond of Asian cooking and likes high quality, organizes his restaurant URLs
according to the following classes:

• the class Bob:A of Asian restaurants
• the class Bob:Q of high quality restaurants that he knows

Suppose that he wants to make available every data that he has stored. The extensional
classes that he declares are Bob:V iewA and Bob:V iewQ (as subclasses of Bob:A and Bob:Q):
Bob:V iewA 3 Bob:A, Bob:V iewQ 3 Bob:Q

Chris is more fond of fish restaurants but recently discovered some places serving a
very nice cantonese cuisine. He organizes its data with respect to the following classes:

• the class Chris:F of fish restaurants,
• the class Chris:CA of Cantonese restaurants

Suppose that he declares the extensional classes Chris:V iewF and Chris:V iewCA as sub-
classes of Chris:F and Chris:CA respectively:
Chris:V iewF 3 Chris:F , Chris:V iewCA 3 Chris:CA

Dora organizes her restaurants URLs around the class Dora:DP of her preferred restau-
rants, among which she distinguishes the subclass Dora:P of pizzerias and the subclass
Dora:SF of seafood restaurants.
Suppose that the only URLs that she stores concerns pizzerias: the only extensional class
that she has to declare is Dora:V iewP as a subclass of Dora:P : Dora:V iewP3Dora:P

Ann, Bob, Chris and Dora express what they know about each other using mappings
stating properties of class inclusion or equivalence.
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Ann is very confident in Bob’s taste and agrees to include Bob’ selection as good
restaurants by stating Bob:Q 3 Ann:G. Finally, she thinks that Bob’s Asian restaurants
encompass her Oriental restaurant concept: Ann:O 3 Bob:A

Bob knows that what he calls Asian cooking corresponds exactly to what Ann classifies
as Oriental cooking. This may be expressed using the equivalence statement : Bob:A ≡
Ann:O (note the difference of perception of Bob and Ann regarding the mappings between
Bob:A and Ann:O)

Chris considers that what he calls fish specialties is a particular case of Dora seafood
specialties: Chris:F 3 Dora:SF

Dora counts on both Ann and Bob to obtain good Asian restaurants : Bob:A 2 Ann:G
3 Dora:DP

Figure 2 describes the resulting overlay network. In order to alleviate the notations, we
omit the local peer name prefix except for the mappings. Edges are labeled with the class
identifiers that are shared through the mappings between peers.

Dora
ontology :

DP 3 /,
P 3 DP , SF 3 DP,
V iewP 3 P

mappings :
Bob:A 2 Ann:G 3 Dora:DP

Bob
ontology :

A 3 /, Q 3 /,
V iewA 3 A,
V iewQ 3 Q

mappings :
Bob:A ≡ Ann:O

Chris
ontology :

F 3 /, CA 3 /,
V iewF 3 F ,V iewCA 3 CA

mappings :
Chris:F 3 Dora:SF

Ann
ontology :

G 3 /, O 3 /, I 3 /,
R 3 G,
(S1 1 S2 1 S3) ≡ R,
S1 2 S2 ≡ ⊥,
S1 2 S3 ≡ ⊥,
S2 2 S3 ≡ ⊥,
(C 1 V 1 T ) 3 O,
V iewC 3 C,
V iewV 3 V ,
V iewT 3 T ,
V iewI 3 I,
V iewS2 3 S2

mappings :
Ann:O 3 Bob:A,
Bob:Q 3 Ann:G

Dora:SF

Bob:A

Ann:G

Bob:Q,
Bob:A,
Ann:O

Figure 2: The restaurants network

4.3 Query Rewriting in Somewhere through Propositional Encoding

In Somewhere, each user interrogates the peer-to-peer network through one peer of his
choice, and uses the vocabulary of this peer to express his query. Therefore, queries are
logical combinations of classes of a given peer ontology.

The corresponding answer sets are expressed in intention in terms of the combinations
of extensional classes that are rewritings of the query. The point is that extensional classes
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of several distant peers can participate to the rewritings, and thus to the answer of a query
posed to a given peer.

Definition 6 (Rewritings) Given a Somewhere peer-to-peer network P = {Pi}i=1..n, a
logical combination Qe of extensional classes is a rewriting of a query Q iff Q subsumes Qe

w.r.t. P.
Qe is a proper rewriting if there exists some model of I of S(P) such that QI

e %= ∅. Qe is a
conjunctive rewriting if it is a rewriting which is a conjunction of extensional classes.
Qe is a maximal (conjunctive) rewriting if there does not exist another (conjunctive) rewrit-
ing Q′

e of Q (strictly) subsuming Qe w.r.t. P.

In general, finding all answers in a peer data management system is a critical issue
(Halevy et al., 2003b). In our setting however, we are in a case where all the answers can be
obtained using rewritings of the query: it has been shown (Goasdoué & Rousset, 2004) that
when a query has a finite number of maximal conjunctive rewritings, then all its answers
(a.k.a. certain answers) can be obtained as the union of the answer sets of its rewritings.
From the query answering point of view, it is the notion of proper rewriting which is relevant
because it guarantees a non empty set of answers. If a query has no proper rewriting, it
won’t get any answer.

In the Somewhere setting, query rewriting can be equivalently reduced to distributed
reasoning over logical propositional theories by a straighforward propositional encoding of
the query and of the distributed schema of a Somewhere network. It consists in transform-
ing each query and schema statement into a propositional formula using class identifiers as
propositional variables.

The propositional encoding of a class description D, and thus of a query, is the propo-
sitional formula Prop(D) obtained inductively as follows:

• Prop(/) = true, Prop(⊥) = false
• Prop(A) = A, if A is an atomic class
• Prop(D1 2 D2) = Prop(D1) ∧ Prop(D2)
• Prop(D1 1 D2) = Prop(D1) ∨ Prop(D2)
• Prop(¬D) = ¬(Prop(D))
The propositional encoding of the schema S of a Somewhere peer-to-peer network P

is the distributed propositional theory Prop(S) made of the formulas obtained inductively
from the axioms in S as follows:

• Prop(C 3 D) = Prop(C) ⇒ Prop(D)
• Prop(C ≡ D) = Prop(C) ⇔ Prop(D)
• Prop(C 2 D ≡ ⊥) = ¬Prop(C) ∨ ¬Prop(D)
From now on, for simplicity, we use the propositional clausal form notation for the

queries and Somewhere peer-to-peer network schemas. As an illustration, let us consider
the propositional encoding of the example presented in Section 4.2. After application of the
transformation rules, conversion of each produced formula in clausal form and suppression
of tautologies, we obtain (Figure 3) a new acquaintance graph where each peer schema is
described as a propositional theory.

We now state two propositions showing that query rewriting in Somewhere can be
reduced to consequence finding in a P2PIS as presented in the previous sections.
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Dora : :
¬Dora:V iewP ∨ Dora:P
¬Dora:P ∨ Dora:DP
¬Dora:SF ∨ Dora:DP
¬Bob:A ∨ ¬Ann:G ∨ Dora:DP

Bob :
¬Bob:V iewA ∨ Bob:A
¬Bob:V iewQ ∨ Bob:Q
¬Bob:A ∨ Ann:O
¬Ann:O ∨ Bob:A

Chris :
¬Chris:V iewF ∨ Chris:F
¬Chris:V iewCA ∨ Chris:CA
¬Chris:F ∨ Dora:SF

Ann :
¬Ann:S1 ∨ ¬Ann:S2 ¬Ann:S1 ∨ ¬Ann:S3
¬Ann:S2 ∨ ¬Ann:S3 ¬Ann:S1 ∨ Ann:R
¬Ann:S2 ∨ Ann:R ¬Ann:S3 ∨ Ann:R
¬Ann:R ∨ Ann:S1 ∨ Ann:S2 ∨ Ann:S3
¬Ann:V iewS2 ∨ S2
¬Ann:R ∨ Ann:G ¬Bob:Q ∨ Ann:G
¬Ann:O ∨ Bob:A ¬Ann:C ∨ Ann:O
¬Ann:V ∨ Ann:O ¬Ann:T ∨ Ann:O
¬Ann:V iewC ∨ Ann:C ¬Ann:V iewV ∨ Ann:V
¬Ann:V iewT ∨ Ann:T ¬Ann:V iewI ∨ Ann:I
¬Chris:CA ∨ Ann:CDora:SF

Bob:A

Ann:G

Bob:Q,
Bob:A,
Ann:O

Chris:CA

Figure 3: The propositional encoding for the restaurant network

Proposition 1 states that the propositional encoding transfers satisfiability and estab-
lishes the connection between proper (maximal) conjunctive rewritings and proper (prime)
implicates.

Proposition 2 states that the P2PIS resulting from the propositional encoding of a Some-
where schema fulfills by construction the property exhibited in Theorem 2 as a sufficient
condition for the completeness of the algorithms described in Section 3 that compute proper
prime implicates of a clause w.r.t distributed propositional theories.

Proposition 1 Let P be a Somewhere peer-to-peer network and let Prop(S(P)) be the
propositional encoding of its schema. Let Ve be the set of all the extensional classes.

• S(P) is satisfiable iff Prop(S(P)) is satisfiable.
• qe is a proper maximal conjunctive rewriting of a query q iff ¬Prop(qe) is a proper

prime implicate of ¬Prop(q) w.r.t. Prop(S(P)) such that all its variables are extensional
classes.

Proof: We first exhibit some properties that will be used in the proof of the proposition. Let
P be a Somewhere network, S(P) its schema and Prop(S(P)) its propositional encoding.
For an interpretation I of S(P), and an element o of its domain of interpretation ∆I , we
define the interpretation po(I) of Prop(S(P)) as follows: for every propositional variable
v of Prop(S(P)) (v is the name of an atomic class of S(P)), vpo(I) = true iff o ∈ vI . For
an interpretation J of Prop(S(P)), we define the interpretation i(J) of S(P) as follows:
the domain of i(J) is {true}, and for every atomic class A of S(P) (A is the name of a
propositional variable of Prop(S(P))), if AJ = true then Ai(J) = {true} else Ai(J) = ∅.
It is easy to show the following properties, for every interpretation I of S(P) (and every
o ∈ ∆I), for every interpretation J of Prop(S(P)):

1. for every class description C of S(P):
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a) o ∈ CI ⇔ Prop(C)po(I) = true

b) true ∈ Ci(J) ⇔ Prop(C)J = true

2. I is a model of S(P) ⇔ po(I) is a model of Prop(S(P))

3. i(J) is a model of S(P) ⇔ J is a model of Prop(S(P)).

• Suppose that S(P) is satisfiable and let I be a model of it and let o be an element
of ∆I : according to the above Property 2, po(I) is a model of Prop(S(P)), and thus
Prop(S(P)) is satisfiable. In the converse way, let J be a propositional model of
Prop(S(P)). According to the above Property 3, i(J) is a model of S(P), and thus
S(P) is satisfiable.

• Suppose that Prop(¬qe) is a proper prime implicate of Prop(¬q) w.r.t. Prop(S(P)),
such that all its variables are extensional classes, and let us show that qe is a proper
maximal conjunctive rewriting of q.

Let us first show that qe is a rewriting of q. Suppose that it is not the case: there
exists an interpretation I of S(P) such that qI

e %⊆ qI and thus an element of o ∈ ∆I

such that o ∈ qI
e and o %∈ qI . According to Property 2, po(I) is a model of Prop(S(P)),

and according to Property 1.a, (Prop(qe))po(I) = true and (Prop(q))po(I) %= true, i.e.,
(Prop(¬qe))po(I) = false and (Prop(¬q))po(I) = true. This is impossible since it
would contradict the fact that Prop(¬qe) is a proper prime implicate of {Prop(¬q)}∪
Prop(S(P)). Therefore, qe must be a rewriting of q.

Let us show now that qe is a conjunctive rewriting of q, i.e., qe is a conjunction of
extensional classes. In S(P), extensional classes only appear in inclusion axioms.
Therefore, the propositional encoding of S(P) ensures that extensional classes only
appear as variables in Prop(S(P)) in negative literals. Resolution being sound and
complete for prime implicate computation, Prop(¬qe) is obtained as the result of a
finite chain of resolutions, starting from the clauses of Prop(S(P)) and from Prop(¬q).
Since in Prop(S(P)) extensional classes only appear in negative literals, they only
appear in negative literals in the computed implicates, and in particular in Prop(¬qe).
Therefore, qe is a conjunction of extensional classes.

Let us show now that qe is a proper rewriting of q, i.e., that it is satisfiable in some
model of S(P). Since Prop(¬qe) is a proper prime implicate of Prop(¬q) w.r.t.
Prop(S(P)), there exists a model J of Prop(S(P)) s.t. Prop(¬qe)J = false and
thus Prop(qe)J = true. By Property 3, i(J) is a model of S(P) and according to the
above Property 1.b, true ∈ (qe)i(J). Therefore there exists a model of S(P ) in which
qe is satisfiable, and thus qe is a proper rewriting of q.

Finally, let us show that qe is a maximal conjunctive rewriting of q. Suppose that
this is not the case. Then, there exists a conjunctive rewriting q′e of q such that
qe |= q′e and qe %≡ q′e. This means that there exists an interpretation I and an
element o ∈ ∆I such that o ∈ q′Ie, thus o ∈ qI , and o %∈ qI

e . According to Prop-
erty 1.a, Prop(q′e)po(I) = true, Prop(q)po(I) = true, and Prop(qe)po(I) = false, i.e.,
Prop(¬q′e)po(I) = false, Prop(¬q)po(I) = false, and Prop(¬qe)po(I) = true. This is
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impossible since it contradicts that Prop(¬qe) is a prime implicate of Prop(¬q) w.r.t.
Prop(S(P)). Therefore, qe is a maximal conjunctive rewriting of q.

• Let us now prove the converse direction. Suppose that qe is a proper maximal conjunc-
tive rewriting of a query q and let us show hat Prop(¬qe) is a proper prime implicate
of Prop(¬q) w.r.t. Prop(S(P)). By definition of a proper rewriting, for every model
I of S(P) qI

e ⊆ qI , or equivalently (¬q)I ⊆ (¬qe)I and there exists a model I ′ of S(P)
such that qI′

e %= ∅.

Let us first show that Prop(¬qe) is an implicate of Prop(¬q) w.r.t Prop(S(P)). Sup-
pose that this is not the case, i.e., that {Prop(¬q)}∪Prop(S(P)) %|= Prop(¬qe). Then,
there exists a model J of {Prop(¬q)} ∪ Prop(S(P)) such that Prop(¬qe)J = false.
According to the above Property 3, i(J) is a model of S(P). According to the above
Property 1.b, true ∈ (¬q)i(J) and (¬qe)i(J) = ∅. This is impossible since it contradicts
that (¬q)i(J) ⊆ (¬qe)i(J). Therefore, Prop(¬qe) is an implicate of Prop(¬q) w.r.t.
Prop(S(P)).

Let us now show that Prop(¬qe) is a proper implicate of Prop(¬q) w.r.t. Prop(S(P)),
i.e., that Prop(¬qe) is not an implicate of Prop(S(P)) alone. By definition of a proper
rewriting, there exists a model I ′ of S(P) such that qI′

e %= ∅. Let o be an element of qI′
e .

According to Property 2, po(I ′) is a model of Prop(S(P)), and according to Property
1.a, (Prop(qe))po(I′) = true, i.e., (Prop(¬qe))po(I′) = false. Therefore, Prop(¬qe) is
not an implicate of Prop(S(P)).

Finally, let us show that Prop(¬qe) is a prime implicate of Prop(¬q) w.r.t. Prop(S(P)).

Let us show that if c is a clause such that Prop(S(P )) ∪ {Prop(¬q)} |= c and c |=
Prop(¬qe), then c ≡ Prop(¬qe). Since c |= Prop(¬qe) and Prop(¬qe) is a disjunc-
tion of negation of extensional classes, c is a disjunction of a subset of the liter-
als of Prop(¬qe). Let q′e be the conjunction of the extensional classes of c, then
c = Prop(¬q′e). We have proved previously that if Prop(¬q′e) is an implicate of
Prop(¬q) w.r.t. Prop(S(P )) then q′e is a rewriting of q, and similarly that if Prop(¬qe)
is an implicate of Prop(¬q′e) w.r.t. Prop(S(P )) then q′e subsumes qe. Therefore, q′e is
a rewriting of qe which subsumes qe. Since qe is a maximal conjunctive rewriting of
q, q′e ≡ qe, thus ¬q′e ≡ ¬qe and Prop(¬q′e) ≡ Prop(¬qe), i.e. c ≡ Prop(¬qe).

!

Proposition 2 Let P be a Somewhere peer-to-peer network and let Prop(S(P)) be the
propositional encoding of its schema. Let Γ = (Prop(S(P)),acq) be the corresponding
P2PIS, where the set of labelled edges acq is such that: (P”:A, P, P’) ∈ acq iff P”:A is
involved in a mapping between P and P’ (i.e, P” = P or P” = P’). For every P , P ′ and
v ∈ VP ∩ VP ′ there exists a path between P and P ′ in Γ such that all edges of it are labelled
with v.

Proof: Let P and P ′ be two peers having a variable v in common. Since the vocabularies of
the local ontologies of different peers are disjoint, v is necessarily a variable P ′′:A involved
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in a mapping declared between P and some its acquaintances P1 (and thus P ′′ = P or P ′′=
P1), or between P ′ and some of its acquaintances P ′

1 (in this case P ′′ = P ′ or P ′′= P ′
1).

- If v is of the form P ′′:A such that P ′′ = P (respectively P ′′ = P ′), then P :A is an atomic
class of P (respectively P ′:A is an atomic class of P ′) which is involved in a mapping between
P and P ′, and therefore, there is an edge (and thus a path) between P and P ′ labelled with
v (P :A or P ′:A respectively) in Γ.
- If v is of the form P ′′:A such that P ′′ is distinct from P and P ′, then P ′′:A is an atomic
class of P ′′, which is involved in a mapping between P ′′ and P and in a mapping between
P ′′ and P ′. Therefore, there exists an edge between P ′′ and P labelled with v and an edge
between P ′′ and P ′ labelled with v, and thus a path between P and P ′ such that all edges
of it are labelled with v.

!

From those two propositions, it follows that the message-based distributed consequence
finding algorithm of Section 3.2 can be used to compute the maximal conjunctive rewritings
of a query. This algorithm computes the set of proper prime implicates of a literal w.r.t. a
distributed propositional clausal theory. Therefore, if it is applied to the distributed theory
resulting from the propositional encoding of the schema of a Somewhere network, with the
extensional classes symbols as target variables, and triggered with a literal ¬q, it computes
in fact the negation of the maximal conjunctive rewritings of the atomic query q. This result
also holds for any arbitrary query since, in our setting, the maximal rewritings of such a
query can be obtained by combining the maximal rewritings of its atomic components.

A corollary of these two propositions is that, in our setting, query answering is BH2-
complete w.r.t. query complexity and polynomial w.r.t. data complexity.

5. Experimental Analysis

This section is devoted to an experimental study of the performances of the distributed
consequence finding algorithm described in Section 3, when deployed on real peer-to-peer
inference systems. Particularly, the aim of our experiments is to study scalability issues
of the Somewhere infrastructure for the Semantic Web. Our experiments have been
performed on networks of 1000 peers. Our goal is thus to study the practical complexity
of the reasoning on networks of this size and to answer questions such as: how deep and
how wide does the reasoning spread on the network of peers? Does the network cope with
the traffic load? How fast are the results obtained? To what extent do the results integrate
information from distinct peers? etc.

So far, large real corpus of distributed clausal theories are still missing. Since deploying
new real applications at this scale requires a significant amount of time, we have chosen
to perform these experiments on artificially generated instances of peer-to-peer networks.
These instances are characterized by the size and the form of the local theories corresponding
to each peer of the network, as well as by the size and the topology of the acquaintance
graph.

Since our aim is to use the Somewhere infrastructure for Semantic Web applications,
we focus our benchmarking to instances with suitable characteristics. In particular we gen-
erate local theories supposed to encode realistic ontologies and mappings, that could be
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written by people to categorize their own data. Acquaintances between peers are generated
in such way that the topology of the resulting graph looks realistic with respect to the
acquaintances between people on the Web. Therefore we focus our generation on acquain-
tance graphs having the so-called small world property, which is admitted (Newman, 2000)
as being a general property of social networks (including the Web).

In the following, we first detail in Section 5.1 the generation process of our benchmark
instances, the involved parameters and how they have been allowed to vary in our experi-
ments. In Section 5.2, a first series of experiments studies the hardness of local reasoning
within a single peer by evaluating the number and the size of computed proper prime im-
plicates. This allows us to realize the intrinsic complexity of this task and thus, of the
reasoning on large scale networks of such theories. It also helps us to justify the choice
of some parameter values for further experiments. Finally, Section 5.3 reports the experi-
mental results that have been obtained concerning the scalability of Somewhere on large
networks of peers.

5.1 Benchmark Generation

Generating satisfactory instances of peer-to-peer networks for our framework means both
generating realistic propositional theories for each peer, as well as an appropriate structure
for the acquaintance graph. The latter is induced by the variables shared between peer
theories. In the setting of the Semantic Web, they correspond to names of atomic classes
involved in mappings between peer ontologies.

5.1.1 Generation of the local theories

We make the following assumptions on the ontologies and the mappings that are likely to
be deployed at large scale in the future Semantic Web: the ontologies will be taxonomies
of atomic classes (possibly with disjointness statements between pairs of atomic classes) ;
most mappings between such ontologies are likely to state simple inclusion or equivalence
between two atomic classes of two different peers, but we do not want to exclude some more
complex mappings involving logical combination of classes.

As a consequence, the propositional encoding of a taxonomy results in a set of clauses of
length 2. Most mappings result as well in clauses of length 2. The most complex mappings
might result in longer clauses, but since any set of clauses may equivalently be rewritten as
a set of clauses of length 3, we can restrict to the case where these are encoded with clauses
of length 3. Clauses encoding the mappings (called mapping clauses) are thus only clauses
of length 2 and 3, (2-clauses and 3-clauses for short). We denote by %3cnf the ratio of
3-clauses to the total number of mapping clauses. This ratio reflects in some way the degree
of complexity of the mappings. In our experiments we study variations of this parameter
because of its significant impact on the hardness of reasoning.

The local theories are generated in two steps. We first generate a set of m random
2-clauses on a number n of propositional variables and randomly select a number t (t ≤ n)
of target variables (corresponding to the names of extensional classes). Mapping clauses
are then generated, according to a given value %3cnf and added to the theories. Since
mapping clauses induce the structure of the acquaintance graph, the way they are generated
is discussed below. Peer theories are thus composed of only 2-clauses and 3-clauses. In the
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literature on propositional reasoning, such theories correspond to so-called 2 + p formulas,
where p denotes the proportion of 3-clauses in the whole set of clauses (note that p and
%3cnf are different ratios).

5.1.2 Generation of the acquaintance graph

In order to focus on realistic acquaintance graphs, we have chosen to generate random
graphs with “small worlds” properties, as proposed and studied by Watts and Strogatz
(1998), as well as Newman (2000). Such graphs have two properties that are encountered in
social networks: first, a short path length between any pair of nodes, observed in all social
relationship (for instance, the widely accepted “six-degrees of separation” between humans)
and, second, a high clustering ratio, a measurement of the number of common neighbors
shared by two neighbors (for instance, it is likely that two friends share a common subset
of friends).

To generate such graphs, we first generate the pairs of peers that are connected. Fol-
lowing the work of Watts and Strogatz (1998), we start from a so called k-regular ring
structure of np nodes, i.e., a graph the nodes of which may be arranged as a ring, and
such that each node is connected to its k closest neighbors. Edges of this graph are then
randomly rewired, with a given probability pr, by replacing one (or both) of the connected
peers with another peer. It has been shown that between regular graphs (pr = 0) and
uniform random graphs (pr = 1), the graphs generated with pr = 0.1 have ”small world”
properties. All acquaintance graphs used in our experiments have been generated in that
way, with pr = 0.1. Moreover, since our aim is to evaluate the scalability of our approach,
we have chosen to focus on networks of significant size. For all our instances, we have fixed
the number of peers np to 1000 and the number k of edges per peer to 10.

Once the topology of the network has been generated, local theories of each peer are
generated. Portion of the theories encoding taxonomies are first generated as previously
described. Then, for each edge of the generated graph mapping clauses are added. For
simplicity, we have chosen to add a fixed number q of mapping clauses for each edge.
Mapping clauses are randomly generated by picking one variable in each of the two peers
theories and by negating them with probability 0.5. With a %3cnf probability, a third
literal (randomly chosen between the two peers) is added to the clause to produce mapping
clauses of length 3. As a consequence, the average number of variables shared between two
connected peers is (2 + %3cnf) ∗ q.

5.2 Hardness of Local Reasoning within a Single Peer

In our setting, the first part of the reasoning performed at each peer consists in computing
the proper prime implicates of the received litteral w.r.t. the local theory of the peer. In
order to grasp the hardness of this local reasoning we have first conducted an experimental
study to evaluate the number and the form of such implicates, and also, since our local
theories are 2 + p clausal theories, to evaluate the impact of the ratio p on these values.
These experiments have been performed using a modified version of Zres (Simon & del Val,
2001).

Prime implicates have been already studied for 3-CNF random formulas (Schrag &
Crawford, 1996). This corresponds to the case where p = 100%. We first take this as
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Figure 4: Prime Implicates in a uniform random 3-CNF theory

a reference for comparison with proper prime implicates. We consider 3-CNF theories of
m = 30 clauses over n variables (n ranging from 12 to 28). The left part of Figure 4 presents
the characteristics of prime implicates for different values of n. Each curve describes how
the prime implicates distribute according to their length. The curves correspond to average
values over 1500 experiments. For instance, for n = 28 variables, there are on average
more than 680 prime implicates of length 7. The right part of Figure 4 describes the size
of the whole set of prime implicates by means of the cumulative distribution function of
its total number L of literals. Each point (x, y) on a curve must be read as “over the
N = 1500 runs, y.N of them led to a L value smaller than x”. This representation is
convenient for exhibiting exponential distributions. The point to stress here is that for
such small formulas, the median value of the size of the whole set of prime implicates
already reaches more than ten thousand literals. On some rare runs (less than 5%), the
set of prime implicates has more than one hundred thousand literals. We can also observe
that augmenting the number of variables increases the difficulty since it results in longer
and longer prime implicates being produced in the final result. Note that a simple random
3CNF formula of only 30 clauses may already generate thousands of prime implicates. Since
computing implicates for random formulas is known to require lots of subsumption checks
(Simon & del Val, 2001), the final set of prime implicates may be very hard to obtain in
practice.

While such results are not new (Schrag & Crawford, 1996), it is interesting to compare
them with those obtained in similar conditions when computing proper prime implicates,
described on Figure 5. We can observe that curve shapes are very similar to those previously
obtained but that the values are one order of magnitude smaller. Note that for n = 28, the
median value of the size of the whole set of proper prime implicates is already about one
thousand of literals. And similarly, for large values of n, a majority of proper prime impli-
cates are long. Intuitively, one may explain this phenomenon by the fact that proper prime
implicates are prime implicates of the initial theory augmented with an additional literal.
But this literal presumably induces clauses reductions in the theory and as a consequence
more subsumptions. The problem thus becomes a simplified – but not very much – version
of the prime implicates problem. From these experiments, a first conclusion is that, even
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Figure 5: Proper Prime Implicates in a uniform random 3-CNF theory
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Figure 6: Prime Implicates in a uniform random 2 + p-CNF theory (m = 30, n = 28)

for very small 3-CNF theories, the number of proper prime implicates may be quite large,
and some of them may be quite big.

Let us now focus our further experiments on local 2 + p CNF theories, with smaller
values of p, supposed to better correspond to the encoding of applications in which part of
the knowledge is structured as a tree or as a dag (which is encoded with 2-clauses). Figure
6 describes the prime implicates for a 2 + p CNF theory with m = 30 clauses and n = 28
variables, for values of p ranging from 0% to 100% (the curve corresponding to the case
p = 100% is the same as in Figure 4). Similarly, Figure 7 describes the characteristics of
the proper prime implicates for the different values of p. As previously, we can observe that
the curves have similar shapes. From the cumulative distribution function (CDF) curves, it
appears that the hardness (measured as the total size of the prime/proper prime implicates)
of the 2 + p CNF formula grows exponentially with the value of p. Even for small values of
p the problem may be hard. And as p increases, larger and larger clauses quickly appear in
the result.

Figure 8 studies the characteristics of proper prime implicates for a fixed and small
value of p = 10%, and increasing sizes m of the theory and of the number of variables n.
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Figure 7: Proper Prime Implicates in a uniform random 2+p-CNF theory (m = 30, n = 28)
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Figure 8: Size of Prime and Proper Prime Implicates in a uniform random 2+p-CNF theory
for a fixed p

We have chosen a small value of p to focus on the characteristics of larger theories (up to
m = 100 clauses). It is worth noticing that even for m = 100 and p = 10%, the problem
seems simpler than for m = 30 and p = 100% (note that on the right part of Figure 6 the
y-axis has been rescaled to [0.5− 1]). Such kinds of peer theories seem to have a reasonable
behavior from an integration perspective: half of the queries are very short and only a small
part of the queries are still very hard (the exponential distribution is still observed).

5.3 Scalability of Distributed Reasoning

The previous section has clearly shown that the local computation performed at each peer
may be really hard, even for small and simple theories. When focusing at the level of
whole Somewhere networks, the splitting/recombining strategy followed by our distributed
consequence finding algorithm clearly adds another source of combinatorial explosion. In
order to evaluate the scalability of Somewhere networks, we have performed two kinds of
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experiments. The first one aims at studying the behavior of Somewhere networks during
query processing. It consists in counting the number of messages circulating in a network
and the number of peers that are solicited while processing a query. In particular, we have
measured the distribution of the depth of query processing as well as the potential width of
a query. The depth of processing (depth for short) of a query is the maximum length of the
reasoning branches developed by the distributed algorithm for returning an answer to this
query. The width of the query measures the average number of neighbors that are solicited
by a peer during the reasoning. The second kind of experiments aims at evaluating the
processing time and the number of answers obtained for a query.

In all our experiments, the local theories of the 1000 peers of the network have been
generated as described in Section 5.1, with the fixed values m = n = 70 and t = 40. Those
numbers are close to what we would obtain by encoding taxonomies having the form of
balanced trees, with a depth between 3 and 5, in which each class has between 2 and 3
sub-classes, and the extensional classes of which correspond to the leaves of the tree. Each
peer theories contains in addition 10 ∗ (1 − %3cnf) ∗ q mapping clauses of length 2 and
10 ∗ q ∗ %3cnf mapping clauses of length 3. Since we have seen in Section 5.2 that the
proportion of 3-clauses in each local theory has a strong impact on the hardness of the local
computing performed for each (sub)query at each peer, we have studied variations of the
two related parameters: q and %3cnf of increasing complexity. Note that the distributed
theories considered in these experiments are quite large since the size of the corresponding
centralized theories ranges from 80 000 up to 130 000 clauses over 70 000 variables.

5.3.1 Behavior of Distributed Query Processing

Let us now study the impact of the number q of mapping clauses per edge and of the ratio
%3cnf of mapping clauses of length 3, on the depth of queries. For this purpose we have
measured, for each pair (q,%3cnf), the depth of 1000 random queries1. Since we know (cf.
Section 5.2) that local computing may be sometimes very hard and therefore may require
a lot of time, it has been necessary to introduce an additional timeout parameter. Each
query is thus tagged with its remaining time to live, which, on each peer, is decreased of the
local processing time, before propagating the induced subqueries. For these experiments,
the timeout value has been set to 30 seconds.

Figure 9 shows the cumulative distribution functions corresponding to each pair (q,%3cnf).
Each point on the figure reports a run, for a distinct query. The four leftmost curves cor-
respond to cases where the query depth remains relatively small. For instance, for q = 2
and %3cnf = 0 none of the 1000 queries has a depth greater than 7. Altogether on the
four leftmost curves none of the queries has a depth greater than 36. This suggests that
our algorithm behaves well on such networks.

When the value of %3cnf increases, queries have longer depths. For instance, with
q = 3 and %3cnf = 20, we can observe that 22% of the queries have a depth greater
than 100 (the maximum being 134). The three rightmost curves have a similar shape,
composed of three phases: a sharp growth, corresponding to small depth queries, followed

1For convenience, and since time is not here a direct issue (except from the timeout impact), these
experiments have been performed on a single computer, running the 1000 peers. This made the building of
reports relying on peer traces much easier.
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Figure 9: Cumulative distribution function of the depth of 1000 queries. q is the number of
mapping clauses per edge, and %3cnf is the ratio of 3-clauses in the mappings.
The y scale has been re-centered on [0.4 − 1.0].

by a plateau, and then a slower growth. The small depth query processing and the ’plateau’
are characteristics of an exponential distribution of values: most of the processing is easy,
but the little remaining is very hard. The slow growth observed is due to the timeout, a side-
effect of which is to bound the query depth. Without such a timeout, previous experiments
suggest that there would exist some queries requiring very long reasoning branches. This
point is outlined on the curve corresponding to the hardest cases (q = 3 and %3cnf = 20)
where there is no query of depth between 20 and 60. This suggests that when hard processing
appears, it is very hard. One may notice here that this last case corresponds to local theories
which are very close to one of cases studied in section 5.2. As a matter of fact, with q = 3
and %3cnf = 20 local theories are very close to a 2 + p theories of m = 100 clauses with
p = 6%.

In other experiments that we not detail here, we have checked that such an exponential
distribution of values cannot be observed when the acquaintance graphs have a strong struc-
ture of a ring (this corresponds to a rewiring probability p = 0 in the network generator).
Because such an exponential distribution can be observed on random graphs (correspond-
ing to p = 1), we suspect that such a behavior is due to the short path length between
two peers, a property shared by both random and small world graphs. However, those two
types of graphs differ on their clustering coefficient, a property having a direct impact on
our algorithm behavior.

The depth of a query is the length of the history handled by the algorithm, in which a
given peer can appear several times since the processing of subqueries (resulting of several
splitting of clauses entailed by the initial query) can solicit the same peer several times.
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Figure 10: Cumulative Distribution Function of queries width without timeouts. Each
curve summarise 20000 runs. The Y scale has been re-centered on [0.5 − 1.0],
the X axis on [0 − 25].

We have also measured the integration degree of queries, which is the number of distinct
peers involved in the query processing. We have observed the same kind of exponential
distributions of values than for the depth of queries, but with 20% smaller values. This
means that about one fifth of the history peers are repeated ones. That phenomenon was
not observed on random acquaintance graphs and this seems closely related to the small
world topology. It is important to point out that such a difference between small world and
random graphs could only be observed on large experimental data, with a large number of
peers.

We have also studied how wide the reasoning propagates in the network of peers during
query processing. For this purpose we have evaluated the average number of neighbors
peers that are solicited by a peer when solving a query. We have estimated this value
by generating 20000 random queries on random peers, and counting for each of them,
the number of induced subqueries to neighbor peers. Figure 10 shows, for different pairs
(q,%3cnf), the corresponding cumulative distribution functions. For instance, for q = 2
and %3cnf = 0, more than 75% of the queries are solved locally and 15% of the remaining
ones are solved by asking only one neighbor. With q = 5 and %3cnf = 100, about 25% of
the queries solicit at least 10 neighbors. Of course, 25% of the subqueries may also solicit
at least 10 peers and so on.

To summarize, our experiments have pointed out a direct impact of the %3cnf value
on the hardness of query processing, which is not surprising considering the hardness of
clauses of length 3 for prime implicates computation. Those experiments also suggest an
exponential distribution of query depths, due to the short path length between two peers
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in the acquaintance graphs, and with an important repetition of solicited peers, due to the
large clustering coefficient of small world acquaintance graphs.

5.3.2 Time and Number of Answers

We now report a time performance study of our algorithm when it is deployed on a real
cluster of 75 heterogeneous computers2. Based on the observations of the previous sections,
we have chosen to focus on 5 differents kinds of acquaintance graphs, denoted Very Easy,
Easy, Medium, Hard and Very Hard (see Table 1). One of the main goals of this section
is to estimate where the limits of processing of our algorithm are when it faces with hard
(and even very hard) Somewhere networks. Again, for all these experiments, we have set
the timeout value to 30s.

Very Easy Easy Medium Hard Very Hard
Network q = 2 q = 3 q = 3 q = 5 q = 10

%3cnf = 0 %3cnf = 20 %3cnf = 100 %3cnf = 100 %3cnf = 100
1stans. 0.04s (100%) 1.26s (99.6%) 1.58s (95.6%) 1.39s (89.3%) 2.66s (49.7%)
10thans. 0.06s (14.3%) 1.37s (25.6%) 0.99s (33.3%) 1.13s (12.0%) 5.38s (29.9%)
100thans. – 2.11s (12.7%) 0.84s (27.0%) 4.09s (10.7%) 11.0s (9.0%)
1000thans. – 4.17s (6.80%) 4.59s (21.2%) 11.35s (7.15%) 16.6s (1.80%)

all 0.07s 5.56s 14.6s 21.23s 27.74s
% timeout 0% 13.9% 37.5% 66.9% 86.9%
#answers 5.17 364 1006 1004 65
%unsat 4.4% 3.64% 3.76% 1.84% 1.81%

Table 1: Characteristics of the query processing ranging from very easy to very hard cases.

The values reported in Table 1 are mean values over more than three hundred different
random queries. Each column indicates the time needed to produce respectively the 1st,
10th, 100th and 1000th answer of a query. The mean time (in seconds) is followed by the
percentage of initial queries that are taken into account in the average. For instance, for a
medium case with q = 3, 12.7% of the queries have produced more than 100 answers, and
the 100th answer was given on average after 2.11 seconds (the average does not take into
account queries that did not produce at least 100 answers). The all row corresponds to
the mean time needed to produce all answers, including queries that lead to timeout, the
percentage of which is reported in the %timeout row. The last two rows report the mean
number of answers and the ratio of proved unsatisfiable queries w.r.t. the Somewhere
network (some unsatisfiable queries w.r.t. the network may not have been counted since
inconsistency might have been found after the timeout).

Unsurprisingly, no timeout occurs for the Very Easy case. It is known that satisfiability
checking and prime implicates computation are tractable for sets of clauses of length 2.
Moreover, the high partitioning of the global theory induced by the low value of q (number
of mappings per peer) is often a witness of “easy” cases for reasoning for centralized theories.

2All computers were Linux Athlon units, with 1GB of RAM. 26 of them ran at 1.4GHz, 9 at 1.8GHz
and 40 at 2 GHz. Each computer was running around 14 randomly assigned peers
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The point to outline for this case is that there are 5 answers on average, and that they are
produced very quickly by our algorithm (in less than 0.1 seconds).

Let us now point out that, even on Medium and Hard instances, our algorithm produces
a lot of answers. For instance, we have obtained an average of 1006 answers for q = 3, and
of 1004 answers for q = 5. In addition, on those hard instances, 90% of runs produced at
least one answer. It is noticeable that in the Very Hard case (q = 10), half of the queries
produce at least one answer, even if only 13% of them do complete without a timeout. Let
us note yet that checking the satisfiability of the corresponding centralized theories can
also be very hard. As a matter of fact the formula corresponding to the centralized version
of all the distributed theories has n=70 000 variables and m=120 000 clauses, 50 000 of
which are of length 3. The ratio of 3-clauses in those 2 + p theories is thus p = 0.416. It
has been shown (Monasson, Zecchina, Kirkpatrick, Selman, & Troyansky, 1999) that, for
2 + p random formulas, if one does not restrict the locality of variables, the SAT/UNSAT
transition is continuous for p < p0 (p0 = 0.41) and discontinuous for p > p0, like in 3-SAT
instances. Intuitively, for p > p0, the random 2 + p-SAT problem shares the characteristics
of the random 3-SAT problems, which is well known as the canonical NP-Complete problem.
Let us recall that our generation model induces a high clustering of variables inside each
peer. Therefore we cannot claim that the corresponding centralized theories have exactly
the same cararacteristics as uniform 2+p-SAT random formulas. However, if one only focus
on the values of the parameters m and n, for the characteristics of our Very Hard network,
the transition phase between SAT and UNSAT instance occurs at m/n=1.69. Here, we have
m/n=1.71, which is close enough from the transition phase to suspect that this is where
hard instances may be found.

To summarize, when deployed on a real cluster of heterogeneous computers, our algo-
rithm scales very well. Even on Very Hard instances that share some characteristics of a very
large 2 + p-SAT formula at the crossover between the 2-SAT/3-SAT and the SAT/UNSAT
transitions, our algorithm is able to return many answers in a reasonable time.

6. Related work

In Section 6.1, we situate our work w.r.t. existing work related to distributed reasoning or
distributed logics, while in Section 6.2 we summarize the distinguishing points of Some-
where among the existing peer data management systems.

6.1 Related Work on Distributed Reasoning

The message passing distributed algorithm that we have described in Section 3 proceeds
by splitting clauses and distributing the work corresponding to each piece of clause to
appropriate neighbor peers in the network. The idea of splitting formulas into several
parts may be found back as the so called ”splitting rule” in the natural deduction calculus,
introduced in the middle of the 1930’s by two independent works of Gentzen (1935, 1969)
and Jaśkowski (1934). Our algorithm may be viewed as a distributed version of Ordered
Linear Deduction (Chang & Lee, 1973) to produce new target clauses. This principle has
been extended by Siegel (1987) in order to produce all implicates of a given clause belonging
to some target language, and further extended to the first order case by Inoue (1992).
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We have already pointed out the differences between our work and the approach of Amir
and McIlraith (2000). In a peer-to-peer setting, tree decomposition of the acquaintance
graph is not possible. In addition, as we have shown in the introductory example, the
algorithm of Amir and McIlraith (2000) is not complete in the general case for proper
prime implicate computation. However, Goasdoué and Rousset (2003) have shown that
completeness can be guaranteed for a family of P2PIS with peer/super-peers topology. It
describes how to encode a P2PIS with peer/super-peers into a partitioned propositional
theory in order to use the consequence finding algorithm of Amir and McIlraith (2000).
The model-based diagnosis framework for distributed embedded systems (Provan, 2002) is
based on the work of Amir and McIlraith (2000). We think it can benefit from our approach
to apply to a real peer-to-peer setting in which no global knowledge has to be shared.

Other forms of distributed reasoning procedures may be found in multiagent frameworks,
where several agents try to cooperate to solve complex problems. Problems addressed in
this way can generally be decomposed in several interacting subproblems, each of which is
addressed by one agent. This is the case for Distributed Constraint Satisfaction Problems
(DCSP, Yokoo, Durfee, Ishida, & Kuwabara, 1998). Given a set of variables, each of them
being associated to a given domain, and a set of constraints on theses variables, the prob-
lem is to assign each variable one value in its respective domain, in such a way that all
constraints are satisfied. In the distributed case, each variable is associated to some agent.
Constraints may either concern a set of variables relevant to a same agent or variables rel-
evant to different agents. In the first case, they may be considered as characterizing the
local theory of the agent, while in the second case they may be assimilated to mapping con-
straints between agents. Each mapping constraint is assigned to one agent. The problem
addressed in DCSP is easier than the problem of consequence finding since it is a satisfiabil-
ity problem, which is NP-complete. While centralized CSP are solved using a combination
of backtrack search and consistency techniques, algorithms used to solve DCSP use asyn-
chronous versions of backtracking (Yokoo, Durfee, Ishida, & Kuwabara, 1992; Yokoo et al.,
1998) and consistency techniques (Silaghi, Sam-Haroud, & Faltings, 2000). Basically, agents
proceed by exchanging invalid partial affectations, until converging to a globally consistent
solution. Similar ideas may also be found in distributed ATMS (Mason & Johnson, 1989),
where agents exchange nogood sets in order to converge to a globally consistent set of jus-
tifications. Let us note that in contrast with the peer-to-peer vision, such methods aim at
sharing some global knowledge among all agents.

Probabilistic reasoning on bayesian networks (Pearl, 1988) has also given rise several
adaptations suited to distributed reasoning (e.g., the message passing algorithm of Pfeffer
& Tai, 2005). However the problem addressed in this context is different, since it consists in
updating a set of a posteriori beliefs, according to observed evidence and a set of conditional
probabilities. These conditional probabilities are of the form P (x|u1, ..., un) and describe
the probability of the event x when u1 and . . . and un are observed. They describe value
interactions that can be viewed as mappings between a conjunction of literals and a single
literal, which are oriented because of the nature or conditioning.

Another work using oriented mappings is the framework of distributed first order logic
(Ghidini & Serafini, 2000), in which a collection of first order theories can communicate
through bridge rules. This approach adopts an epistemic semantics where connections
between peer theories are reflected by mappings between the respective domains of inter-
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pretation of the involved peers. Based on that work, distributed description logics have been
introduced by Borgida and Serafini (2003) and a distributed tableau method is described
for reasoning in distributed description logics has been proposed by Serafini and Tamilin
(2004b). A reasoning algorithm has been implemented in Drago (Serafini & Tamilin,
2004a) where the bridge rules are restricted to inclusion statements between atomic con-
cepts.

6.2 Related Work on Peer Data Management Systems

As we have pointed it out in Section 4, the Somewhere peer data management system
distinguishes from Edutella (Nejdl et al., 2002) by the fact that there is no need of
super-peers, and from Piazza (Halevy et al., 2003b, 2003a) because it does not require a
central server having the global view of the overlay network.

From the semantic point of view, Somewhereuses a propositional language and map-
pings correspond to unrestricted formulas. Its semantics is the standard propositional se-
mantics and query answering is always decidable. The peer data management systems
investigated by Halevy et al. (2003b) use a relational language and their mappings corre-
spond to inclusion statements between conjonctive queries. The semantics used in this work
is the standard FOL semantics, for which query answering is shown to be undecidable in the
general case. Restricting to acyclic mappings renders query answering decidable in Piazza,
but checking this property requires some global knowledge on the network topology and is
performed by the central server.

The peer data management system considered in the work of Calvanese et al. (2004)
is similar to that of Halevy et al. (2003b) but proposes an alternative semantics based on
epistemic logic. With that semantics it is shown that query answering is always decidable
(even with cyclic mappings). Answers obtained according to this semantics correspond to a
subset of those that would be obtained according to the standard FOL semantics. However,
to the best of our knowledge, these results are not implemented.

From the systems point of view, the recent work around the coDB peer data manage-
ment system (Franconi, Kuper, Lopatenko, & Zaihrayeu, 2004) supports dynamic networks
but the first step of the distributed algorithm is to let each node know the network topology.
In contrast, in Somewhere no node does have to know the topology of the network.

The KadoP system (Abiteboul, Manolescu, & Preda, 2004) is an infastructure based
on distributed hash tables for constructing and querying peer-to-peer warehouses of XML
resources semantically enriched by taxonomies and mappings. The mappings that are con-
sidered are simple inclusion statements between atomic classes. Compared to KadoP (and
also to Drago, Serafini & Tamilin, 2004a), the mapping language that is dealt with in
Somewhere is more expressive than simple inclusion statements between atomic classes.
It is an important difference which makes Somewhere able to combine elements of answers
coming from different sources for answering a query, which KadoP or Drago cannot do.

Somewhere implements in a simpler setting the (not implemented) vision of peer to
peer data management systems proposed by Bernstein et al. (2002) for the relational model.
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7. Conclusion

The contributions of this paper are both theoretical and practical. We have provided the first
distributed consequence finding algorithm in a peer-to-peer setting, and we have exhibited
a sufficient condition for its completeness. We have developed a P2PIS architecture that
implements this algorithm and for which the first experimental results look promising. This
architecture is used in a joint project with France Télécom, which aims at enriching peer-
to-peer web applications with reasoning services (e.g., Someone, Plu et al., 2003).

So far, we have restricted our algorithm to deal with a vocabulary-based target language.
However, it can be adapted to more sophisticated target languages (e.g., implicates of a
given, maximal, length, language based on literals and not only variables). This can be
done by adding a simple tag over all messages to encode the desired target language.

Another possible extension of our algorithm is to allow more compact representation
of implicates, as proposed by Simon and del Val (2001). This work relies on an efficient
clause-distribution operator. It can be adapted by extending messages in our algorithm in
order to send compressed sets of clauses instead of one clause as it is the case right now,
without changing the deep architecture of our algorithm.

In the Semantic Web direction, we plan to deal with distributed RDF(S) resources
shared at large scale. RDF(S) (Antoniou & van Harmelen, 2004) is a W3C standard for
annotating web resources, which we think can be encoded in our propositonal setting.

In the distributed reasoning direction, we plan to consider more sophisticated reasoning
in order to deal with a real multi-agent setting, in which possible inconsistencies between
agents must be handled.
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reasoning in a peer-to-peer setting. In de Mántaras, R. L., & Saitta, L. (Eds.), Proceed-
ings of ECAI 2004 (16th European Conference on Artificial Intelligence), pp. 945–946.
ECCAI, IOS Press.
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Ph.D. thesis, Université d’Aix-Marseille II, Marseille, France.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2000). Asynchronous search with ag-
gregations. In Proceedings of AAAI 2000 (17th National Conference on Artificial
Intelligence), pp. 917–922. AAAI Press / The MIT Press.

Simon, L., & del Val, A. (2001). Efficient consequence finding. In Nebel, B. (Ed.), Proceed-
ings of IJCAI’01 (17th International Joint Conference on Artificial Intelligence), pp.
359–365, Seattle, Washington, USA. Morgan Kaufmann.

Tatarinov, I., & Halevy, A. Y. (2004). Efficient query reformulation in peer data management
systems. In Proceedings of SIGMOD’04 (International Conference on the Management
of Data), pp. 539–550, New York, NY, USA. ACM Press.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks.
Nature, 393, 440–442.

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1992). Distributed constraint satis-
faction for formalizing distributed problem solving. In Proceedings of ICDS’92 (12th
IEEE International Conference on Distributed Computing Systems), pp. 614–621.

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998). The distributed constraint
satisfaction problem: Formalization and algorithms. IEEE Transactions on Knowledge
and Data Engineering, 10 (5), 673–685.

314


