
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

EXPRESSING ADAPTATION STRATEGIES
USING ADAPTATION PATTERNS

ZEMIRLINE N / BOURDA Y

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud –LRI

01/2011

Rapport de Recherche N° 1540 

1

Expressing Adaptation Strategies using
Adaptation Patterns

Nadjet Zemirline, Yolaine Bourda, Member, IEEE, Chantal Reynaud

F

Abstract—Today, there is a real challenge to enable personalized
access to information. Several systems have been proposed to address
this challenge including Adaptive Hypermedia Systems (AHSs). How-
ever, the specification of adaptation strategies remains a difficult task
for creators of such systems. In this paper, we consider the problem
of the definition of adaptation strategies at a high level. We present
two main contributions: a typology of elementary adaptation patterns
for the adaptation of navigation; and a process to generate adaptation
strategies based on the use and the semi-automatic combination of
patterns. We also describe how the generated adaptation strategies can
be integrated into existing AHSs. A prototype has been implemented
and an experiment in the e-learning domain has been conducted with
a group of volunteers. This experiment shows that our pattern based
approach for defining adaptation strategies is more suitable than those
based on ”traditional” AH languages.

Index Terms—AHSs, Adaptation strategies, Patterns.

1 INTRODUCTION

The concept of Adaptive Hypermedia Systems (AHSs)
has existed for years now [21], and it has amply proved
its utility particularly in education [6], [7], where stu-
dents have access to personalized resources according
to their knowledge, preferences and goals. However, till
today, AHSs are not authored as many as desired, and
this is mainly due to the difficulty of their authoring
process [26].

In fact, authors have to define a domain model struc-
turing available resources, a user model describing user
characteristics and an adaptation model in the format
understood by the used adaptation engine [14]. In this
paper, we focus particularly on the authoring process
of the adaptation model, which is most often the less
intuitive part to be authored in an AHS by non technical
persons.

Indeed, authors have to specify an adaptation model,
in which they describe resources to propose for users
having distinct characteristics and different knowledge
in a personalized manner, in order to achieve their
specific goals. This is done through the definition of
multiple adaptation strategies. By an adaptation strategy,
we mean that an author specifies which resources have to

Nadjet Zemirline and Yolaine Bourda are with SUPELEC Systems Sciences
(E3S) - Computer Science Department, France
Nadjet Zemirline and Chantal Reynaud are with the Universit Paris-Sud XI,
CNRS (LRI) & INRIA - Saclay le-de-France / Projet Leo, France

be proposed and how they will be proposed to a set of users
who share the same characteristics. Thereby, authors of
an AHS face numerous challenges when defining their
adaptation strategies.

The first challenge concerns the expression of adap-
tation strategies. Multiple solutions have been pro-
posed [13], [15] to make it easier, but they were related to
a particular AHS and failed to answer the second and the
third challenge, e.g, the author graph tool for AHA! [15]
uses visualization in order to support creators and works
only for AHA!.

The second challenge concerns the reuse of adaptation
strategies from one system in another one, and the
expression of adaptation strategies independently of any
AHS. To do so, a new paradigm has been proposed:
”write once, use many” [28]. This paradigm endorses
expressing adaptation at a high level, independently
of all AHSs and then translating this adaptation into
a particular AHS. However, proposed adaptation lan-
guages [9], [26], [25] failed to answer the third challenge.

The third challenge concerns the granularity in writing
adaptation strategies. It targets to avoid to write several
times the common parts of adaptation strategies. To do
so, adaptation languages using constructors have been
proposed [9], [25], but till today, an adaptation strategy
is considered as a whole block and can not be easily
reused.

This paper addresses these three challenges. It concen-
trates on the ease of defining adaptation strategies at a
fine granularity, and on the facility of reusing existing
adaptation strategies. In a first time, we focus only on
the expression of adaptation strategy for the adaptive
navigation, where users are forced to navigate among
the proposed navigation paths. This can be either by
imposing them a particular order or by recommending
them resources [21].

We perceive an adaptation strategy as a combination
of elementary parts. Each part corresponds to an ele-
mentary adaptation and is bound to a user characteris-
tic. A part can belong to different complex adaptation
strategies depending on user characteristics. Our work
takes up this idea. The notion of elementary adaptation
patterns that we propose, is an abstraction of such
elementary parts. Elementary adaptation patterns are
independent from any application domain, but limited in

2

a first time to express adaptive navigation. We propose
a typology for the elementary adaptation patterns and
a semi-automatic process to combine them (the most
difficult part is done automatically).

The paper is organized as follows. It presents in
section 2 close work on the expression of adaptation,
and demonstrates the intuition of our work in section
3 with an example. Section 4 reviews the main aspects
of our proposal. Section 5 presents the description of
elementary adaptation patterns and their organization
in a typology, and section 6 describes how elementary
adaptation patterns can be used to define adaptation
strategies. In section 7, we discuss how the generated
adaptation strategies can be integrated on the top of ex-
isting AHSs. Finally, we conclude the paper in section 8.

2 RELATED WORKS

Most often, during the authoring process of adaptation
on domain and user models, authors ask themselves
two questions [3]: what kind of adaptation they can provide
for users? and how to produce the desired adaptation? The
two questions are answered in that order. For deciding
what kind of adaptation they can provide, authors may
refer to existing typologies on adaptation (cf. Section 2.1),
while for producing adaptation, they need to consider
what are the most appropriate adaptation engine and
the languages understood by each of them (cf. Section
2.2).

On the other hand, as there are more and more
resources available on the web, recent works enable
authors not only to define adaptation on their sets of
resources but also on those available on the web. So, we
present works about integrating adaptive technologies
on open corpus (cf. Section 2.3).

2.1 What kind of adaptation could be provided?
The well-known Brusilovsky taxonomy [4] is undoubt-
edly the most used typology of adaptation. It describes
several methods of adaptation that can be combined to-
gether. These methods are organized into three non dis-
joint groups: adaptive presentation, content adaptation
and adaptive navigation support. This typology relies on
the fact that the available resources can be modified and
restructured during the adaptation process. Hence, it is
not suitable when there is no control of the distributed
resources.

As we focus in this paper on the expression of adap-
tive navigation, we get a particular interest of methods
included in the adaptive navigation support group. The
group includes 4 methods:

• direct guidance: supervises users step by step. It is
done by proposing to users one link at a time.

• adaptive ordering: defines the priority of all the links
of a particular page.

• link hiding and removal: hides, removes or disables
links to users (e.g, AHA! [15] hides links that are
not relevant to users).

• adaptive link annotation: suggests links to users.
The suggestions are often expressed using visual
cues (e.g, WHURLE [24] makes suggestions using
colours).

• link generation: creates new links on a page.

2.2 How authors can express their adaptation?
We have grouped existing solutions to express adapta-
tion in three main categories.

Adaptation languages accompanied by their adap-
tation engine. Adaptation strategies written by these
adaptation languages are often expressed in condition-
action or event-condition-action rules [15], [24], [22].
However, authoring adaptation using rules is not easy
to perform and is time consuming. Thereby, aids have
been proposed to make the expression of adaptation
easier. E.g, the author graph tool for AHA! [15] which uses
visualization in order to support authors: for each new
created concept, the tool associates a set of attributes
and adaptation rules. Regardless, authors are captive
to a particular system. Indeed, adaptation strategies ex-
pressed in a system cannot be used outside this system,
it has to be rewritten.

Generic adaptation languages accompanied by trans-
lators to existing adaptation engines. Some generic lan-
guages (independent of any system) have been proposed
to specify adaptation [9], [25]. Among them, the LAG
language [9], which is an implementation of the specifi-
cation of the adaptation language defined in the LAOS
model [10]. It includes conversion to the WHURLE [24],
Blackboard [1] and AHA! adaptation engines. However,
LAG is like a programming language, which is not very
suitable for non technical authors (an example is given
in section 3). Recently a new Generic Adaptation Lan-
guage (GAL1) has been developed to describe adaptive
hypermedia [25]. It argues to gather all functionalities
of existing adaptation engines and to be an intermediate
language between existing authoring environments and
adaptation engines. For that, GAL plans to include trans-
lators from existing authoring environments to GAL and
from GAL to existing adaptation engines. It describes
the navigational structure of a web application using ab-
stract constructs (e.g. units, attributes). But, the descrip-
tion of adaptation remains difficult to specify, as authors
have to write a GAL program (use of SPARQL2queries
to select resources) in a sequential way and no aid is
proposed for them. Furthermore, generated adaptation
strategies by these adaptation languages are considered
as a whole block and can not be easily reused.

Hypertext and adaptation patterns. Some design pat-
terns for expressing personalization in web applications
have been proposed [16], based on commonly used
design structures. They are suitable for designers of
adaptive systems but not for authors of authors of a

1. GAL is proposed in the context of the GRAPPLE project
http://www.grapple-project.org/

2. www.w3.org/TR/rdf-sparql-query/

3

particular adaptive hypermedia course. Such adaptation
design patterns have been proposed in the e-learning
domain [12], [19]. Garzotto et al. [19] have proposed pat-
terns corresponding to learning styles. Cristea et al. [12]
have proposed a taxonomy of various AEHS (Adap-
tive Educational Hypermedia Systems) design patterns
according to different learning styles. There is no real
formalization and no support for an automatic export
to a particular adaptation language. One adaptation
strategy (as complex as it can be defined by authors)
is expressed using only one pattern. Patterns can not
be neither combined together or modified, i.e, authors
have to find a pattern corresponding to their desired
adaptation strategy, otherwise, they can not express it.

2.3 Open corpus adaptive systems
In the AH community, research concerning the integra-
tion of open corpus content into adaptive systems has
been under scrutiny for several years - mostly in the field
of education [3]. Most of the existing systems are built
upon an existing AHS (e.g., [9] on top of [15]). Multiple
issues are to be faced in order to develop open corpus
based adaptive systems ([12], [20]), including automatic
hypertext creation, indexing of open corpus resources
and content preparation. None of these systems face
the problem of the definition of adaptation, by an AHS
author, in a simple way.

2.4 Conclusion
We have discussed here solutions helping authors to
find what adaptation they can propose and how they
can express it. However, till now, there are no works
concerning building complex adaptation strategies, inde-
pendent of any system by combining simple adaptations.
In this paper, we focus on this specific point. Adaptation
strategies must be defined at a fine granularity. Our aim
is thus to help authors defining their own adaptations,
independently of any adaptation engine, at a higher level
and in an easy manner. In the next section, we introduce
a use case giving the intuition of our contribution. This
scenario is subsequently used in the paper.

3 MOTIVATION, USE CASE

Assume that Jane who is a lecturer in computer science
wants to build an adaptive course from her materials,
i.e., Jane is going to author an AEHS. She has first to de-
fine a domain model, then to describe the characteristics
of her students in a user model, and finally to express
the desired adaptation.

Jane proposes a domain model in UML (cf. Figure 1),
in-which she considers the addressed notions as in-
stances of the class Concept3. The concepts must be learnt
in a particular order, that is defined through the relation

3. In this paper, names of classes have the first letter in upper-case
and are in italic, and name of instances have the same name as the
class for which they belong in lower-case

Definition Example

Conceptabstraction
Resource

Format (Text, Image, Video)

1* *

prerequisite

*

Fig. 1. Jane’s domain model

pre-requisite. Each concept may be trained using defini-
tions or examples. Definition and Example are subclasses
of the class Resource, i.e. each of their instances has a con-
tent, which can be proposed to students. Furthermore,
each resource may be in different formats: text, image or
video.

Jane considers the following student characteristics
• learning mode: in-depth learning mode means that

each subject must be known in-depth before going
to a related subject. In-breadth learning mode means
that a student has to know a variety of subjects
before going in-depth.

• reasoning mode: an inductive reasoning mode means
that the student has access to examples before the
related definitions are presented to him. In a deduc-
tive reasoning mode definitions precede examples.

• presentation form: a verbal presentation form is for
students preferring textual resources and an audio
presentation form is for those preferring audio re-
sources.

Among the adaptation strategies Jane wants to pro-
pose, we are going to focus on the adaptation strategy
S1. It concerns students whose learning mode is in-
depth, with an inductive reasoning mode and preferring
audio resources. S1 proposes resources that are examples
before those which are definitions. They will be in an
audio format if that one is available otherwise in a
textual format. They will be related to concepts ordered
according to a depth-first navigational path using the
relation pre-requisite.

Jane can express S1 using solutions supported by her
AH system. However, they are not easy to implement
and require good backgrounds. See as an illustration,
the implementation of S1 using GLAM in figure 2 (for
GLAM syntax see section 7.2.1), and using LAG in
figure 3. This implies that Jane has already her domain
and user models in the format understood by the used
AH system.

Naturally, Jane expressed S1 in three parts: 1) S1 con-
cerns students whose learning mode is in-depth, 2) S1
concerns students with an inductive reasoning mode, 3)
S1 concerns students preferring audio resources. These
parts can be considered independently of one another
and may compose the definition of other adaptation
strategies, for example S2, an adaptation strategy for
students whose learning mode is in-depth, with an in-
ductive reasoning mode and preferring textual resources.
S2 differs from S1 only in proposing resources in a

4

S1 is defined in three steps:
Step1: defining GLAM rules

R1 type (r, Example) ∧ format (r, audio) ∧ abstraction(r, Con-
cept1) ∧ abstraction(currentR, Concept2) ∧ pre-requisite
(Concept2, Concept1) ∧ pre-requisite (Concept1, goal) →
Read(r, degree)

R2 type (r, Example) ∧ format (r, text) ∧ abstraction(r, Concept1)
∧ abstraction(currentR, Concept2) ∧ pre-requisite (Concept2,
Concept1) ∧ pre-requisite (Concept1, goal)→ Read(r, degree)

R3 type (r, Definition) ∧ format (r, audio) ∧ abstraction(r,
Concept1) ∧ abstraction(currentR, Concept2) ∧ pre-requisite
(Concept2, Concept1) ∧ pre-requisite (Concept1, goal) →
Read(r, degree)

R4 type (r, Definition) ∧ format (r, text) ∧ abstraction(r, Con-
cept1) ∧ abstraction(currentR, Concept2) ∧ pre-requisite
(Concept2, Concept1) ∧ pre-requisite (Concept1, goal) →
Read(r, degree)

R5 type (r, Example) ∧ format (r, audio) ∧ abstraction(r, Con-
cept1) ∧ pre-requisite (Concept1, goal) → Read(r, degree)

R6 type (r, Example) ∧ format (r, text) ∧ abstraction(r, Concept1)
∧ pre-requisite (Concept1, goal) → Read(r, degree)

R7 type (r, Definition) ∧ format (r, audio) ∧ abstraction(r, Con-
cept1) ∧ pre-requisite (Concept1, goal) → Read(r, degree)

R8 type (r, Definition) ∧ format (r, text) ∧ abstraction(r, Con-
cept1) ∧ pre-requisite (Concept1, goal) → Read(r, degree)

R1 proposes audio examples according to a depth-first naviga-
tional path on their concepts using the relation pre-requisite), and
these concepts enable to reach the goala.
R5 proposes audio examples that are linked to concepts which
enable to reach the goal.
Step2: defining associations between rules and user charac-
teristics: γ(audio) is associated to R1, R3, R5, R7, γ(text) is
associated to R2, R4, R6, R8, γ(Definition) is associated to R3, R4,
R7, R8, γ(Example) is associated to R1, R2, R5, R6, and γ(depth-
first) is associated to R1, R2, R3, R4, R5, R6, R7, R8.
Step3: defining GLAM meta-rules

MR1 γ(audio) is preferred on γ(text)
MR2 γ(Example) before γ(Definition)
MR3 R1 before R5
MR4 R2 before R6
MR5 R3 before R7
MR6 R4 before R8

(MR1 means that the rules associated to the characteristic pre-
sentation form audio are executed, when they return no results,
the rules associated to the characteristic presentation form text
are executed).

a. In this paper, the goal to be reached by users (learners for
this example) is modelled as a property

Fig. 2. Jane’s S1 in the GLAM format

initialization (
while true (

PM.GM.Concept.show = false
UM.Concept.defAudio = false)

while (enough(GM.Concept.type == Example
GM.Concept.label == audio, 2))

do (PM.GM.Concept.show = true)
)
implementation (

if enough(PM.GM.Concept.access == true
GM.Concept.type == Definition , 2)

then (PM.GM.Concept.show = true
UM.Concept.defAudio = true)

if enough (PM.GM.Concept.Parent.access == true
UM.Concept.defAudio == true
GM.Concept.type == Example , 3)

then (PM.DM.Concept.show = true)
)

Fig. 3. Jane’s S1 in the LAG format

textual format if that one is available otherwise in an
audio format.

To enable Jane easily define her strategies, i.e. the
most natural way as possible, we offer the possibility
to specify each part of a strategy by defining the set of
resources to propose and the order in which they have
to be proposed. According to this approach, S1 will be
built from the following parts:

S1-1 presents resources linked to the domain concepts
ordered according to a depth-first navigational
path using the pre-requisite relation.

S1-2 presents only audio resources if they are available
otherwise presents textual resources.

S1-3 presents examples before definitions.
The adaptation strategy S1 is intended to students

with specific characteristics. Therefore, each part of the
strategy has to be labelled by a student characteristic, i.e.
S1-1, for example, will be defined for in-depth learning
mode students. Thereby, to define S2, Jane can reuse the
parts S1-1 and S1-3, she has only to define the part S2-2
for the textual presentation form.

We presented here the intuition of our contribution
according to Jane’s needs, in the following, we describe
our approach in a more general way.

4 MAIN ASPECTS OF OUR FRAMEWORK

We propose the EAP framework in which authors have a
clear separation between what kind of adaptation strate-
gies they want to provide to users and the technicalities
involved in writing it. The idea is to help authors in
selecting the adaptation strategy and then generated it
in a semi-automatic way. Defined adaptation strategies
are described at a high level and independently of any
adaptation engine.

The EAP framework focuses only on the expression
of adaptation strategies. So, it assumes authors have
already created their domain and user models. Further-
more, our framework is based on design patterns [18].
Design patterns describe recurrent solutions to common
problems in software design. The solutions are generic
and cannot be directly translated to code. For e.g, the
Object-oriented design patterns describe relationships
and interactions between classes or objects, without
specifying the final application classes or objects that
are involved. In practice, design patterns can speed up
the development process by providing tested, proven
development paradigms. We argue that an adaptation
strategy is a kind of conception, where authors have
to write several times the same parts of an adaptation
strategy, sometimes on different elements. Consequently,
the proposed framework uses a set of building blocks
independent from any application domain, called ele-
mentary adaptation patterns, which are based on design
patterns. Thereby they can be used and instantiated to
define specific adaptation strategies.

The main steps for authoring an adaptation strategy
with the EAP framework are:

5

1) Selection. The author either selects elementary
adaptation patterns (those needed to define his
adaptation strategy) and instantiates them on his
own model (thereby, elementary adaptations are
defined), or reuses existing elementary adaptations.

2) Specification. The creator specifies associations be-
tween user characteristics and elementary adapta-
tions.

3) Computation. The computation of the adaptation
strategy resulting from step 2 is automatic.

We have defined a typology and a library of elemen-
tary adaptation patterns that can be selected for use
within an adaptation strategy, and which we introduce in
section 5. The instantiation process and the combination
process are described in section 6.

Before going further, let us apply the EAP framework
on Jane’s use case. Jane needs now:

1) To define S1-1 (resp. S1-2, S1-3) by instantiating the
appropriate elementary adaptation pattern on the
relation pre-requisite (resp. on the classes Example,
Definition, on the property format).

2) To associate S1-1 with in-depth learning mode, S1-
2 with inductive reasoning mode, S1-3 with audio
presentation form.

3) As S1 is for students with an in-depth learning
mode, an inductive reasoning mode and who want
audio resources. S1 is thus automatically built by
combining S1-1, S1-2, S1-3.

Note that, that way, Jane does not need to worry about
technical problems in the expression of S1.

5 ELEMENTARY ADAPTATION PATTERNS

The notion of elementary adaptation patterns that we
propose, is an abstraction of Jane parts. Furthermore, we
defined our elementary adaptation patterns in a manner
that is independent from any application domain in
order to be able to cover other authors parts. Thereby,
the criteria used to define our elementary adaptation
patterns are defined in a generic way (cf. Section 5.1).
Elementary adaptation patterns are described in sec-
tion 5.2, and their typology is defined in section 5.3.

5.1 Fundamental criteria for defining elementary
adaptation patterns

As each part of the S1 strategy defined by Jane, an
elementary adaptation pattern targets a set of resources
of a particular type to be presented and also specifies
the order in which they will be proposed. This section
presents exhaustive criteria to select resources (cf. Sec-
tion 5.1.1) and to organize the selected resources (cf.
Section 5.1.2).

5.1.1 Criteria used to select resources
Criteria used to select resources are based on the domain
model, where resources are structured and described. We

argue that the general description of a domain model
includes the following elements:

• a set of classes. This set must contain the class
representing all the resources to be proposed to
users which we have called Resource, and the class
representing all the domain concepts, which we
have called Concept.

• a set of relations between classes. Each relation defines
a graph on instances of classes on which it is de-
fined. This graph can be navigated according to two
different navigational paths in order to reach the
goals: depth-first or breadth first.

• a set of properties.
Thereby, we have differentiated between criteria select-
ing resources and criteria defining a navigational path on
relations. Our criteria for selecting resources are: their
belonging to a class, the values of some properties, or
the presence of a relation that defines a navigational
path through the resources or the concepts graph. Fur-
thermore, our criteria currently considered for defining
a navigational path are either depth-first, breadth-first or
random.

5.1.2 Criteria used to order the selected resources

We have looked over works defining adaptation meth-
ods, by giving a particular interest for adaptive naviga-
tion, without mattering if the methods are applied on a
set of links to resources or resources themselves.

We have looked over the Brusilovsky typology (cf. Sec-
tion 2.1) excluding methods of the adaptive navigation
support group which modify resources (e.g, hiding links
belonging to content of resources). Only direct guidance,
adaptive ordering and adaptive link annotation have been
considered.

We have also looked over the classification of external
actions in AHS defined by Stash and al. [26]. The classi-
fication includes actions on items (e.g, selection, showing
items or links to items), actions on a set of items (e.g,
ordering), hierarchical actions (e.g, action on parent or
child) and actions on the overall environment (e.g, changing
the layout). We only consider the actions having impact
on the navigation of users, this includes: actions on items,
actions on a set of items and hierarchical actions. Further-
more, we distinguish between actions and elements on
which the actions are performed. The elements can be
an item, a set of item, parents or children. So, we only
consider the selection, show and order actions.

On the other hand, we have looked over AHS
implementing adaptive navigation like AHA! [15],
WHURLE [24], GLAM [22] etc. We found that GLAM
implements a kind of adaptation not mentioned else-
where. This adaptation proposes alternative resources
if the desired resources are not available. We find it
interesting and have retained it in our own typology.

From this study, we conclude that there are four
basic modes to select resources in a setting of adaptive
navigation support. These modes are the following:

6

• Selection only: provides a set of resources, which
are all proposed to the user, i.e, only the selected
resources are proposed to users, the other resources
are not proposed. This selection mode is equivalent
to the combination of the selection and show actions
described by Stash et al. In fact, Stash et al. propose
to select and show selected resources in two sepa-
rate processes, while in our approach implicitly all
selected resources are shown. There is no equivalent
in the Brusilovsky typology.

• Recommended selection: provides multiple sets of re-
sources (at least two) that include knowledge to
specify which set should be recommended rather
than the other (sets of) resources. for example, we
can recommend definitions rather than examples.
The user can access both types of resource, but
a typographic indication enables the user to iden-
tify which resources are recommended. It is equiv-
alent to the adaptive link annotation described by
Brusilovsky, but there is no equivalent in the actions
described by Stash et al.

• Ordered selection: provides multiple sets of resources
(at least two), accompanied with knowledge to spec-
ify the order in which they must be presented. Only
one set of resources is proposed at a time, and the
resources of a particular set are not proposed until
all the resources of all sets of higher priority have
been viewed by the user. E.g, in e-learning, concepts
can be selected and ordered using the pre-requisite
relation defined between concepts. It is equivalent
to the adaptive ordering described by Brusilovsky and
to the direct guidance described by Brusilovsky when
the returned result includes only one resource in
each set. It is also equivalent to the combination of
the order and show actions described by Stash et al..

• Alternate selection: provides multiple sets of re-
sources (at least two), accompanied with data that
specifies the order in which they must be presented,
knowing that only one set is presented to the user.
E.g, we propose textual resources when they are
available, and audio resources in the absence of
textual resources. Neither Brusilosvky or Stash et al.
has considered this selection mode.

5.2 Description of elementary adaptation patterns

We propose the following definition for elementary
adaptation patterns, based on the definition of design
patterns [18].

Definition 1: An elementary adaptation pattern describes a
generic solution for a generic elementary adaptation problem.

This solution is independent from any language, and
it exploits the characteristics of the domain model.

Definition 2: A generic elementary adaptation problem de-
scribes a criterion to select resources to be proposed and a
criterion to define in which order the selected resources are
going to be proposed.

Name: the name of the elementary adaptation pattern described.
Intent: the intent is a short statement about an elementary
adaptation problem. It answers the following questions: what
is the elementary adaptation pattern supposed to do? i.e. what
is its goal? Indeed, it indicates the way the resources are selected
and the way they are presented.
Solution: the solution includes two elements:

Expressions: denote a set of resources to be proposed to
the user, and the conditions which have to be satisfied. These
conditions can be represented in one or more logical expres-
sions. Those to be considered simultaneously are gathered in
the same expression, while excluded conditions are expressed
in different expressions. The formal description of expressions
may be accompanied by an informal description.

Meta-expressions: a binary relation between two expressions.
Indeed, when using multiple expressions, we specify the way
they have to be considered by using meta-expressions. The
formal description of meta-expressions may be accompanied by
an informal description.
Constituents: describe the elements of the domain model used
in the expressions described in the solution pattern.

Fig. 4. Description of elementary adaptation patterns

We define in the figure 4 the characteristics retained
from [18] and used to describe elementary adaptation
patterns.

The solution part is the most formal part of the ele-
mentary adaptation patterns. We have defined a gram-
mar using the Extended Backus-Naur Form (EBNF) [29].
The grammar is described in the figure 5. It includes a set
of non-terminal elements expressed between brackets,
and a set of terminal elements expressed between coats.
For people not familiar with EBNF syntax, we give
examples of the solution part respecting the proposed
grammar (cf. Figure 8, 9, 10). These examples are also
accompanied by an informal description.

We give an informal description of the semantic of the
language defined by the grammar and some associated
constraints. In order to do so, we consider a domain
model DM, composed of:

• Cls = {c/ c is a class}
• Rel = {rel/ rel is a relation}
• Prop = {p/ p is a property}
• Valp = {v/ v is a value of the property p}
• Res = {r/ r is a resource}
We defined general elements, which we describe in

figure 6. Furthermore, we defined predicates to facilitate
the selection of either resources or concepts. These pred-
icate are:

• instanceOf : instanceOf(r, c) is true, for all resources r
that are instances of the class c.

• characteristicOf : characteristicOf(r, p, op, v) is true, for
all resources r having the property p and satisfying
the comparison test using the operator op and the
value v.

• linked: linked(i1, i2, rel) is true, for all instances i1 that
are linked directly to the instance i2 by the relation
rel.

• linked-transitive: linked-transitive(i1, i2, rel) is true, for
all instances i1 that are linked directly or indirectly
to the instance i2 by the relation rel.

7

〈Solution〉 ::= 〈Expressions〉 〈Meta-Expressions〉.

〈Expressions〉 ::= (〈Expressionrel〉)*| (〈Expressionprop〉)*|
(〈Expressioncls〉)*.

〈Meta-expressions〉 ::= (〈Id〉 ”≺” 〈Id〉)* | (〈Id〉 ”]” 〈Id〉)* | (〈Id〉
”|” 〈Id〉)*.

〈Expressionrel〉 ::= 〈Id〉 ”:”〈Exprel〉 (”∧” 〈Exprel〉)*.
〈Expressionprop〉 ::= 〈Id〉 ”:”〈Expprop〉.
〈Expressioncls〉 ::= 〈Id〉 ”:”〈Expcls〉.

〈Exprel〉 ::= linked ”(”〈Inst〉”,” 〈Inst〉 ”,” 〈Rel〉 ”)” |
linked-transitive ”(”〈Inst〉”,” 〈Inst〉 ”,” 〈Rel〉 ”)” |
distance ”(”〈Inst〉”,” 〈Inst〉 ”,” 〈Rel〉 ”,” 〈Number〉”)”.

〈Expprop〉 ::= characteristicOf ”(”〈Res〉”,” 〈Prop〉 ”,” 〈Operator〉
”,” 〈Val〉”)” .

〈Operator〉 ::= ”=” |”6=” | ”≤” | ”≥”.

〈Expcls〉 ::= instanceOf ”(” 〈Res〉”,” 〈Cls〉 ”)” .

〈Id〉 ::= 〈String〉.

〈Cls〉 ::= ”c”〈Number〉 .
〈Inst〉 ::= ”concept”〈Number〉 | 〈Res〉.

〈Res〉 ::= ”resource”〈Number〉 .

〈Rel〉 ::= ”r”〈Number〉 .
〈Prop〉 ::= ”p”〈Number〉 .
〈Val〉 ::= (〈String〉 — 〈Number〉)+.
〈String〉 ::= [”a”-”z”] 〈String〉 * .
〈Number〉 ::= [”0”-”9”] 〈Number〉 * .

Fig. 5. Syntax of the characteristic Solution

Elements Variable referring to
<Number> any integer number
<String> any string
<Id> identifiers. Identifiers belonging to the

same solution part have to be different
<Res> a resource
<Inst> either a concept or a resource
<Cls> a class of DM
<Rel> a relation of DM
<Prop> a property of DM
<Val> a value among the allowed values for

the used property

Fig. 6. Description of general elements

• distance: distance(i1, i2, rel, n) is true, for all instances
i1 that are distant from the instance i2 by n instances
using the relation rel.

These predicates compose 3 types of expressions:
• <Expcls > for expressions on classes.
• <Expprop > for expressions on properties. Expres-

sions belonging to the same solution part have to
be expressed on the same property.

• <Exprel > for expressions on relations. When the
expression includes multiple selections, the vari-
ables indicating the selected resources have to be
the same.

When more than one expression is defined in a so-
lution, meta-expressions must be defined between all
expressions of the solution. This is done using the ex-
pression identifiers. Each identifier used in the definition
of a meta-expression must correspond to an expression
identifier. Three types of meta-expressions are proposed.
They are:

• <Id1> ≺ <Id2> means that the set of resources
selected with the expression identified by Id1 is
proposed before the set of resources selected with
the expression identified by Id2.

• <Id1>] <Id2> means that the set of resources
selected with the expression identified by Id1 is rec-
ommended rather than the set of resources selected
with the expression identified by Id2. A typographic
indication can be used to differentiate between the
set of resources recommended from those they are
not.

• <Id1> | <Id2> means that the set of resources
selected with the expression identified by Id2 is an
alternative of the set of resources selected with the
expression identified by Id1.

5.3 Typology of elementary adaptation patterns
We have defined a library of 22 elementary adaptation
patterns using the criteria defined in section 5.1. An
elementary adaptation pattern is based simultaneously
on (1) one of the 4 selection modes of resources to
be proposed, (2) one of the 3 elements of the domain
model involved in the selection process and when the
element is a relation, we consider also (3) one of the 2
types of navigation through the resources or the concepts
graph. The two navigation modes are applied for all the
selection modes except for the selection only mode, which
proposes a set of resources according to a particular
criterion.

In order to be able to look easily over the defined
elementary adaptation patterns, we have organized them
in a tree where each leaf is an elementary adaptation
pattern (cf. Figure 7). The tree represents our typology.

Let us now use this typology to help Jane to define
S1. We note that each part of S1 can be defined thanks
to a pattern. The pattern P2.1.1.1 (cf. Figure 8) is used to
define S1-1 (S1-1 consists of ordering concepts according
to a depth-first navigational path using the relation pre-
requisite, and presents resources linked to these con-
cepts), P3.3 (cf. Figure 9) is used to define S1-2 (S1-2
consists of presenting only audio resources if they are
available otherwise presents textual resources), and P2.2
(cf. Figure 10) is used to define S3-3 (S3-3 consists of
presenting examples before definitions).

After having described the typology and some elemen-
tary adaptation patterns, lets come back to the process
of defining adaptation strategies.

6 DEFINING ADAPTATION STRATEGIES
This sections focuses on the steps 1 and 3 of the au-
thoring steps of adaptation strategies (cf. Section 4).

8

Adaptive
navigation

1. Selection only

2. Ordered
Selection

3. Recommended
Selection

.1. Relations

.2. Classes

.1. Relations

.2. Classes

.3. Properties

.2. Classes

.1. Relations

.2. Classes

.3. Properties

.3. Properties

.3. Properties

Type of navigation on
 the domain model

Selection modes Elements of
the domain model

4. Preferred
Selection

..2. Resource

.1. Relations

..1. Concept

..1. Concept

..2. Resource

...2. Breath-first

...1. Depth-first

...2. Breath-first

...1. Depth-first

Classes related
to relations

Navigational
path on instances Patterns

P 1.1.1

P 1.1.2

P 1.3
P 1.2

P 2.1.1.2
P 2.1.1.1

P 2.1.2.2
P 2.1.2.1

P 2.3
P 2.2

P 3.3
P 3.2

..1. Concept

..2. Resource

...2. Breath-first

...1. Depth-first

...2. Breath-first

...1. Depth-first
P 3.1.1.2
P 3.1.1.1

P 3.1.2.2
P 3.1.2.1

P 4.3
P 4.2

..1. Concept

..2. Resource

...2. Breath-first

...1. Depth-first

...2. Breath-first

...1. Depth-first
P 4.1.1.2
P 4.1.1.1

P 4.1.2.2
P 4.1.2.1

Fig. 7. Typology of elementary adaptation patterns

Name: Ordered Selection - Depth first- Relation - Concept
Intent: This pattern proposes resources according to a depth
first navigational path on concepts.
Solution:

Expression
E1: linked(rCurrent, concept’, abstraction) ∧ linked-

transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)
∧ linked(concept, concept’, relationi)

E2: linked-transitive(concept, goal, relationi) ∧ linked(r,
concept, abstraction)

According to E1: selected resources are linked to concepts
using abstraction. these concepts can reach the goal using
relationi and are directly linked to the current concept. Ac-
cording to E2: selected resources are linked to concepts using
abstraction, these concepts can reach the goal using relationi.

Meta-expressions
E1 ≺ E2

According to this meta-expression, the set of resources
selected by E1 is proposed before the set of resources selected
by E2.
Constituents:

concept: a variable describing an instance of the class Con-
cept.

rCurrent: a variable describing the current instance pro-
posed to users of the class Resource or of one of its special-
izations.

goal: a variable describing the goal to reach, which is an
instance of the class Concept.

r: a variable describing an instance of the class Resource or
of one of its specializations.

relationi: a variable describing a relation defined between
instances of the class Concept.

abstraction: a variable describing a relation defined between
an instance of the class Concept and one or more instances of
the class Resource or of one of its specializations.

Fig. 8. OrderedSelection-DepthFirst-Relation-Concept

Name: Ordered Selection - Classes
Intent: This pattern proposes ordered resources belonging only
to subclasses of the class Resource.
Solution:

Expressions
E1: instanceOf (r, Class1)
...
En: instanceOf (r, Classn)

According to Ei: selected resources are instances of the class
Classi

Meta-expressions
Ei ≺ Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources
selected by Ei is proposed before the set of resources selected
by Ej (i < j).
Constituents:

r: a variable describing an instance of the class Resource or
of one of its specializations.

Classi: a variable describing a subclass of the class Resource.

Fig. 9. Ordered Selection-Classes

Name: Alternate Selection - Properties
Intent: This pattern proposes resources that satisfy particular
values of the property propertyi, if no resources are avail-
able, other resources that satisfy other values of the property
propertyi will be proposed.
Solution:

Expressions
E1: characteristicOf(r, propertyi, op, val1)
....
En: characteristicOf(r, propertyi , op, valn)

According to Ei: selected resources have the property
propertyi and their value must satisfy the comparison test.

Meta-expressions
Ei | Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources
selected by Ej is an alternative of the set of resources selected
by Ei (i < j).
Constituents:

r: a variable describing an instance of the class Resource or
of one of its specializations.

propertyi: a variable describing a property of the class
Resource.

val: a variable describing a possible value for the property
propertyi.

Fig. 10. Alternate Selection-Properties

The step2 is simple and we do not give further details.
We start first by describing the step1 related to the
instantiation process of elementary adaptation patterns
(cf. Section 6.1). Then, we detail the step3 related to the
combination process (cf. Section 6.2), and we end by
using the EAP framework to define Jane’s adaptation
strategy S1 (cf. Section 6.3).

6.1 Defining elementary adaptations
In order to propose a generic solution, elementary adap-
tation patterns are defined on a generic domain model.
Consequently, when authors select an elementary adap-
tation pattern, they have to instantiate its constituents
on their personal domain model, in order to obtain the
elementary adaptation that meets their needs. We define
elementary adaptations as follows:

Definition 3: An elementary adaptation is obtained after
an instantiation of an elementary adaptation pattern on a

9

Name: Ordered Selection-Example-Definition
Intent: This elementary adaptation proposes ordered resources
belonging only to Example and Definition in this order.
Solution:

Expressions
E1: instanceOf (r, Example)
E2: instanceOf (r, Definition)

According to E1, selected resources are instances of the class
Example, and according to E2, selected resources are instances
of the class Definition.

Meta-expressions
E1 ≺ E2

According to this meta-expression, all examples are pro-
posed before all the definitions.
Constituents:

r: a variable which represents an instance of the class
Resource or of one of its specializations.

Example: a variable which represents the class Example, a
subclass of the class Resource.

Definition: a variable which represents the class Definition,
a subclass of the class Resource.

Fig. 11. The elementary adaptation S1-3

particular domain model.
Elementary adaptations has therefore the same struc-

ture as elementary adaptation patterns. The generation
of an elementary adaptation is done in a semi-automatic
way: the characteristics Name, Intent are generated in a
semi-automatic way and the characteristics Solution and
Constituents are automatically generated.

For example, when Jane wants to express the S1-3 part,
she selects the pattern P2.2 and instantiates it with the
classes Example and Definition (for informal description,
see section 3, for formal description see figure 11).

Following this principle, authors can define several
elementary adaptations, each of them being associated
to one user characteristic (step2 in section 4). When
users have a profile composed of several characteristics,
complex adaptation strategies have to be defined. They
are obtained by combining elementary adaptations, each
one being associated with a component of the user
profile. This combination process is detailed in the next
section.

6.2 Combining elementary adaptations

Combining elementary adaptations together defines a
combined adaptation.

Definition 4: A combined adaptation defines a set of re-
sources that satisfy simultaneously all constraints imposed by
multiple elementary adaptations.

A combined adaptation has the same characteristics
and is structurally identical to an elementary adaptation.
Concretely, the combination process of a set of elemen-
tary adaptations consists in combining their character-
istics together. A manual process is used to combine
the characteristics Name and Intent as it needs natural
language processing (not detailed in this paper). We
propose an automatic process to combine the character-
istics Solution and Constituents which is explained further
below.

The combination of the characteristic Constituents is
simple. Constituents coming from the different adapta-
tions are gathered together into a set of constituents.
However, the combination of the characteristic Solution
is more complex and we have defined the following
process.

We have chosen to base the process on criteria con-
cerning the selection of resources, as our final aim is
to propose a set of resources. Thereby, we have criteria
based on: classes to which a resource belongs, proper-
ties satisfied by a resource, and relations in which a
resource participate. We have exploited these criteria in
the combination process of the characteristic Solution.
We express this process in two sequential steps:

1) Build different sets of identifiers of expressions, one
set for each different criterion (cf. Section 6.2.1).

2) Build one adaptation from the sets built in step 1
(cf. Section 6.2.2).

6.2.1 Step one of the combination
Let Sol1, Sol2, ..., Soln be the solution part of the el-
ementary adaptations to combine, where each Soli is
composed of:

• ni expressions noted Ei, each expression having an
identifier Idi.

• mi meta-expressions noted MEi.
We group the identifiers whose expressions are ex-

pressed on one given criteria in different sets.
• the identifiers whose expressions exploit classes are

put in the same set Setcls = {Idi/ Idi is an identifier
that denotes an expression exploiting classes}.

• the identifiers whose expressions exploit relations
are grouped into sets, one set per relation. Setrel =
{Idj/ Idj is an identifier that denotes an expression
exploiting the relation rel}.

• the identifiers whose expressions exploit properties
are grouped into sets, one set per property. Setprop =
{Idj/ Idj is an identifier that denotes an expression
exploiting the property prop}.

where each Idi ∈ Soli belongs only to one set, either
to the Setcls, to a set of {Setrel}, or to a set of {Setprop}.

6.2.2 Step two of the combination
Let Set1, Set2, ..., Setp be the sets of identifiers obtained
after the first step, let Solc be the solution resulting from
the second step of the combination process composed of:

• nj expressions noted CEc.
• mj meta-expressions noted CMEc.

Let Setc be the set of p tuples built as follows:

Setc = Set1XSet2X...XSetp

For each tuple, a distinct identifier is defined and is
associated to an expression CEc:

CEc = E1 ∧ E2... ∧ Ep

where

10

• CEc is the expression belonging to Solc.
• Ei is the expression whose identifier is Idi, and

Idi ∈ Soli, i = 1...p.
Identifiers are also used to associate knowledge to

expressions. This results in defining meta-expressions.
Defining meta-expressions on the expressions Ec of the
solution Solc is done as follows.

Let CEi and CEj be two expressions belonging to the
solution Solc, where CEi (resp. CEj) contains E1 (resp.
E2), E1 and E2 belong to the same solution, and are
linked by the meta-expression Id1 Mh Id2 (Id1 (resp. Id2)
is the identifier of E1 (resp. E2)). In that case, we deduce
the meta-expression Idi Mh Idj (where Idi (resp. Idj) is
the identifier of CEi (resp. CEj)).

However, as a meta-expression is an anti-symmetric
binary relation between two expressions, two types of
conflict can be encountered. They are processed auto-
matically (by deleting all meta-expressions in conflict
except one). The process uses a default solution that can
be changed by the author.

• Conflict 1: The generation of the same relation be-
tween CEi and CEj and between CEj and CEi

(e.g. CE1 ≺ CE2 and CE2 ≺ CE1). We propose
to order sets of adaptations obtained after the first
step according to (1) sets based on the navigational
path of the graph, (2) sets exploiting the type of the
resources, (3) sets exploiting the characteristics of
the resources.

• Conflict 2: The generation of two meta-expressions
between two identical expressions (e.g. CE1 ≺ CE2

and CE1] CE2). We give a different priority to
meta-expressions according to the defined relation:
(1) Priority, (2) Recommendation, (3) Alternate.

We have implemented the following deduction pro-
cess of CMEc. The p sets of identifiers coming from the
first step are first ordered according to the proposed or-
der in the resolution of conflict 1. In a second time, each
meta-expression defined using these identifiers allows
us to deduce multiple meta-expressions of CMEc. Each
time a meta-expression is deduced, we check if it does
not generate a conflict with the already generated meta-
expressions. If a conflict of the first type is generated,
the current meta-expression is not considered and the
deduction process will continue. If a conflict of the
second type is generated, we retain only one meta-
expression according to the order defined in the solution
of the second conflict.

6.3 Jane’s adaptation strategy

We apply here our framework in order to define Jane’s
adaptation strategy S1. We consider that the elementary
adaptation S1-1, S1-2 and S1-3 (cf. Figure 12) have been
defined. Then, Jane has established correspondences be-
tween each elementary adaptation and a user character-
istic S1-1 with in-depth learning mode, S1-2 with inductive
reasoning mode, S1-3 with audio presentation form. We

Expressions Meta-
expressions

S1-1 E1−1 = linked-transitive(r, goal,
prerequisite) ∧ linked(rCurrent, r,
prerequisite)

E1−1 ≺ E1−2

E1−2 = linked-transitive(concept,
goal, pre-requisite) ∧ linked(r, con-
cept, abstraction)

S1-2 E2−1 = characteristicOf(r, format,
=, audio) E2−2 = characteristicOf(r,
format, =, text)

E2−1 | E2−2

S1-3 E3−1 = instanceOf(r, Example)
E3−2 = instanceOf(r, Definition)

E3−1 ≺ E3−2

Fig. 12. Description of S1-1, S1-2, S1-3

focus now on the way S1-1, S1-2 and S1-3 are combined
in order to produce S1.

Next, Jane associates S1-1 with in-depth learning mode,
S1-2 with audio display mode, S1-3 with inductive reason-
ing mode.

S1-1, S1-2 and S1-3 are combined automatically to
define S1. The combination process of their characteristic
Solution is performed as follows. It has as input 3 ele-
mentary adaptations expressed on 3 different elements
of the domain model. After the step 1 of the combination
process, 3 sets are built, one adaptation per set. After
the step 2, one combined adaptation is built, which
is composed of 8 expressions and 44 meta-expressions.
Among the deduced expressions, we have:

• Ec,1 = E1−1∧ E2−1∧ E3−1 = linked-transitive(r, goal,
prerequisite) ∧ linked(rCurrent, r, prerequisite) ∧
characteristicOf(r, format, =, audio) ∧ instanceOf(r,
Example)

• Ec,2 = E1−1∧ E2−1∧ E3−2 = linked-transitive(r, goal,
prerequisite) ∧ linked(rCurrent, r, prerequisite) ∧
characteristicOf(r, format, =, audio) ∧ instanceOf(r,
Definition)

• Ec,3 = E1−2∧ E2−1∧ E3−1 = linked-transitive(r, goal,
prerequisite) ∧ characteristicOf(r, format, =, audio)
∧ instanceOf(r, Example)

• Ec,4 = E1−2∧ E2−2∧ E3−1 = linked-transitive(r, goal,
prerequisite) ∧ characteristicOf(r, format, =, text) ∧
instanceOf(r, Example)

• Ec,5 = E1−2∧ E2−2∧ E3−2 = linked-transitive(r, goal,
prerequisite) ∧ characteristicOf(r, format, =, text) ∧
instanceOf(r, Definition)

Among the deduced meta-expressions retained, we
have: Ec,1 ≺ Ec,2, Ec,2 ≺ Ec,3, Ec,2 ≺ Ec,4, Ec,2 ≺ Ec,5

and Ec,3 | Ec,4.
Among the deduced meta-expressions not retained,

we have: Ec,3 ≺ Ec,2, Ec,4 ≺ Ec,2, Ec,1 | Ec,4, Ec,2 | Ec,5

and Ec,2 | Ec,4.

7 VALIDATION

In this paper, we promote two main ideas behind the
EAP framework: enabling authors to specify their adap-
tation strategies at a high level, and easiness of defining
authors’ adaptation strategies. Here, we prove these ideas
by presenting the implementation of our framework (cf.

11

Section 7.1), by discussing the execution of generated
adaptation strategies using an existing adaptation engine
(cf. Section 7.2) and by evaluating the expression of
adaptation using the EAP framework versus a rule-based
language (cf. Section 7.3).

7.1 Implementation of the EAP framework

The framework has been implemented as a plug-in of
the Protégé tool4, called EAP. Currently, EAP plug-in is
under test. Its architecture is presented in section 7.1.1
and its main functionalities are described in section 7.1.2.

7.1.1 Architecture of the EAP plug-in
As described in Figure 13, the plug-in includes two parts.

First, a knowledge part gathers the library of ele-
mentary adaptation patterns and combination rules. The
library is modelled in OWL5, where each elementary
adaptation pattern is an OWL class and is defined as
a specialization of a class called ElementaryAdaptation-
Pattern. On the other hand, the combination rules im-
plement the combination process (cf. Section 6.2) in a
declarative way using SWRL rules6 and the swrlx built-
ins7.

Second, the process part is made of components per-
forming interaction with an inference engine (in our case
Jess) and the OWL Protégé editor. We have used the
OWL Protégé API to manipulate the creator’s domain
and user models, the library of elementary adaptation
patterns and their instantiations. We have also used the
SWRL Jess Bridge to execute SWRL rules using Jess.

OWL editor
(Protégé v 3.4.2)

Inference Engine
(Jess) AH

 Author
EAP plug-in

 Knowledge part

Rule base
(SWRL)

Elementary
Adaptation

Patterns (OWL)

 Processing Part

Protégé
(OWL API)

SWRL
Jess Bridge

Fig. 13. Architecture of the EAP plug-in

7.1.2 Interaction with the EAP plug-in
The plug-in proposes multiple facilities. The author
starts by loading his user and domain models. He can
then define elementary adaptations by selecting an ele-
mentary adaptation pattern, and the constituents of the
elementary adaptation. The solution part will then be
generated automatically. The author can later define as-
sociations between an elementary adaptation and a user
characteristic, while the combination process of multiple
elementary adaptations is done automatically. Finally,

4. http://protege.stanford.edu/
5. www.w3.org/TR/owl-guide/
6. www.w3.org/Submission/SWRL/
7. The swrlx built-ins augment swrl rules with additional function-

alities, e.g, creating new instances

EAP helps authors to export their adaptation strategies
automatically in the GLAM format. This conversion is
done automatically and is described in the following
section. We plan to implement additional extensions, for
example, to be able to generate LAG adaptation.

7.2 Execution of generated adaptation strategies
Adaptation strategies generated using the EAP frame-
work are expressed at a high level, and are indepen-
dent of any adaptation engine. Therefore, translators to
existing adaptation engines are needed to execute these
adaptation strategies. In this paper, we present our work
to plug our framework on the GLAM platform, in order
to be able to execute generated adaptation strategies
by the GLAM adaptation engine. Before presenting this
process, we first describe the GLAM platform.

7.2.1 GLAM platform
GLAM (Generic Layered Adaptation Model) is a plat-
form defined for an entire class of adaptive hypermedia
systems. The platform is made up of a generic adaptation
model relying on generic user and domain models. Spe-
cific systems can be obtained by specializing the GLAM
generic user and domain models. An adaptation strategy
in GLAM is described in two levels:

A level based only on domain-related knowledge. It
concerns data about the domain model and the position
of the user in the domain model. It is exploited using
rules. Rules are expressed using a condition-conclusion
format as:

predicate1∧... ∧ predicaten →
Action (resourcei, degree)

The condition part describes the conditions having to
be satisfied by resources proposed to users. Usually, this
part is related to the existence of a relation defining a
particular navigational path in the domain model, even-
tually to a type of resources or to restrictions concerning
the resource format expressed using attributes of the
Concept or Resource classes.

The conclusion part describes the activity proposed to
users for proposed resources. It includes two elements:

• Action: describes the proposed activity for the pro-
posed resource (resourcei in the rule above).

• Degree: can be used in different treatments. In
GLAM, it is used to describe the relevance of a re-
source against the others. It allows several resources
to be proposed to the user, the degree of relevance
being represented with a code (color for example).
The degree of relevance has five values (very high,
high, medium, low, and very low), each value is
associated to a particular color.

A level based on user-related knowledge and
user characteristics. It is exploited using meta-rules.
Meta-rules describe mechanisms that govern selection,
scheduling, and excluding rules for a given user accord-
ing to his profile. Let R1, R2 be two sets of rules, where

12

four types of meta-rules are proposed. Each meta-rule is
a binary relationship between rules:

• A preference meta-rule between R1 and R2 means
that we prefer to execute R1 rather than R2, noted
R1 > R2.

• A requirement meta-rule between R1 and R2 means
that the execution of R1 requires the execution of
R2, noted R1 ⊃R2.

• An exclusion meta-rule between R1 and R2 means
that either R1 or R2 is executed, noted R1R2.

• An order meta-rule between R1 and R2 means that
R1 is executed before R2. The order meta-rules de-
fine a strict order between the elements on which
they are expressed, noted R1 ≺R2.

7.2.2 Plugging EAP framework on GLAM platform
In order to be able to plug the EAP framework on the
GLAM platform, we have first considered domain and
user models used by the EAP framework in GLAM, then
have translated adaptation strategies expressed using the
EAP framework to adaptation in the GLAM format.

Concerning domain and user models. The essential
elements of domain model used by our framework are
found in GLAM: the modelling of resources, concepts,
and properties and the relations between concepts and
resources. Furthermore, GLAM adaptation engine exe-
cute resources in RDF 8format, i.e., all OWL resources
can be exported in RDF.

Concerning adaptation strategies. Adaptation strate-
gies expressed using the EAP framework are composed
of the characteristics Name, Intent, Solution and Con-
stituents. However, only the characteristic Solution has
to be translated to GLAM, this later includes a set of
expressions and of meta-expressions. We have hence
proposed two translations.

Translation of expressions to the GLAM format. For
each expression Ei belonging to the set of all the expres-
sions composing an adaptation strategy, we generate a
rule Ri as follows:

• The condition part of Ri is based on Ei.
• The conclusion part of Ri is generated with a desir-

ability degree set to ”medium”.
Translation of meta-expressions to the GLAM for-

mat. For each meta-expression Mk belonging to the set
of all the meta-expressions which compose an adaptation
strategy, we perform on the following steps:

• If the kind of Mk is ”Ei ≺ Ej”, and if Ri (resp. Rj)
is the rule obtained from Ei (resp. Ej), we generate
the meta-rule Ri ≺Rj .

• If the kind of Mk is ”Ei | Ej”, and if Ri (resp. Rj)
is the rule obtained from Ei (resp. Ej), we generate
the meta-rules Ri ≺Rj and RiRj .

• If the kind of Mk is ”Ei] Ej”, and if Ri (resp. Rj) is
the rule obtained from Ei (resp. Ej), we modify the
conclusion part of Ri (resp. Rj) as follows: Ri takes

8. www.w3.org/RDF/

a degree of desirability higher than the desirability
degree of Rj and eventually higher than its previous
degree of desirability (resp. Rj takes a degree of
desirability lower than the desirability degree of Ri

and eventually lower than its previous degree of
desirability). Desirability degrees are fixed. When
two rules have a very high desirability degree, they
can’t have a higher degree than the existing one. The
same principle is applied to a very bad desirability
degree.

7.3 Evaluation of the EAP framework versus rule-
based system
We have carried out an experiment with real users to see
if it is easier and faster to express adaptation strategies
using elementary adaptation patterns rather than using
GLAM. For that, we have asked assistant professors from
Supelec9 and INRIA10 to define adaptation strategies
according to Jane use case (cf. Section 3).

The seven volunteers were asked to fill a question-
naire before starting the evaluation. The questionnaire
was about their skills on AHS, on personalization, on
rule-based languages and teaching experience. Most of
volunteers have no skills on AHS, intermediate skills on
personalization, only few of them have an intermediate
background in rule-based languages. They have also be-
tween one to seven years experience in higher education
(cf. Figure 14).

Fig. 14. Skills of our volunteers

Consequently, we start first by explaining them gen-
eral knowledge on AHS. We let then volunteers making
examples to get friendly with both solutions. Finally,
they had to define at least S1 (cf. Section 3), first ac-
cording to the EAP framework using EapTab, secondly
according to GLAM rules and meta-rules using bloc
notes. The evaluation was based on two criteria:

1) the difficulty of expressing adaptation strategies
using each solution.

2) the time spent to express adaptation strategies
using each approach.

In terms of difficulty (cf. Figure 15), most of the
volunteers found GLAM very complex to use. It seemed
difficult to express navigational paths and to define the
correct meta-rules. On the other hand, they found the
use of eapTab easier. The approach of breaking down

9. www.supelec.fr/
10. www.inria.fr/saclay/recherche/

13

an adaptation into multiple elementary ones seemed
to be pleasant and intuitive for them. Only ergonomic
requirements have been given in order to improve the
usability of eapTab.

Fig. 15. Estimation of difficulty to express S1

Concerning the time estimation (cf. Figure 16), most
volunteers were able to create similar adaptation strate-
gies in eapTab within approximately half the time that
they spent using GLAM.

Fig. 16. Estimation of time spend to express S1

We have noticed that volunteers defined only S1 when
they used GLAM, while they did not hesitate to define
different strategies using eapTab. We explain these re-
sults by the fact that when using GLAM format, authors
have to manually find all the conditions that must be sat-
isfied by the proposed resources and manually compose
the different conditions. The conditions must be written
as rules in GLAM. Then, they have to define which rules
is be applied to which user by writing meta-rules.

The adaptation strategy S1 is defined using eight
rules and six meta-rules in GLAM (cf. Figure 2), where
GLAM rules includes repetitive parts, e.g, the selection
of definitions is present in four rules. While using EAP
framework, it requires only three elementary adaptations
(cf. Section 6.3).

8 CONCLUSION AND FUTURE WORK

This paper proposes the EAP framework, in which
adaptation strategies are described at a finer granularity
than what is proposed by existing languages. This is
obtained by the definition of 22 elementary adaptation
patterns to express the adaptive navigation, and which
are organized in a typology. The elementary adaptation
patterns are based, on one hand on a criterion to select
resources, on the other hand on a criterion to organize

the selected resources. Thereby, we have defined a set
of criteria to select resources and to organize selected
resources.

Furthermore, the elementary adaptation patterns are
independent from the domain model. They can be in-
stantiated on a specific application domain in order to
define elementary adaptations. The defined elementary
adaptations are associated to user characteristics and
combined to make whole adaptation strategies. One of
the major benefits of the framework that we propose
is the automation of a large and complex part of the
process of generating complex adaptation strategies.

The generated adaptation strategies are expressed at a
high level and independent of any adaptation engine. In
order to be executed, we have described a first possible
way using the GLAM adaptation engine. Furthermore,
we have conducted experiments that showed the sim-
plicity of our EAP framework rather than a rule-based
language (in our case GLAM).

Our future work will be devoted to integrating our
framework on other AHSs. We will study how to auto-
matically translate generated adaptation strategies (us-
ing the EAP framework) to other generic adaptation lan-
guages like LAG, and GAL. It would also be interesting
to do a scale-up test in order to detect the combinations
most frequently used by creators. These adaptations
could be directly recommended to them. Furthermore,
it would be useful to extend our elementary adaptation
patterns in order to be able to express adaptive content
and adaptive presentation. Finally, our solution exploits
user and domain models, which may evolve over time.
Consequently, as a future work, we plan to consider the
evolution of models, including how to evolve adaptation
strategies defined using elementary adaptation patterns
when domain or user models change.

REFERENCES

[1] “http://www.blackboard.org/,” March 2005, blackboard Inc,
Blackboard.

[2] P. Brusilovsky and N. Henze, “Open corpus adaptive educational
hypermedia,” in The Adaptive Web: Methods and Strategies of Web
Personalization, ser. LNCS, P. Brusilovsky, A. Kobsa, and W. Neidl,
Eds. Springer, 2007, vol. 4321, pp. 672–696.

[3] P. Brusilovsky, “Adaptive navigation support,” in The Adaptive
Web: Methods and Strategies of Web Personalization, ser. LNCS,
P. Brusilovsky, A. Kobsa, and W. Neidl, Eds. Springer, Berlin
Heidelberg, USA, New York, 2007, vol. 4321, pp. 263–290.

[4] ——, “Adaptive hypermedia,” User Modeling and User-Adapted
Interaction, vol. 11, pp. 87–110, March 2001.

[5] ——, “Adaptive hypermedia,” User Modeling and User-Adapted
Interaction, vol. 11, pp. 87–110, March 2001.

[6] P. Brusilovsky, J. Eklund, and E. Schwarz, “Web-based education
for all: a tool for development adaptive courseware,” Comput.
Netw. ISDN Syst., vol. 30, pp. 291–300, April 1998.

[7] L. Pesin and P. Brusilovsky, “Isis-tutor: An adaptive hypertext
learning environment,” pp. 83–87, 1994.

[8] O. Conlan and V. Wade, “Evaluation of apels (2004). an adaptive
elearning service based on the multi-model, metadata-driven
approach,” in Proceedings of the 3rd International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems, ser. LNCS,
P. D. Bra and W. Nejdl, Eds., no. 3137. Springer, 2004, pp. 291–
295.

14

[9] A. Cristea and L. Calvi, “The three layers of adaptation gran-
ularity,” in Proceedings of the 9th international conference on User
modeling, ser. UM’03. Berlin, Heidelberg: Springer-Verlag, 2003,
pp. 4–14.

[10] A. I. Cristea and A. de Mooij, “Laos: Layered www ahs authoring
model with algebraic operators,” in WWW (Alternate Paper Tracks),
2003.

[11] ——, “Adaptive course authoring: My online teacher,” in Interna-
tional Conference on Telecommunications, ser. 0-7803-7662-5. IEEE,
2003, pp. 1762–1769.

[12] E. J. Brown, A. I. Cristea, C. D. Stewart, and T. J. Brailsford,
“Patterns in authoring of adaptive educational hypermedia: A
taxonomy of learning styles,” Educational Technology & Society,
vol. 8, no. 3, pp. 77–90, 2005.

[13] D. Dagger, V. Wade, and O. Conlan, “Developing active learning
experiences for adaptive personalised elearning,” in AH, 2004, pp.
55–64.

[14] P. De Bra, G.-J. Houben, and H. Wu, “Aham: a dexter-based
reference model for adaptive hypermedia,” in Proceedings of the
tenth ACM Conference on Hypertext and hypermedia : returning to
our diverse roots: returning to our diverse roots, ser. HYPERTEXT
’99. New York, NY, USA: ACM, 1999, pp. 147–156.

[15] P. De Bras, D. Smits, and N. Stash, “Creating and delivering
adaptive courses with aha!” in 1st Eur. Conference on Technology
Enhanced Learning, ser. 0302-9743, LNCS, Ed. Springer, 2006, pp.
21–33.

[16] J. Danculovic, G. Rossi, D. Schwabe, and L. Miaton, “Patterns for
personalized web applications,” in Eur. Conf. Pattern Languages of
Program-EuroPLoP, 2001, pp. 34–43.

[17] P. Dolog, M. Kravcik, A. I. Cristea, D. Burgos, P. D. Bra, S. Ceri,
V. Devedzic, G.-J. Houben, P. Libbrecht, M. Matera, E. Melis,
W. Nejdl, M. Specht, C. Stewart, D. Smits, N. Stash, and C. Tat-
tersall, “Specification, authoring and prototyping of personalised
workplace learning solutions,” IJLT, vol. 3, no. 3, pp. 286–308,
2007.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[19] F. Garzotto, S. Retalis, A. Papasalouros, and K. Siassiakos, “Pat-
terns for designing adaptive / adaptable educational hyperme-
dia,” Advanced Technology for Learning, vol. 1, no. 4, pp. 23–38,
2004.

[20] P. Brusilovsky and N. Henze, “Open corpus adaptive educational
hypermedia,” in The Adaptive Web, 2007, pp. 671–696.

[21] E. Knutov, P. De Bra, and M. Pechenizkiy, “Ah 12 years later:
a comprehensive survey of adaptive hypermedia methods and
techniques,” New Rev. Hypermedia Multimedia, vol. 15, pp. 5–38,
April 2009.

[22] C. Jacquiot, Y. Bourda, F. Popineau, A. Delteil, and C. Reynaud,
“Glam: A generic layered adaptation model for adaptive hyper-
media systems,” in AH, 2006, pp. 131–140.

[23] K. Levacher, E. Hynes, S. Lawless, A. O’Connor, and V. Wade,
“A framework for content preparation to support open-corpus
adaptive hypermedia,” in International Workshop on Dynamic and
Adaptive Hypertext at the 20th ACM Conference on Hypertext and
Hypermedia, 2009, pp. 13–24.

[24] A. Moore, T. J. Brailsford, and C. D. Stewart, “Personally tailored
teaching in whurle using conditional transclusion,” in Proceedings
of the 12th ACM conference on Hypertext and Hypermedia, ser.
HYPERTEXT ’01. New York, NY, USA: ACM, 2001, pp. 163–
164.

[25] K. Sluijs, J. Hidders, E. Leonardi, and G. Houben, “Gal: A generic
adaptation language for describing adaptive hypermedia,” in 1st
International Workshop on Dynamic and Adaptive Hypertext: Generic
Frameworks, Approaches and Techniques, 2009, pp. 13–24.

[26] N. Stash, A. Cristea, and P. De Bra, “Adaptation languages as
vehicles of explicit intelligence in adaptive hypermedia,” Int. J.
Cont. Engineering Education and Life-Long Learning, vol. 17, no. 4/5,
pp. 319–336, 2007.

[27] B. Steichen, S. Lawless, A. O’Connor, and V. Wade, “Dynamic
hypertext generation for reusing open corpus content,” in HT ’09:
Proceedings of the 20th ACM conference on Hypertext and hypermedia.
New York, NY, USA: ACM, 2009, pp. 119–128.

[28] C. Stewart, A. Cristea, T. Brailsford, and H. Ashman, “Authoring
once, delivering many: Creating reusable adaptive courseware,”
in WBE 2005 Conference, February 2005.

[29] I. O. for Standardization, “Information technology — syntactic
metalanguage — extended bnf,” ISO/IEC 14977, August 2001.

	RR1540entete
	RR1540rapp

