Cours 1c: Introduction

tiré de la GAMA Winter School Nov. 2012, Can Tho University / IRD

Alexis Drogoul (a, d), Benoit Gaudou (b), Patrick Taillandier (c)
Philippe Caillou (e), Arnaud Grignard (a), Nicolas Matrilleau (a), An Duc Vo (a)

(a) UMI 209 UMMISCO, IRD / UPMC
@ (b) UMR 5505 IRIT, CNRS / Université de Toulouse
. . ®,, (c) UMR 6266 IDEES, CNRS / Université de Rouen

(d) JEAI DREAM, IRD / Université de Can Tho
UMMISC@

(e) LRI, INRIA TAO Project / Université d’Orsay
NNNNNNNNNNNNNNNNNNNNN

G@T .

uuuuuuuuuuuuuuuuuuuu

General introduction to

GAMA

©2007-2012 IRD UMMISCO & Partners
http:/ / gama-platform.googlecode.com

Introduction to GAMA 3

Software platform dedicated to building
spatially explicit agent-based simulations

* Generic : can be used for a wide range of
applications

* Developed under GPL/LGPL license : free

* |Integrates a complete modeling language (GAML)
and an integrated development environment:
allows modelers (even non computer-scientists) to
build models quickly and easily

* Developed in JAVA : easy to extend in order to
take specific needs into account

* |Integrates tools to analyze models: parameters

©2007-2012 IRD UMMISCO & Partners

space exploration and calibration of models http;/// gamarplatform googlecode.com

Introduction to GAMA 4

Strengths of GAMA vs other Simulation
Frameworks (Netlogo, Repast, Cormas, ...)

* Supports the development of quite complex
models

* Seamless integration of geographic data and GIS
tools with agent-based models

* Integrates a methodological approach to define =7 /N
multi-level models

* Integrates high-level tools: multi-criteria
decision making tools, clustering functions, —
statistical operators... \

* Easily extensible thanks to its open architecture,
. . . ®2007-2012 IRD UMMISCO & Partners
which relies on two legacy Java technologies : http;// gama-platform googlecade.com
OSGI plugin framework and Java annotations

Introduction to GAMA

<+ Some examples

NN B 5] =
W 1% 15 R I
< =y G %
ﬁ‘ " EEL -
s ll_-‘%

.l -: 4- h .chﬁ:b :

% P oy Kan \
S B
130T | | Pi] 8)

o ,t' 2 rLP 3 L0 3m @

ik ‘.J' X -]~""ng =11 CiE -
HHe %t }j~ Seseal=st
1 2 | 1 TIoOOe — § .

1 .—6%»-« % +§’—]:_{ NQJ,»E——‘ g e \
WS TN T aulmemt: : A
LR AR Ho o B 5 5 .
‘_‘.t\ /. N ‘C-ax.'Gé =2 ;El; 4~ *

' T A7 Srleky L% DH‘;I .

[\,‘2\'& W2 Dwater Puzgetry w3 = CEEr
r ﬁ é Lo 50

i
-

o

10~ X

Wt |

Sor

More information 6

“ Blog
http://gama-platform.blogspot.fr/

<+ Facebook
http://www.facebook.com/GamaPlatform

<» Web site of the project N\
http://code.google.com/p/gama-platform/ S e RS P

http:/ / gama-platform.googlecode.com

<+ Documentation
http://code.google.com/p/gama-platform/wiki/Documentation

< Mailing-lists

* General mailing-list
https://groups.qgooqgle.com/forum/?fromqgroups#!forum/gama-platform

* Developers mailing-list
https://qgroups.qgooqgle.com/forum/?fromaqgroups#!forum/gama-dev

A 4

®

http://gama-platform.blogspot.fr
http://www.facebook.com/GamaPlatform
http://code.google.com/p/gama-platform/
http://code.google.com/p/gama-platform/wiki/Documentation
https://groups.google.com/forum/?fromgroups#!forum/gama-platform
https://groups.google.com/forum/?fromgroups#!forum/gama-dev

User interface of GAMA

Model Navigator

Model edition frame Model outline

& i

o= Dutlies £l
v & fRaberent model
¥ 4 global nadl
) LT e D VSR]
F gp enhibed fu

F {3 Exparimant wiEh_grapkic_intorface

¥ Mogdely library | 22 |
¥ o Shansd modeh [3]
S iser models (3)

model BAGAMAL
global [

File noded_File <- filel®, . iecludesdnodes_nimple. shp'
File e _Tile < FLlel’ .. fvncludesfenvyronment , thp® §;
imlt
cregte node from: s
|
¥

eny] romment bowndy P

entities [
igecies node [
conit radlud type: Floa
rgh foler <- rghl'white'};

oupect clrcle §
dfgs ShOpec COLf

]

¥

caperiment with grophic interfoce type: gul
paraaster "GIS File of the nedes’ war: Aodes lé catepary: "GRIS':
parasstar "CI% File of the efwlroment” war: env_Flle category: 'GIS':
oatput {
display dynomic {
SPECLES Ml OEEECR!

1

™ Preblems Console F . {8 Parsmateny il e— L

30M of T5am [

Modeling and simulation perspectives

e 00

&) e > Hoe |-

wery 1 cycle] &3

Perspective switch

button

I_' . e i P & i
Ll Switch Perspective (FB)

‘f % Simulation perspective

Modeling perspective

e

el mmean

P

i | g
AL Hog=

e |

A Lo

1511

Launching an experiment

< In the modeling perspective, click on the desired experiment button
(these buttons only appear when the experiments can be launched
safely, I.e. the model does not contain any error)

=] WAGAMA_1.gaml &% = O
 e—
p—
BT ~

* WAGAMA1
* Author: Patrick Taillandier

* Description: model structure definition; species de
*/

Simulation interface

Run/pause the current
simulation

Launch a new simulation (with
the current parameters values)

Step by step execution

with_inteMace - /Users/patricktaillanfier/Documep rama_workspace test 3/WACAMA/models/ WACAMA_1.gaml
) (——)
= —— —
GamaNavig &3 O || & dynamicfs2 B “0y Parameters 23 = b B
_{‘é}v WQE|E—%’Q &:|@}9p}99)ﬁ:l -
b [Models library { 22 f
P |z Shared models (0) Slows .dOWH the GIS file of the nodes | fUsers/patricktaillandier/[
¥ [User models (3) exec;utlon .of the GIS file of the environment | /Users patricktaillandier/
> LT MAPS simulation
» i test = Model WAGAMAL System parameters for experiment
v Fwacama
F =-doc Random number generator | 'mersenne’ =]
(= images Zoom in, zoom out, fit the Random seed (Vf Define: [0.0
P =includes) N o
¥ (= models view, Zz00Om on an agent
2 WAGAMA_l.gaml|| °

= WAGAMA_10.gam

= WAGAMA_11.gan a © o o o % o

= WAGAMA_12.gan " ° L .

= WAGAMA_13.gan Parameters view (can be
= WAGAMA_L4.gan altered from there)

= WAGAMA_15.gam

= WAGAMA_L16.gam
= WACAMA_2.gaml

SETA T AKAA T sl

L) Console 23 = O
il %

=] WAGAMA_1.gaml &2 = 0O

107M of 254M ([

Inspectors -1

< Inspector: provides informations about a species or an agent

« Species inspector: provides informations about all the species present in a model

o Avallable in the Agents menu

m‘u’iew Share Debug Help

_ & Species world_species » 54

=* Show species inspector
& Show agent inspector

£ Open dynamic agent inspector
1N —ct—

e Species world_species - 1 agent

= S5pecies node - 14 agents

Population: 14 living agents

ﬁ:f Parameters '-f?.l Monitors &}5’ Species &3 = 0O

£ Inspect

Attributes: | color

Aspects: | network

or Species water - 0 agent

or Species water_unit - 0 agent

Inspectors - 2

Inspector: provides informations about a species or an agent

 Agentinspector: provides information about one specific agent. Also allows
to change the values of its variables during the simulation.

o Avallable from the Agents menu, by right_clicking on a display, in the species
Inspector or when inspecting another agent (button 2 mspec

& Agent Inspector 53 | e =
= Agent waterd £
host world_speciesd & Inspect | | & Change...
World agent > guantity_clean = 20 = o
node > water_units | [19 as water_unit,11 as water_unit,15 as water_unit,0 as wa & Edit
Selected agents

] location x 44.310640624206184 y 32.50320022810536
water(. Inspect name ‘water(’
Focus .
Highlight guantity = 20 = &
g=a

shape | {44.310640624296184,32.50320022810536} as geometry
quantity_polluted 0 = g

highlight | | false

Inspectors - 3 13

 Agent inspector: provides information about one specific agent. Also allows
to change the values of its variables during the simulation.

o Possibility to «highlight» the selected agent

& Agent Inspector £3 il — = O
= Agent waterQ b 4 \m/%
N :1-:}5t w:::d_speclesﬂ - & Inspect | | o Change... j BUttOn tO Choose the
quantity_clean = oo
water_units [19 as water_unit, 11 as water_unit,15 as water_unit,0 as wa ﬁ-..--: Edit frame, COIOr
location x 44.3106406242096184 ¥y | 32.50320022810536
name ‘water(Q'
guantity | 20 = gp il e— i PP EH “) = B/
shape | {44.310640624296184,32.50329022810536} as geometry
guantity_polluted @ 0 = oo

The bases of GAMA through
the Schelling model example

-

In 1969, Schelling introduced a model of

segregation in which individuals of two L, &0%040
different colors, positioned on a grid abstract f0s0zh 23

representation of a district), choose where to 3980201
live based on a preferred percentage of e
neighbors of the same color. G

Ay e

Using coins on a board, he showed that a bl of pors,20 €IS cn the boasd, v
small preference for one's neighbors to be of e et 112085 0 a4 penay wige 7
the same color could lead to total segregation. s ey e e w00

It Is a good example of a generative model,
where the emergence of a phenomenon heré
segregation) is not directly predictible from the
knowledge of individual

15

In the simplest agent based model, agents
(people) are randomly placed in a continuous
space. Each agent has a color, a perception
of its neighbors and a preference - i.e. a
minimal desired percentage of neighbors of

the same color.

Only behavior of the agent: if the
percentage of neighbors of the same color is
Inferior to the preference, then the agent
randomly moves to another location of the

space.

| Result after

30

I simulation

steps

Neighborhood : 4
neighbors of the same
color, and 2 neighbors
of a different color

Creating a new project

W, EEZITTSE Open File

Close
Close All

Save As

v« Impon
o ®

5 Export

. Switch Workspace

Restart

. . QU:[

o RW ... '
|

9 e9®

View Share Debug Help

default « /Users/patrickta I(andwr,‘gal

Select a wizand

Wizards

E = Geneval
¥ [GAMA
& Garmy Project
Wioded file

| g5 Shared models [4] ”
T&User models [R 1

PﬁDemuE

Copy to Workspace

b5 MAELIA
b5 MAELIA o New N

v % my_pre

& Open documentation

Mzt = Cande

P (= doc
c=imay Open File..
=inch |3 Search Resource 3R
= mod
5 predan = Copy HC
»E5Road T Paste a8y
¥ Delete =
Miew CAMA Project
Lreate 2 new GANA Project
Project AamsE. ey _project
o L defaslt iccation
Lacak on e
>
< Bachk Nl > Cancel T inekh

Creating a new model

I JExpefiment. Agents View Share Debug Help

- Open F

ile
< maun_display [retry agis .
Close xwW v
Close All O RW .. ’
@]
Save As
. ¢« Impont ‘ g
. 5 Export . .

Switch Workspace
4]

Restart

. QU:!

default « /Users/patricktaillandier/gal

8 no

Select a wizard

Wizards;

} ilter bext

b = General
T (= CAMA

B 08

C o rir:

Choose a madel
File mame
Austhar

Maodel namie;

Model desoription;

Crexte 4 htsml template

for the model description 7

Empty .,:: Skeleton

parrickradlasndisr
myrnode|

Example of model crext :r-'ll

(*) Yes () Mo

< Back Next >

Iy _prdgect Brosase...

> & Garna Project
Model file
= SVN

Model file /

/ « Back | Mext =

Cancel

Choose the project

Choose skeleton

Choose the name
of the file

@/w Click on Finish

18

Step 1: basic model

Objectives:

« Definition of the people species

« Creation of 500 people agents randomly
located in the environment

« Display of the agents

Key points:

 Introduction to the structures of GAMA
models

e Definition of a species
« Creation of agents
« Display of agents

19

GAML: “GAMA Modeling Language”

GAML

® Complete modeling language: simple structures, but very rich In
terms of operators

® Supported by an IDE (Integrated Development Environment):. ease
the writing of models

Some basic rules :

® A statement always ends with an “ ; ” or with a block.

® A block is delimited by “{" and “}" and contains a sequence of
statements.

® A statement is identified by a keyword, followed by a number of
facets (its «parameters»)

GAMA model structure

model mon_model

Four statements define the main sections: global {
/** Tnsert the global definitions,
* variables and actions here

« Global : variables, actions, dynamics and global */
initializations :
environment {
f** Tnsert the grids and the properties

* Environment : properties of the global * of the environment
environment .
.. . titi
¢ Entltles : SpeC|eS Of agentS . IH:ESLESEH_ here the definition of
¥ the species of agents
! : : : */
« Experiment : execution context of simulations, }
defining for instance their inputs and outputs. experiment default type: gui {
Several experiments can be defined in a same /L7 fnsert here the definition of the
del ., efault gul experimen
model.
}

Two ways of writing comments in your model :
/... :inlined comments. Example : //This is a comment (always on one line)
[* ... *I . block comments. Example : /* This is a block comment (possibly on several lines) */

21

Step 1: Species definition

model CT_Schelling

A species represents a «prototype» of agents: defines global {
their common properties j

environment {

}

A species includes several sub-definitions

entities {
* The internal state of its agents (variables)

experiment schelling type: gui {

 Their behavior

* How they are displayed (aspects)

For our model:

Name of the _ - | _
entities { - species All _the species inherit from predefined built-in
species|people { variables:
*A name (name)
} *A shape (shape) X —\
} *A location (location) : the centroid of its shape.

22

Step 1: Species definition: aspect

An aspect represents a possible way to display the |™* ="

global {

agents of a species : }

environment {

}

}

aspect aspect name {...}

In the block of an aspect, it is possible to draw : @ |ewerimentscheling type: gui
predefined shape (circle...), the shape of the agent,
an image or text...

For our model:

gnﬂﬂes{

species people {
aspect base {

. draw circle(5) color: rgb("yellow");)

}
}
}

The base aspect allows to display each people agent in
the form of a yellow circle of radius 5 centered at the
agent location

23

Actually the definition of the species of a specific agent
(called world)

Represents everything that is global to the model :
dynamics, variables...

Allows to init simulations (init block) : the world is always
created and initialized first when a simulation is
launched.

The geometry (shape) of the world is a rectangle defined
In the environment section.

environment {

}

entities {

}

experiment schelling type: gui {

}

_world agent
n)
N N -
CIC -
\0‘9

24

. detinition ot the Initialization

Creation of agents : statement create species_name + One of the two
* number : number of agents to create (int, 1 by default) If nothing is specified,

« from : GIS file to use to create the agents (string or file) creation of an agent of
the same species as the

* returns: liste des agents crees (list) caller

For our model: creation of 500 agents of species people

Agent creation of the specified species

global {
Init {

@reate people number: 50@ model CT_Schelling

}
}

environment {

}

By default, agents when created are

. . entities {
located randomly in the environment }
(except when a GIS file is used or they experiment schelling type: gui {

explicitely initialize their location) }

Step 1: Environment definition

GAMA provides a continuous environment to each model
which is the geometry of the world agent

Definition of the size of the environment
o Using the width and height facets
o Using the bounds facet, with :

= apoint ({x,y}),

= a shapefile (GIS) : envelope of all the data contained in the
shapefile

= araster file (asc)

= alist of files (union of their envelopes)

By default, the environment is a rectangle of 100 x 100

For our model: use of the default environment

environment {}

model CT_Schelling

global {
}

environment {
]

entities {

}

experiment schelling type: gui {

}

26

Step 1: Experiment

An experiment block defines how a model can be simulated
(executed).

Several experiments can be defined for a model.

They are defined using:

experiment exp_name type: gui/batch {...}

* gul : experiment with a graphical interface, which displays its input
parameters and outputs.

« patch : Allows to setup a serie of simulations (without graphical
Interface).

More details on the batch mode
will be given later in the tutorial

27

Step 1: Outputs of an experiment

output blocks are defined in an experiment and define how to visualize a
simulation (with one or more display blocks that define separate windows)

® Each display can be refreshed independently by defining the facet refresh_every: nb
(int) (the display will be refreshed every nb steps of the simulation)

® Each display can include different layers (like in a GIS) : Warning: in a display,
the drawing of layers
» Agents species : species my_species aspect: my_aspect follows the order used

» Images: image layer_name file: image_file; in its definition.

v

display3
Idisplay2

displayl
experiment schelling type: gui { model CT_Schelling
OUtpUt { global {
display display people { : |
species people aspect: base; ULl

}
} entities {

})

} experiment schelling type: gui
k

Texts : texte layer_name value: my_text;

v

Charts : see later.

For our model: Definition of one display

Step 1: End

B, schelling_simple - D:documents and settings'bgaudou',Bureau’ wsGAMA 1514 CT-Schellingmodels', schelling_simple_w0.gaml - |E’ |E|
File Edit Expetiment Agents “iews Help

W simulation of experiment | G 4
(T <}=- = B = o = o
| Gamahlavigator &3 —| o B || /% monde &2 B |2 Parameters &3 = B
B Models library { 24)) — 2L L LS
& Shared models { 0) - = Model schelling_simple_v0 System parameters for experiment ‘schelling_simg
: =Y
= User models (1) Random number generator I'mersenne' j

E‘___I'.: _T-acheling
(= doc

Random seed [+ Define: |00

----- = includes

E-= models
----- \=| scheling_simple_PT.gaml
“e 2| schelling_simple_v0.gaml

g —
L) Console 3 i ——— O

|| esmorzam (] |

29

Step 2: Creation of the two groups

Objectives:

Addition of a parameter to change the
Initial number of agents

Addition of an attribute to the people
species to deal with various colors (and
thus groups)

Key points:

Introduction of parameters
Introduction of operators
Introduction of species attributes

30

Step 2: Introduction of parameters

To introduce a parameter in a GAMA model, we should
follow 2 steps:

* Introduce a global variable (in the global block)

* Introduce a parameter statement (in the experiment
block)

31

ntroauction or parameters — introauction or gioba

Variable definition : type of the variable or const + name

For constants, a mandatory facet:

o type: int (integer), float (floating point number), string, bool (boolean, true or
false), point (coordinates), list, pair, map, file, matrix, espece d’agents, rgb (color),
graph, path...

Optional facets:

o <-(initial value), update (value recomputed at each step of the simulation),
function:{..} (value computed each time the variable is used), min, max

For our model: Definition of the nb_people global variable

%obal { model CT_Schelling

Int nb_people <- 500 min: 10 max: 1000;)
)
} \ fnvironment {

Global variable with an initial value }enti“es{

experiment schelling type: gui {

}

ntroauction or parameters — parameter

11 E]]1E]
Parameter definition
parameter + text + var. + name_variable [+ optional facets]

« text: will be displayed in the GUI to represent the parameter

 name_variable : the variable that will be modified by the user

« Optional facets include : category (parameters are organized into
categories in the graphical interface)

For our model: Definition of the nb_people parameter

experiment schelling type: gui {

ar. nb_people category: "people"; global {

}
e \ environment {
} }

entities {

Definition of the new parameter }

experiment schelling type: gui
}

[parameter "Number of inhabitants" } model CT_Schelling
Y

It Is possible to directly use global variables in the
model

For our model: Use of the nb_people parameter to define the number of

people agents to create

global {
Int nb_people <- 500 min: 10 max: 1000;
Init {
Ccreate people number: nb_people;)
}
}

model CT_Schelling

Use of the nb_people global variable

environment {

}

entities {

}

experiment schelling type: gui {

}

Step 2: customize aspect

We add a new attribute to people species: agent_color
* |tis a color (type: rgb)

 Initialized with the color red (if flip(0.5) = true), with the yellow color
otherwise

 We use it In the aspect (color of the circle)

(cond ? Valuel : value?2) : returns

FI_|p(Loba) - valuel if cond is true returns value2
returns true with the probability proba .
otherwise

entities {
species people { /
[rgb agent_color <-[flip(0.5) ? rgb("red") : rgb("yellow");

aspect base {
[draw circle size: 5 color: agent_color;]

} model CT_schelling
} global {
} }

environment {

use of the agent_color y

}

attribute

experiment schelling type: gui {

}

Step 2: End

Step 3: Dynamics of the model

Objective:

Computation of the state of the
agent: happy of not ?

If the agent is not happy, it will
move

Key points:

Definition of the agent behaviors

37

Step 3: new attributes for people species

We introduce two new attributes to people species.

« preference : the rate of similar agents below which it will not be happy

anymore.

* not_happy : Is the people happy or not?

entities {
species people {

rgb agent_color <- flip(0.5) ? rgb("red") : rgb("yellow");

float preference <- 0.5;
pool not_happy <- true;)

type: float

}

\
type: bool (for boolean) = only true or false

GAMA includes a powerful casting conversion
system : type_name(val) (or val as type_name)
allows to convert val in the new type type name.
For instance : rgb("red") returns the red color
(casting of the string ‘red’ into a value of type rgb)

model CT_schelling

global {
}

environment {

}

}

experiment schelling type: gui {

}

Step 3: use of agent attributes

Use of agent variables (attributes)

It is possible to access a variable by: my agent.my_variable

The set instruction allows to modify the value of a variable

o Set ma variable <- nouvelle valeur;

For example: Definition of a move action

Operator: Returns a
random point of the

Bullt-in attribute of every

agent (geometry of the
agent)

geometry
J J

@et Iocatioﬁ <- ény_locatibn_@ (wor@[shap@);

Allows to modify the
value of the agent
::> current location by a
location randomly
drawn in the geometry

Built-in attribute of every world iIs the

agent: coordinate of the

agents {x,y}

embedding world

of the world agent

agent
~J

Step 3: Defining a new action

An action is a capability available to the agents of a species (what they can do)

It IS a block of statements that can be used and reused whenever needed

An action can accept arguments (statement arg nom_arg type: type)

An action can return a result (statement return)

Definition of
arguments (optional)

action my_action {

Returns a result

—arg)argl type: int;

arg arg? type: int;
Fle..

(optional)

(rakurn)argl + argl;

}

For our model: Definition of a move action

entities {
species people {

action move {

set location <- any_location_in (world.shape);

}

model CT_schelling

global {
}

environment {

}

}

experiment schelling type: gui {

Step 3: Calling an action

There are two ways to call an action: using a statement or as part of an expression

« do action_name argl: vl arg2: v2, When a value is

« setmy var <-action_name [argl::vl, arg2::v2]; < returned
\

Use of a map to
pass arguments

Denotes the agent that will
execute the action (the action
must be defined In its
species)

d{:n(wrjt%esss.&e:)'nnme: " 4+ name; |

Action name | | Argument name Second argument name
set my_variable «<- self rny'_ytiﬂn) : 14, : :1EI:|,'I
o AN

Action name First argument name

Step 3: Definition of a reflex

A reflex is a block of statements (that can be defined in global or any species) that

will be automatically executed at each time step of the simulation if its condition is

true.

reflex reflex_name when: condition {...}

The when facet is optional: when it is ommitted, the reflex is activated at each time

step.

Reserved keyword
Indicating the value of the
current time step

reflex my_reflex when: — 5 9

}

—

This reflex will only be
activated during the fifth
step of the simulation

Step 3: species - behavior definitions

1st behavior: the agent compute Its
happiness:

e Wi
e wi
e wi
e wi

1appy

get the list of his neighbors:

count the number of neighbors with the same color

count the total number of neighbors

compare with his preference rate to determine whether he is

New statements

let new_var type: type <- value;

Create a new local variable of given type and affect value; A local
variable Is a variable that has an existence only in a statement block: as
soon as the end of the block, the variable is deleted from the computer
memory

43

Step 3: species - behavior definitions

1st behavior: the agent computes Its
ha_gpiness:

entiti d = 10 | Returns the list of people agents at
species people { o a distanciof 10 from the agent
calling it

reflex update state {
let neighbours type: list of: people <<people at_distance 1@

list count (cond)
Count the
number of item of
the list satisfying
the condition

let nb same color type: float <-

(neighbours count (each.agent color = agent color);)/
let nb_total type: float < length(neighbours);) -
set not_happy <- nb_same_color / nb_total < preference;

}

returns the number
of element of the list

length(list)

} model CT_schel

global {
}

environment {

}

ling

}

experiment schelling type: gui {

}

Manipulating lists

GAMA offers numerous operators to manipulate lists and containers
« Unary operators : min, max, sum...

« Binary operators :

« where : returns a sub-list where all the elements verify the condition
defined in the right operand.

« first_with : returns the first element of the list that verifies the condition
defined in the right operand.

In the case of binary operators, each element can be accessed with the keyword
each

[2, 5, 3, 2, 20] where Ceach > 3) | |:> [5, 20]

[Z2, &, 3, 2, 28] first_with (each > 3.}| |:> 5

Step 3: species - behavior definitions

2nd behavior: if he is not happy, he will move

entities {
species people {

reflex movement when: not_happy {
[do maye; J
!

}
}

calling of tfk move action

model CT_schelling

global {
}

environment {

}

}

experiment schelling type: gui {

}

@)
-
LL
™
o
&)
s
p)

47

Step 4: monitor and inspect agents

Objective:

(£} parameters (L’LEL- Monitors 53 | e—— | — O
« Adding of a monitor to follow the % number_of_happy 83 00 %
evolution of the number of happy £ Agent Inspectar 5 | E— = O
agents = Agent people9n =

host world_speciesi P\ Inspect || . Change...

color |rgb {-256) [] Edit

Key points:

location x IQ.?EDEEE?E‘DEESEDE W |4.2?E-?3131EIS?E~2EI45

name | 'people3d’

. . . e group_id |0 :lil
Monitor definition similor nearby [3 2]

shape | {9.780262790363606,4,2767313105762845} as geomeh

is_happy ¥ true
highlight [Ffalse

= Agent world_speciesO b

project_path | 'Tu\\documents and settingst\bgaudou)\Burea

location = | 10.0 y | 10.0
number_of _people | 200 Hlﬁ]’l
time |Z.0 =-|=:]=|

name | 'world_species0’

rng | 'mersenne’

workspace path | /D /documents and settings)/bgaudout) Bure
dimensions | 20 HI =i]=|
average_duration |'7.5 lI

48

Step 4: Monitor

model CT_Schelling

Allows to follow the value of a GAML

global {
N }
eXpreSSIOn . environment {
}
monitor name value: expression; St

value: mandatory, expression computed

For our model: Definition of a monitor to follow the number of happy people agents

experiment schelling type: gui {

output {

monitor 'number_happy'
value: length(list(people) where (each.not_happy = false));

}
}

W =)
ll: ¢ Parameters F_,r_—E_, Manitars E:E\ gy —"2 | | | m

4 number_of happy 83 0l

49

Model 4: End

. schelling - D2 documents and settingsbgaudou’,Bureau'wsESSA’ tuto' . modelstday1'tuto_seqregation_04.gaml

=121 %
File Edit Experiment Agents Wiews Help
|) o—c N G
: fuI Segregation &3 i == ﬁ | = B = | 4;@ f@ }3 f@ - | _f@ = 0| E;:; Parameters ('5:?_! Monitars &4 ,ﬂ.‘-‘-‘Species} = 0| :
I —
& number_of _happy 1000 00
E s 4
L] £ agent Inspectar 52 I =====g — O
= fAgent peoplel0s W=
host world_species0 &, Inspect || o Change...
color | rgb (-6553¢) B Edit
location x | 6.59 y |5.19
name |'|:|ED|:|IEIEIE'
group_id | 1 :IEI
similar_nearby |2? :IEI
shape | {6.69,5.19} as geametry
is_happy [V true
highlight [false
= fgent world_species b4
project_path |'D:'|,'|,|:||:u:uments and settings)\bgaudou’iBure
location x | 10.0 v | 100
number_of_people |1IIIIIII:I :Iil o
time [105.0 =]
name I'wu:urld_species[l'
rng |'mersenne'
workspace_path I"I,,I'D:'l,,l'ducuments and settings' bgaudout /Bu
dimensions |2III :IEI
average_duration |'109.?D4?61904?6191'
color_2 | rgb (-65538) B Edi
warnings [False

| PR | — j

|| 202Mu.|=:{14r~f| |[ﬁ]]

50

Model 5: Addition of a chart

l-i-_.
5] display_people &3 = O

Objective:

« Addition of a new display to visualize:

o A serie representing the number

of happy people
L .II'!‘. :
- ' .H{t. i.j‘.__.___-- ,
|) PR
Key points: Cp EeKC eSO

P KL
S e Sy

.

 Definition of charts

- nb_happy

Definition of charts

<+ GAMA can display various chart types:

e Time series

. Pie charts

« Histograms

Model 5: Experiment — new chart display

Definition of a new display with one series chart

For our model: Definition of a chart to follow
the evolution of several variables

experiment schelling type: gui {
output {

display display_charts {
chart "nb_happy" type: series background: rgb("white") {
data "nb_happy" color: rgb("red")
value: list(people) count (! each.not_happy);

model CT_Schelling

global {
}

environment {

}

entities {

}

experiment schelling type: gui
}

53

Model 5: end

- = = = J— "y
ﬁ@display;enpleﬁﬂ i == ﬁ||__lﬁilir| %léﬂﬁﬁ}y'|ﬁ=5\{’@hﬁnitursﬂ '’ Elﬂ 0

@INSg),'3'6

g number_happy 500 [T

" I3 display_charts 23 | e— | ol) OO P O] S0

«
N~)
!!6'&9))!&-

525 |
500 |
475 1
450 |
425 |
400 |
375 {f-opheees
350 {4
325 {f-Mieend
300 {[-1
275 { |-t
250 { ||

295 {]
200 {1
175 -
150 -
125 -
100 -
75 1
L e S M s S S
PSR | S N SN U O SO OSSN S UM S O U SO SO

I:I J i i i i i i i i i i i i i i i : i : i - i .
o2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 232 34 36
(NN

54

