
L R I

SEMANTICS AND PRAGMATICS OF
PREFERENCE QUERIES IN DIGITAL

LIBRARIES

SPYRATOS N / CHRISTOPHIDES V / GEORGIADIS P / NGUER M

Unité Mixte de Recherche 8623

CNRS-Université Paris Sud – LRI

11/2007

Rapport de Recherche N° 1478

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

Semantics and Pragmatics of Preference Queries

in Digital Libraries

N. Spyratos1, V. Christophides2, P. Georgiadis2, M. Nguer1

1 LRI, Université Paris Sud, {spyratos, nguer}@lri.fr
2 ICS-FORTH, {christop, perge}@ics.forth.gr

Abstract. As information becomes available in increasing amounts, and
to growing numbers of users, the shift towards a more user-centered, or
personalized access to information becomes crucial. In this paper we
consider the semantics and pragmatics of preference queries over tables
containing information objects described through a set of attributes. In
particular, we address two basic issues:
– how to define a preference query and its answer (semantics)
– how to evaluate a preference query (pragmatics)

With respect to existing work, our main contributions are (a) the pro-
posal of an expressive language for declaring qualitative preferences, (b)
a unified framework for expressing and evaluating both quantitative and
qualitative preference queries and (c) rewriting algorithms for processing
such queries. Although our main motivation originates in digital libraries,
our proposal is quite general and can be used in several application con-
texts.

1 Introduction

As information becomes available in increasing amounts, and to growing num-
bers of users, the shift towards a more user-centered, or personalized access to
information becomes crucial. Personalized access can involve customization of
the user interface or adaptation of the content to meet user preferences. This
paper addresses the latter issue, and more precisely adaptation of the answer
returned by a query to user preferences.
We call preference query, a standard query together with a set of user prefer-
ences. Such queries are useful in several application contexts where users brows-
ing extremely large data collections don’t have a clear view of the information
objects that these collections contain nor do they have a particular object in
mind. Rather, they are attempting to discover objects that are potentially use-
ful to them, or in other words, objects that suit their preferences best. The main
objective of this paper is to introduce a unified formal framework for specify-
ing and evaluating various kinds of preference queries. Although our motivation
originates in digital libraries [49], the results presented in this paper apply to
other application contexts as well (e.g. searching for gifts in the electronic cata-
logues of online merchants).
We view a digital library catalogue as a table describing digital documents, as

shown in the example of Figure 1 - that we shall use as our running example. In
that catalogue, each document is considered as an information object, described
by an identifier, denoted Oid (e.g. the document’s URI), and a number of at-
tributes: its year of publication, the (first) author’s name, the subject category
treated by the document (e.g. Poetry, Fiction, etc.), the language in which the
document is written and the electronic format in which the document is available
through the library (such as Word, Pdf, and so on). In other words, we view the
catalogue just like a table of a relational database, whose schema is C(Oid, Year,
Author, Category, Language, Format), and in which each column is associated
with a set of values (i.e. a domain). For simplicity, in Figure 1, we denote the
document identifiers by integers.
A standard query expressed by a user against the catalogue is a Boolean combi-
nation of elementary conditions of the form A=a, where ’A’ is an attribute and
’a’ is a value in the domain of A. For example, consider the following query:
Q1 = [(Category = Poetry) ∨ (Category = Fiction)] ∧ (Language = English)
To answer this query we must compute the set of documents having Poetry or
Fiction as their Category attribute, then the set of documents having English
as their Language attribute, and finally take the intersection of these two sets:
ans(Q1) = ({1, 3, 5} ∪ {2, 4, 6})∩ {2, 3, 5, 6, 8} = {2, 3, 5, 6}
As the size of the answer set is not known in advance, and as it might be too
large to exploit by a casual user, it would be interesting to present the set of
documents returned in a decreasing order with respect to user preferences. The
user can then inspect the most interesting documents first, and stop inspection
when the documents become less and less interesting. However, in order to pro-
duce such an ordering of the answer set, the system must have access to user
preferences, and this can be done in one of three ways: - The user declares offline
a set of preferences, and these preferences are stored by the system. - The sys-
tem elicits user preferences by monitoring and analyzing previous queries by the
user. - The user declares online a set of preferences, together with the query. As
mentioned earlier, a preference query is a standard query together with a set of
user preferences. This paper is concerned with preference queries, independently
of how user preferences are made available to the system. The important issue
addressed in this paper is how user preferences influence the answer set. To see
this, consider the following statement of preferences over the attribute Category:
P1 : (Category : Poetry → Fiction) [meaning that poetry is preferred to fiction]
We would like the previous query Q1, together with the statement P1, to return
a result showing the documents about poetry before documents about fiction.
In other words, we would like the answer to be presented as follows:
ans(Q1, P1) = {3, 5} → {2, 6}
It is important to note that the answer set of Q1, processed alone, and the an-
swer set of Q1 processed together with the statement P1 contain the same set
of documents. The difference lies in the fact that, in presence of P1, the answer
set of Q1 is partitioned into two subsets ordered so that the first subset contains
documents about poetry and the second about fiction.
In the previous example a preference was expressed in the form of a pair of

attribute values (namely, Poetry and Fiction) with the understanding that the
first value in the pair is preferred to the second. Expressing preferences in the
form of pairs of attribute values is referred to in the literature as the qualitative
approach [7, 15–19, 31, 35–37]. However, there is also a more widely spread ap-
proach, whereby preferences are expressed by associating each attribute value of
interest with a numerical value or score, and documents described by attribute
values with higher scores are presented first in the answer set. This approach is
referred to as the quantitative approach [1, 4, 6, 11, 13, 20–23,38, 39]. Tradition-
ally the quantitative and the qualitative approach to expressing preferences have
been treated with quite different machinery in the literature, and little or no at-
tention has been devoted to their unification.
The main contributions of this paper are (a) the proposal of an expressive lan-
guage for declaring qualitative preferences, (b) a unified framework for express-
ing and evaluating both quantitative and qualitative preference queries and (c)
rewriting algorithms for processing such queries.

Oid Author Year Category Language Format

1 A1 2001 Poetry French Word

2 A1 1998 Fiction English Pdf

3 A2 2000 Poetry English Pdf

4 A3 2001 Fiction German Pdf

5 A1 2002 Poetry English Word

6 A2 2000 Fiction English Word

7 A4 1998 Drama German Pdf

8 A2 2002 Comedy English Pdf

9 A3 2007 Comedy French Pdf

Table 1. A Digital Library Catalogue

We would like to emphasize here that there is an important difference be-
tween the preference queries studied in this paper and the Order-by queries of
SQL. Indeed, using Order-by one can ask the system to return the results of
a query in an ascending or descending order, following the predefined order of
some attribute domain (e.g. the domain of Year in our running example). In the
preference queries considered here, it is the user that inputs an order for the
attribute domain - an order expressing the user’s preferences (and, in fact, the
order input by the user might contradict the predefined order of the attribute
domain). Additionally, some attribute domains have no predefined order (e.g.
Category or Format in our running example) so Order-by simply doesn’t ap-
ply to such attributes, whereas preference queries of our approach apply to any
attribute.

2 Expressing Preferences

We have just seen that there exist two approaches for expressing preferences,
namely the quantitative approach and the qualitative approach. In this section
we detail these two approaches, and we introduce a language for expressing qual-
itative preferences, strictly more expressive than existing languages.
In the quantitative approach each object of interest from a set X is examined in
isolation (i.e. independently of other objects) and a numerical value is associated
with it; this numerical value is called the score of the object, and it is usually
from the closed interval [0, 1]. The association of objects with scores creates a
function, called a scoring function. A scoring function can either be provided by
the user or computed by the system (based on previous user queries), and might
be a partial function if not all objects of X are associated with a score.
Anyhow, the score of an object implies both, a rank for the object and an inten-
sity by which the object is desired. For example, referring to Figure 1, consider
the following scoring functions on the domain of Category:
Scoring function S1 : Poetry : 0.90, Fiction : 0.89

Scoring function S2 : Poetry : 0.90, Fiction : 0.01

Both scoring functions imply the same ranking (Poetry ranked higher than Fic-
tion), but the intensities are quite different. According to S1, Fiction is a very
close second to Poetry, whereas according to S2 Fiction is a very distant second
to Poetry.
The use of scoring functions has a long history in the area of economics, so-
cial choice theory and decision support systems, and a large body of literature
has developed over the years [2, 3, 30, 32, 40, 42]. Completeness and transitivity
which have been essential preconditions to these fields were too strict, thus var-
ious attempts were made in the last thirty years to relax them, mostly through
the proposal of specific order structures [5, 9, 10, 14, 24–29,41, 43–47]. A brief
overview of basic problem setup and various approaches to it from an opera-
tional research viewpoint can be found in [8]. Various metrics attempting to
quantify the fairness of a resultant ranking against its constituent ones have also
been proposed [20–22,33, 34].
In the qualitative approach, attribute values are examined in pairs and if an at-
tribute value x is preferred to an attribute value y then the pair (x, y) is declared
by the user; such a pair is called a preference, and the set of all user preferences
is called the user’s preference relation [17, 37].
Clearly the user should be free to express any desired preference; hence the pref-
erence relation could be, in principle, any set of pairs.
However, in the literature, the preference relation is usually modeled as a strict
partial order [35–37,31] that is a binary relation “<” satisfying the following
properties:
x≮x for all x in X (non reflexivity)
x < y implies y ≮ x for all x, y in X such that x 6= y (asymmetry)
x < y and y < z implies x < z (transitivity)
We consider this modeling choice as unnecessarily restrictive. In particular, we
consider that transitivity should not be imposed as a constraint for the prefer-

ence relation to be acceptable.
Indeed, a preference represents a decision made by the user when comparing
two objects x and y in isolation that is independently of other objects. As a
consequence, if the user has expressed only two preferences, say (x, y) and (y, z),
it is unrealistic to infer a third preference (x, z) that the user has not expressed.
For example, if the user has expressed preference of Poetry over Drama and of
Drama over Comedy, there is no reason to believe that the user will prefer Poetry
to Comedy if confronted with the latter two in isolation. Of course, it is con-
ceivable that transitivity might be reasonable to assume in some applications,
however, it is certainly not realistic to assume transitivity in every application.
In our approach, we impose no constraint whatsoever on the preference relation.
In other words, the user can declare any set of pairs of attribute values as a
preference relation. In addition, we allow the user to declare that two attribute
values are equally preferred. Formally, we treat the declaration “x and y are
equally preferred” as a declation of two pairs, namely (x, y) and (y, x), that is
as a cycle between x and y. In reality, while declaring preferences, a user may
create cycles consciously or unconsciously. The presence of a cycle in the prefer-
ence relation might either mean that all values in the cycle are equally preferred
or that the user has inadvertently created a cycle.
In the prototype that we are currently developping, if the system detects cycles
in the preference relation, these cycles are handled in one of two ways, depending
on the application context:

– Dialogue with the user: Each cycle is presented to the user, and the user is
asked to either confirm the cycle or “break” it (by modifying the declared
preferences).

– Automatic Processing: The system processes the cycles without help from
the user, by considering all objects on a cycle as being equivalent 3 .

In any case, the resulting preference relation is an acyclic relation. To simplify
matters, in the remaining of the paper, we assume that the preference relation
is indeed acyclic; and in order to differentiate from the preference relations used
in the literature, we shall call it a precedence relation.

Definition 1 (Precedence Relation).
Given a set X of objects, a precedence relation on X is an acyclic binary relation
on X.

We shall denote a precedence relation by →, read as “precedes”. For example, in
the table of Figure 1, assuming that X is the domain of the attribute Category,

3 More formally, cycles can be removed from a cyclic relation P if one defines an
equivalence relation as follows: (a) x ≡ x, for all objects appearing in P and (b)
x ≡ y, if x and y are on the same cycle. Then instead of P one works with the
quotient relation P/ ≡.

the following is a precedence relation on X:
Poetry → Fiction, Drama → Fiction, Fiction → Comedy

These declarations are interpreted as follows: Poetry precedes Fiction, Drama
precedes Fiction and Fiction precedes Comedy.
One important property of precedence relations is that they are strictly more
expressive than strict partial orders. Indeed, each strict partial order on a set X is
a precedence relation on X (because a strict partial order is always acyclic); in the
opposite direction, a precedence relation on X is non reflexive and asymmetric
(because of acyclicity), but not necessarily transitive. It follows that, given a
set X, the set of all strict partial orders on X is strictly included in the set
of all precedence relations on X. Actually, the relationship between precedence
relations and strict partial orders is more intricate, as stated in the following
proposition.

Proposition 1 (A Basic Property of Precedence Relations).
If P is a precedence relation on X then the following relation “<P” is a strict
partial order on X: x <P y if there is a path from x to y in P, for all x, y in X.
Conversely, if “<” is a strict partial order on X then its transitive reduction 4

is a precedence relation on X.

Clearly the relation “<P” is the transitive closure of P. We shall refer to “<P”
as the strict partial order induced by P (and we shall usually omit the subscript
P, whenever no confusion is possible).
Summarizng our discussion in this section, languages for expressing preferences
based on precedence relations are more expressive than those based on strict
partial orders.

3 Preference Queries

As mentioned in the introduction, we consider preference queries over tables of
the form C(Oid, A1, · · · , An), where Oid denotes the identifier of an information
object and A1, · · · , An denote attributes of that object. Henceforth, we shall refer
to a table of this form as a catalogue. For the purposes of this paper, we follow
[49] and consider each attribute Ai as a function from the domain of Oid to the
domain of attribute Ai, that is, Ai : dom(Oid) → dom(Ai). For example, in Figure
1, we have Category(1) = Poetry, Format(2) = Pdf, and so on. Under this view,
we define a query over the table C as follows:

Definition 2 (Query Over a Table C). Call elementary condition over a
catalogue C any expression of the form A = a, where A is an attribute and a is
in the domain of A. A query Q over C is defined as follows, where Q1, Q2 are
queries:

Q ::= A = a|Q1 ∧ Q2|Q1 ∨ Q2|Q1 ∧ ¬Q2|(Q)

4 A strict partial order is an acyclic relation, and the transitive reduction of an acyclic
relation is unique [50]. Uniqueness of the transitive reduction is not guaranteed, in
general, for cyclic relations.

In other words, a query over C is either an elementary condition or a Boolean
combination of elementary conditions.
The answer of Q, denoted ans(Q), is defined in three steps as follows :

1. replace each elementary condition of the form A = a appearing in Q by the
inverse image of a under A (i.e. by the set of objects A−1(a))

2. replace each Boolean connective by the corresponding set theoretic operation
(i.e. replace ∧ by ∩, ∨ by ∪ and ∧¬ by \)

3. Perform the set theoretic operations

As an example, consider the following query over the table C of Figure 1:
Q= ((Category= Poetry)∨(Category= Fiction))∧¬(Language= French)
Its answer is computed as follows:

ans(Q) = (Category−1(Poetry) ∪ Category−1(Fiction))\(Language−1(French))

= ({1, 3, 5} ∪ {2, 4, 6})\{1, 9} = {2, 3, 4, 5, 6}

To simplify the presentation, we shall “factor out” attributes when they are
repeated. For example, the previous query Q will be written as follows:
Q = (Category = Poetry ∨ Fiction) ∧ ¬(Language = French)
As mentioned in the introduction, a preference query is a standard query together
with a set of user preferences. However, as we saw in the previous section, user
preferences can be expressed either in the form of a scoring function or in the
form of a precedence relation. Hence the following definition of a preference
query.

Definition 3 (Preference Query). Let C(Oid, A1, · · · , An) be a catalogue. A
preference query over C has one of two forms:
Scoring Query: Sq = (Q, S) where Q is a query over C and S is a set of scoring
functions over attribute domains in C

Precedence Query: Pq = (Q, P) where Q is a query over C and P is a set of
precedence relations over attribute domains in C.

We note that, in a precedence query Pq = (Q, P), it is possible to have attribute
values appearing in Q but not in P, and vice versa. For example, the following
query Q and precedence relation P are perfectly compatible:
Q : (Category = Poetry ∨ Fiction ∨ Drama)
P : (Category : Comedy → Poetry, Poetry → Fiction)
The value Drama appears in Q but not in P whereas the value Comedy appears
in P and not in Q. Nevertheless, the pair (Q, P) qualifies as a precedence query.
Additionally, it is possible to have attributes appearing in the usual query Q but
not in the preferences, and vice versa. For example, the following query Q and
precedence relation P are perfectly compatible:
Q : (Category = Poetry ∨ Fiction ∨ Drama)
P : (Language : Greek → English, French → English)
The attribute Category appears in Q but not in P whereas the attribute Language

appears in P but not in Q. Nevertheless, again, the pair (Q, P) qualifies as a
precedence query.

The key question now is how to define a common formal framework in which to
evaluate both forms of preference query. To do this we exploit the fact that both,
scoring functions and precedence relations, each induce a ranking of objects.
This is rather obvious in the case of scoring functions but less so in the case
of precedence relations. It is precisely this common property (i.e. the induced
ranking of objects) that we use in this paper as the basis for unifying the two
approaches. First, we introduce a special kind of precedence relation that we call
a ranking domain.

4 Ranking Functions

Intuitively, a ranking domain is a set of labels that one attaches to objects in
order to denote their rank with respect to other objects in a set. More formally,
a ranking domain is just a special case of precedence relation, as stated in the
following definition.

Definition 4 (Ranking Domain). Given a set X of objects, a ranking domain
on X is a finite precedence relation R satisfying the following properties:
there is exactly one minimal element, called the first element
there is exactly one maximal element, called the last element
each element other than the first has exactly one predecessor
each element other than the last has exactly one successor
We shall refer to the elements of a ranking domain as ranks.

Since a ranking domain R is also a precedence relation, it follows that R induces
a strict partial order “<R”. It is not difficult to see that the induced strict partial
order “<R” is complete, that is for any two ranks r, r′, either r <R r′ or r′ <R r.
In other words, a ranking domain is a finite precedence relation, all elements of
which lie on a single path. In our examples we shall use a finite set of integers
as a ranking domain.
The following definition introduces the notion of ranking function, which is nec-
essary for the evaluation of preference queries in the next section.

Definition 5 (Ranking Function). Given a set X of objects, we call ranking
function on X, or simply ranking on X any (possibly partial) function f : X −→ Y,
such that range(f) is a ranking domain.

We recall now two facts about functions in general, that we shall use later on for
ranking functions, in particular. First a function f : X −→ Y can be represented
unambiguously by the set of pairs {〈r, f−1(r)〉/r ∈ range(f)}, or equivalently, by
{〈f(x), f−1(f(x))〉/x ∈ def(f)}. We call this representation the partition represen-
tation of f, and denote it by pr(f). For example, the partition representation of
the function Category contains the following pairs:
〈Poetry, {1, 3, 5}〉, 〈Fiction, {2, 4, 6}〉, 〈Drama, {7}〉, 〈Comedy, {8, 9}〉
Second, a function can be restricted to a subset of its domain of definition. Let
f : X −→ Y be a function and let E be a subset of def(f). The restriction of f to
E, denoted f/E is a function from E to Y defined as follows: (f/E)(e) = f(e), for

all e in E. The partition representation of f/E can be computed from that of f

as follows:
pr(f/E) = {B ∩ E/B ∈ pr(f), B ∩ E 6= ∅}
In the rest of this paper we adopt the convention that if E is not a subset of
def(f) then f/E stands for f/E′, where E′ = E ∩ def(f)
The evaluation of preference queries that we shall see shortly relies on the fol-
lowing two facts concerning ranking functions:

– Let f : X −→ Y be a ranking function and let R be the range of f . As R is a
ranking domain, it follows that the induced order <R is complete. Therefore
we can sort the partition representation of f in an ascending or in a descend-
ing order of rank.

– Let f : X −→ Y be any function and let g : Y −→ Z be a ranking on Y. Then
the composition g ◦ f : X −→ Z is a ranking on X.

The above two facts are the basic building blocks of our formal framework for the
uniform evaluation of both types of preference queries. Indeed, given a scoring
query Sq = (Q, S) or a precedence query Pq = (Q, P), the approach that we follow
in the rest of the paper can be outlined as follows:

1. First we show how Sq and Pq each induces a ranking over the set of objects
in the catalogue C; call these rankings fS and fP, respectively.

2. Then we define the partition representation of the induced ranking, restricted
to the answer of Q, to be the answer of Sq or Pq, respectively; in other words,
ans(Sq) = pr(fS/ans(Q)) and ans(Pq) = pr(fP/ans(Q))
We note that as fS and fP are rankings, the answers just defined can be sorted
and presented to the user in either ascending or descending order of rank.

5 Induced Rankings

Let Sq = (Q, S) be a scoring query where S is a scoring function over a single
attribute, say A. Then Sq induces a ranking over the set of objects of C in a
straightforward manner. Indeed, recall that S is a function from the domain of
A to a set of numerical values, therefore the range of S is a ranking domain.
A precedence query Pq = (Q, P), where P is a precedece relation over a single
attribute, also induces a ranking over the set of objects of C but in an indirect
manner. The following definition introduces our proposal for the ranking induced
by the precedence relation P.

Definition 6 (Induced Ranking). Let X be any set, let P be a precedence
relation on X. Let m be the largest length of path over all paths having as source
a minimal element of P. For each element x appearing in P, define the rank of
x, denoted as RankP(x) as follows:
if x is a minimal element of P then RankP(x) = m

else RankP(x)= m − i, where i is the largest length of path from a minimal element
of P to x

Intuitively, the ranking induced by P assigns the highest rank to each minimal
element, as minimal elements are the most preferred (no element precedes a
minimal element in P); it assigns the lowest rank to each maximal element, as
maximal elements are the least preferred (a maximal element precedes no other
element in P); and it assigns a rank to an intermediate element such that the
further the element it is from the minimal elements, the lower its rank. These
observations are better understood in the following example.

Example 1. Consider the following precedence relation on the domain of Cate-
gory:
Poetry → Fiction, Drama → Fiction, Drama → Comedy, Fiction → Comedy

Applying Definition 6 we find the following induced ranking:
RankP(Poetry) = RankP(Drama) = 2, RankP(Fiction) = 1, RankP(Comedy) = 0

The ranking induced by P has two interesting properties, as stated in the fol-
lowing proposition.

Proposition 2 (Properties of the Induced Ranking). Let X be any set, let
P be a precedence relation on X, and let RankP be the ranking induced by P on
X. Then the following hold:

1. x <P y implies RankP(y) < RankP(x)
2. RankP(x) = RankP(y) implies (x, y) /∈ P and (y, x) /∈ P (in this case we call x

and y non comparable in P)

6 Answering Preference Queries

In this section we present our approach to evaluating a preference query over a
catalogue C. Recall that a preference query is a standard query together with
a set of preferences either in the form of scoring functions or in the form of
precedence relations.

6.1 Answering a Precedence Query

We begin with the evaluation of a precedence query Pq = (Q, P) and we distin-
guish two cases for the precedence relation P : precedence over a single attribute,
and precedence over two or more attributes.

Definition 7 (Precedence Over a Single Attribute). Let Pq = (Q, P) be
a precedence query over a catalogue C, where P is a precedence over a single
attribute A. The answer to Pq, denoted ans(Pq), is defined as follows:
ans(Pq) = pr

[

(RankP ◦ A)/ans(Q)
]

If we recall the definition of partition representation from the previous section,
and assume that 0, · · · , m are the ranks produced by the ranking RankP on the
domain of Ref (see Definition 6), then we have:
Ans(Pq)=

{

〈0, ((RankP ◦ A)−1(0)) ∩ ans(Q)〉, · · · , 〈m, ((RankP ◦ A)−1(m)) ∩ ans(Q)〉
}

The key observation here is that the set of objects (RankP ◦ A)−1(i), i = 0, · · ·,

m, can be expressed as follows:

(RankP ◦ A)−1(i) = ∪
{

A−1(a)/a ∈ Rank−1
P (i)

}

(1)

Now, suppose that Rank−1
P (i) = {a1, · · · , ap}, and define Qi = ∨Rank−1

P (i) = a1 ∨ · · · ∨ ap.
Then the right-hand side of expression (1) above is precisely the answer to the
standard query Qi. In other words we have: (RankP ◦ A)−1(i) = ans(Qi), therefore
the answer to Pq can be rewritten as follows:

ans(Pq) =
{

〈0, ans(Q0) ∩ ans(Q)〉, · · · , 〈m, ans(Qm) ∩ ans(Q)〉
}

Example 2. Consider the precedence query Pq = (Q, P), where
Q : (Language = English ∨ German)
P : Poetry → Fiction, Drama → Fiction, Drama → Comedy, Fiction → Comedy

The induced ranking RankP is as in Examle 1. To compute the answer of Pq we
proceed as follows:
Anwer to Q : ans(Q) = {2, 3, 4, 5, 6, 7, 8}
Answer to Qi, for i = 2, 1, 0 :
ans(Q2) = (RankP ◦ A)−1(2) = ans(Category = Poetry ∨ Drama) = {1, 3, 5, 7}
ans(Q1) = (RankP ◦ A)−1(1) = ans(Category = Fiction) = {2, 4, 6}
ans(Q0) = (RankP ◦ A)−1(0) = ans(Category = Comedy) = {8, 9}
Answer to Pq:
ans(Pq) =

{

〈2, {3, 5, 7}〉, 〈1, {2, 4, 6}〉, 〈0, {8}〉
}

In the previous example, we first computed the answers to the queries Q, Q0,· · · ,
Qm and then we computed the answer to Pq by taking the intersection of each
ans(Qi) with the set ans(Q). However, it is possible to rewrite the answer to Pq,
in a way that the intersections are computed within the query answering process.
Indeed, we can rewrite the answer to Pq as follows:
ans(Pq) =

{

〈0, ans(Q0 ∧ Q)〉, · · · , 〈m, ans(Qm ∧ Q)〉
}

If we set Q′

i = Qi ∧ Q, i = 1, · · · , m, then we can write:
ans(Pq) =

{

〈0, ans(Qi)〉, · · · , 〈m, ans(Q′

m)〉
}

Determining when this last form is preferable to the previous one is an optimiza-
tion issue that lies outside the scope of this paper.

In order to define the answer to the query Pq = (Q, P) , where P is a set of
precedence relations over multiple attributes, we need some auxiliary definitions
and notations. Let us denote by P/A a precedence relation over attribute A,
and let us denote by values(P/A), the set of values of dom(A) that appear in
P/A. Given a set of such precedence relations, say P = {P/A1, · · · , P/Ak}, let us
denote by tuples(P) the cartesian product of the sets values(P/Ai), i = 1, · · · , k,
that is:
tuples(P) = values(P/A1) × · · · × values(P/Ak)
There are two ways to define a precedence on the set tuples(P), based on the
precedence relations P/A1, · · · , P/Ak. The first way, called Pareto precedence,
considers that no Ai has precedence over any other attribute Aj; the second,
called Lexicographic precedence considers that the Ai’s form a ranking domain.
The following two propositions describe how the set P of precedences induces a
Pareto or Lexicographic precedence over the set tuples(P).

Proposition 3 (Pareto Precedence). The following binary relation “→P” on
the set tuples(P) is a precedence relation : for all tuples s, t in tuples(P), s →P t

iff s 6= t and, for i = 1, · · · , k, either s.Ai = t.Ai or s.Ai →i t.Ai (where →i denotes
the precedence over Ai).

Proposition 4 (Lexicographic Precedence). Let the attributes A1, · · · , Ak

form a ranking domain with first element A1, last element Ak and succ(Ai) = Ai+1,
for i = 1, · · · , k − 1. The following binary relation “→L” on the set tuples(P) is
a precedence relation: for all tuples s, t in tuples(P), s →L t iff s 6= t and [either
s.A1 →1 t.A1 or (s.A1 = t.A1 and s.A2 · · ·Ak →L t.A2 · · ·Ak)]
Here s.X denotes the restriction of tuple s to the attributes of the set X.

With the above notations and definitions at hand, we can now give the defini-
tion of answer when the query contains precedences over more than one attribute.

Definition 8 (Precedence Over Multiple Attributes). Let Pq = (Q, P) be
a precedence query, where P = {P/A1, · · · , P/Ak}. The answer to Pq, denoted by
ans(Pq), is defined in three steps as follows:

1. Use the precedences P/A1, · · · , P/Ak to define a precedence on the set tu-
ples(P); call the resulting precedence P× where P× stands for either “Pareto”
or “lexicographic” precedence (a choice made by the user).

2. Define the function A1 × · · · × Ak : Ref → dom(A1) × · · · × dom(Ak) such that
(A1 × · · · × Ak)(i) = (A1(i), · · · , Ak(i))

3. Define the answer to Pq as follows:
ans(Pq) = pr

[

(RankP× ◦ (A1 × · · · × Ak))/ans(Q)
]

Note that when P consists of a precedence over a single attribute, then we
find again the answer defined in Definition 7. In fact, all we have said in the
case of precedence over a single attribute carry over for precedence over multiple
attributes, if we replace RankP by RankP× , and the function A by the function
A1 × · · · × Ak (see Definition 8). The only difference is that now, instead of p

attribute values a1, · · · , ap we have p tuples t1, · · · , tp, so the query Qi is now
defined as follows:
Qi = ∨(RankP×)−1(i) = t1 ∨ · · · ∨ tp,
Here, each ti is seen as the conjunction of its attribute values. Let us see an
example.

Example 3. Consider the precedence query Pq = (Q, P), where
Q : (Language = English ∨ German)
P/Category : Poetry → Fiction and P/Format : Pdf → Word

Precedence over attributes: Category → Format (actually given by the user)
To compute the answer of Pq we proceed as follows:
values(P/Category) = {Poetry, Fiction}, values(P/Format) = {Pdf, Word}
tuples(P)=values(P/Category)× values(P/Format)= {Poetry.Pdf, Poetry.Word,
Fiction.Pdf, Fiction.Word}
Note: To simplify matters, we shall use a shorthand notation for the tuples: PP,

PW, FP, FW stand for the tuples Poetry.Pdf, Poetry.Word, Fiction.Pdf, Fic-
tion.Word, respectively.
Induced precedence P× (following the given precedence Category → Format over
attributes):
PP →L PW, PP →L FP, PP →L FW, PW →L FP, PW →L FW, FP →L FW

Ranking RankP× : RankP×(PP) = 3, RankP×(PW) = 2, RankP×(FP) = 1,
RankP×(FW) = 0

We are now ready to proceed as in the case of precedence over a single attribute,
letting f stand for the function Category × Format:
Anwer to Q : ans(Q) = {2, 3, 4, 5, 6, 7, 8}
Answer to Qi, for i = 3, 2, 1, 0
ans(Q3) = (RankP× ◦ f)−1(3) = ans(Category = Poetry ∧ Format = Pdf) = {3}
ans(Q2) = (RankP× ◦ f)−1(2) = ans(Category = Poetry ∧ Format = Word) = {1, 5}
ans(Q1) = (RankP× ◦ f)−1(1) = ans(Category = Fiction ∧ Format = Pdf) = {2, 4}
ans(Q0) = (RankP× ◦ f)−1(0) = ans(Category = Fiction ∧ Format = Word) = {6}
Answer to Pq:

ans(Pq) =
{

〈3, ans(Q3) ∩ ans(Q)〉, 〈2, ans(Q2) ∩ ans(Q)〉, 〈1, ans(Q1) ∩ ans(Q)〉,

〈0, ans(Q0) ∩ ans(Q)〉
}

=
{

〈3, {3}〉, 〈2, {5}〉, 〈1, {2, 4}〉, 〈0, {6}〉
}

6.2 Answering a Scoring Query

To answer a scoring query we use the same formal framework as for a precedence
query. To simplify the presentation, we distinguish again two cases for the scoring
function: scoring over a single attribute, and scoring over two or more attributes.

Definition 9 (Scoring Over a Single Attribute). Let Sq = (Q, S) be a prece-
dence query, where S is a scoring function over a single attribute A. The answer
to Sq, denoted ans(Sq) is defined as follows: ans(Sq) = pr[(S ◦ A)/ans(Q)]

In the case of multiple attributes the only difference with precedence queries lies
in the definition of a scoring function over tuples from the scoring functions over
single attributes. More precisely, let S/A denote a scoring function over attribute
A, let def(S/A) denote the domain of definition of S/A, and for a set of scoring
functions S = {S/A1, · · · , S/Ak} define: tuples(S) = def(S/A1) × · · · × def(S/Ak)
Given a tuple t in tuples(S), one can combine the scores of the individual attribute
values of t in order to assign a score to t. For example, two ways of doing this is
to define the score of t to be either the maximum or the minimum of all scores in
t. Whatever the method used, let us denote by S× the resulting scoring function
on tuples(S).

Definition 10 (Scoring Over Multiple Attributes). Let Sq = (Q, S) be a
scoring query, where S = {S/A1, · · · , S/Ak}. The answer to Sq, denoted by ans(Sq),
is defined in three steps as follows:

1. Use the scoring functions S/A1, · · · , S/Ak to define a scoring function on the
set tuples(S); call the resulting scoring function S×, where S× can be derived
by taking max, min, or some other operation over the scores of each tuple (a
choice to be made by the user).

2. Define the function A1 × · · · × Ak : dom(Oid) → dom(A1)× · · · ×dom(Ak) such
that (A1 × · · · × Ak)(i) = (A1(i), · · · , Ak(i))

3. Define the answer to Sq as follows: ans(Sq) = pr[(S× ◦ (A1 × · · · × Ak))/ans(Q)]

Note that when S consists of a scoring function over a single attribute, then we
find again the answer defined in Definition 9.
The remarks made for precedence queries carry over, in a straightforward man-
ner, to the evaluation of a scoring query Sq = (Q, S), in which S is either a scoring
function over a single attribute (Definition 9) or a set of scoring functions over
multiple attributes (Definition 10); we only have to replace RankP with S, in the
case of a single attribute, and RankP× with S×, in the case of multiple attributes.

7 Concluding Remarks

We have presented a unified formal framework for the definition and evaluation
of both, qualitative and quantitative preference queries. For qualitative queries,
in particular, we have introduced a language for expressing preferences, namely
the language of precedence relations, which is strictly more expressive than the
languages that have been proposed in the literature. Concerning the declaration
of preferences over multiple attributes, we have adopted the approach of declar-
ing preferences over individual attributes, then combining the declarations to
derive preferences over tuples. An alternative approach is to declare preferences
directly on tuples. Clearly, in such a scenario, the definitions of answer given
earlier still hold. However, we think that it is more difficult for a user to ex-
press preferences by comparing or scoring whole tuples rather than individual
attribute values.
Ongoing research aims at two objectives: (a) designing efficient algorithms for
the evaluation of preference queries and (b) designing a user friendly interface
for the declaration of preference queries. Both these tasks are under way.

References

1. Agrawal, R., and Wimmers, E. L. A Framework for Expressing and Combining Pref-
erences. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (Dallas, USA), 2000, 297-306.

2. Amartya K. Sen, 1970 [1984], Collective Choice and Social Welfare, ISBN 0-444-
85127-5

3. Arrow, K.J., Social Choice and Individual Values, New York: John Wiley and Sons,
1951; second edition, 1963.

4. Balke, W.-T., Güntzer U., and Kießling W. On Real-time Top k Querying for Mo-
bile Services. International Conference on Cooperative Information Systems, Irvine,
USA, 2002.

5. Beardon, A.F., Candeal, J.C., Herden, G., Indurain, E., and G.B. Mehta: “The
non-existence of a utility function and the structure of non-representable preference
relations,” Journal of Mathematical Economics 37 (2002), 17-38.

6. Börzsönyi, S., Kossman, D., and Stocker, K. The Skyline Operator. In Proceedings
of the 17th International Conference on Data Engineering (ICDE), Heidelberg, 2001.

7. Boutilier, C., Brafman, R., Hoos, H., and Poole, D. Reasoning with conditional
ceteris paribus preference statements. In UAI-99, pages 71- 80, 1999.

8. Bouyssou D.; Vincke P,Introduction to topics on preference modelling, Annals of
Operations Research, 80, 1998, i-xiv

9. . Bridges, D.S., A numerical representation of preferences with intransitive indiffer-
ence, Journal of Mathematical Economics, 1983, vol. 11, issue 1, pages 25-42

10. Bridges, D.S., Numerical representation of intransitive preferences on a countable
set, Journal of Economic Theory, Elsevier, vol. 30(1), 1983, pages 213-217.

11. Bruno, N., Gravano, L., and Marian, A. Evaluating Top-k Queries over Web-
Accessible Databases. ICDE, 2002, 369-279.

12. Chang, C. L. Deduce: A deductive query language for relational databases. In
Pattern Rec. and Art. Int., C. H. Chen, Ed. Academic Press, New York, 1976,
108-134.

13. Chaudhuri, S., and Gravano, L. Evaluating Top-k Selection Queries. In Proceedings
of the 25th International Conference on Very Large Data Bases, 1999.

14. Chebotarev, Pavel Yu.; Shamis, Elena; “Characterizations of Scoring Methods for
Preference Aggregation”; Annals of Operations Research; Vol. 80; 1998; 299-332;
#3685

15. Chomicki J, Iterative Modification and Incremental Evaluation of Preference
Queries. FoIKS 2006: 63-82

16. Chomicki, J. Preference formulas in relational queries. ACM Transactions on
Database Systems (TODS), 28(4), 2003, 427-466.

17. Chomicki, J. Querying with Intrinsic Preferences. In Proceedings of the 8th Inter-
national Conference on EDBT, Prague, Czech Rep., 2002, 34-51.

18. Chomicki, J. Semantic optimization of preference queries. In 1st Int. Sym. on Appl.
of Constraint Databases, Springer (LNCS 3074), 2004.

19. Domshlak C. and Brafman R.. Cp-nets - reasoning and consistency testing. In
KR-02, pages 121-132, 2002.

20. Fagin R et al., Comparing Partial Rankings, SIAM J. Discrete Mathematics
21. Fagin R. et al. Comparing and aggregating rankings with ties. In PODS, 2004.
22. Fagin R., Kumar R., and Sivakumar D. Comparing top k lists. In SODA, 2003.
23. Fagin R., Kumar, R. and Sivakumar D. Efficient similarity search and classification

via rank aggregation. In SIGMOD, 2003.
24. Fishburn P.C.. Preference structures and their numerical representations. Theo-

retical Computer Science, 217(2):359-383, April 1999
25. Fishburn, P. C., 1988 Nonlinear Preference and Utility Theory, John Hopkins Uni-

versity Press, Baltimore.
26. Fishburn, P.C., Intransitive indifference with unequal indifference intervals, Journal

of Mathematical Psychology 7, 1970, 144-149
27. Fishburn, P.C., Inverted orders for monotone scoring rules, Discrete Applied Math-

ematics, 3 (1981), 27-36
28. Fishburn, P.C., Nontransitive Preferences in Decision Theory, Journal of Risk and

Uncertainty, Springer, vol. 4(2), 1991, pages 113-34
29. Fishburn, P.C., The Theory of Social Choice, Princeton: Princeton University

Press, 1973

30. Fishburn, Peter C. Utility Theory for Decision Making. Huntington, NY. Robert
E. Krieger Publishing Co. 1970

31. Hafenrichter B, Kießling W: Optimization of Relational Preference Queries. ADC
2005: 175-184

32. Hoppe, Hans-Hermann, 1993, “The Economics and Ethics of Private Property,”
Kluwer Academic Publishers

33. Kendall M. and Gibbons J. D.. Rank Correlation Methods. Edward Arnold, Lon-
don, 1990.

34. Kendall M. G. The treatment of ties in ranking problems. Biometrika,
33(3):239251, 1945.

35. Kießling W., Preference Queries with SV-Semantics., in COMAD (J. Haritsa and
T. Vijayaraman,. eds.), pp. 1526, Computer Society of India, 2005

36. Kießling, W. Foundations of Preferences in Database Systems. In Proceedings of
28th International Conference on Very Large Data Bases, Hong Kong, China, 2002,
311-322.

37. Kießling, W., and Köstler, G. Preference SQL Design, Implementation, Experi-
ences. In Proceedings of 28th International Conference on Very Large Data Bases,
Hong Kong, China, 2002, 990-1001.

38. Koutrika G, Ioannidis Y, Personalized Queries under a Generalized Preference
Model. ICDE 2005: 841-852

39. Koutrika, G., and Ioannidis, Y. Personalization of Database Queries Using Stored
Preferences. In Proceedings of Seminar on Preferences: Specification, Inference, Ap-
plications, Schloss, Dagstuhl, DE, 2004.

40. Kreps, David M. Notes on the Theory of Choice. Boulder, CO. Westview Press.
1988

41. Manzini Paola & Mariotti Marco, 2003. “How vague can one be? Rational prefer-
ences without completeness or transitivity,” Game Theory and Information 0312006,
EconWPA, revised 16 Jul 2004.

42. Mas-Colell, Andreu; Whinston, Michael; & Green, Jerry (1995). Microeconomic
Theory. Oxford: Oxford University Press. ISBN 0-19-507340-1

43. May, K. O.: 1954, Intransitivity, utility, and the aggregation of preference patterns,
Econometrica, 22, 1-13.

44. May, R. M.: 1971, Some mathematical remarks on the paradox of voting, Behav-
ioral Science, 16, 143-151.

45. Truchon, Michel, 2004, Aggregation of Rankings in Figure Skating, Cahiers de
recherche 0414, CIRPEE.

46. van Acker, P.: 1990, Transitivity revisited, Annals of Operations Research, 23, 1-35.
47. Wang Xuzhu, An investigation into relations between some transitivity-related

concepts, Fuzzy Sets and Systems, Volume 89, Issue 2, 16 July 1997, Pages 257-262.
48. Delos Network of Excellence in Digital Libraries (http://www.delos.info/)
49. N. Spyratos: A Functional Model for Data Analysis, Intl. Conference Flexible

Query Answering Systems (FQAS 2006: 51-64), Milano, Italy, June 8-10, 2006
50. P.Fejer, D. Simovici, Mathematical Foundations of Computer Science, Vol.I: Sets,

Relations and Induction, Springer 1991

	RR1478entête.pdf
	RR1478rapp.pdf

