
Computing Systems for Signal Processing
Part 4: PC vs. Embedded ���� Power, Reliability, Real-time
October 25 th 2011

• New architecture is driven by power and thermal
• Transistor count continues to increase thanks to Moore’s law

• Most systems are limited by thermals

• Parallelism is needed for perf and power efficiency
• Instruction level parallelism: Pipeline, OOO, VLIW

• Data-level parallelism: SIMD, Vector, 2D SIMD Matrices

• Thread level parallelism: SMP, CMP, SMT/HT

• System level parallelism: I/Os, Memory Hierarchy

Summary

2

• System level parallelism: I/Os, Memory Hierarchy

• Key Issues with Parallelism
• Amdahl’s law

• Extracting parallelism from applications

• Systems Issues � the rest of the system needs to be well balanced

• Programming models need to be portable, easy to learn and efficient

• Application Specific Signal Processors and SoCs
• Spectrum: ASICs, FPGA, Media Proc, DSP, GPP + ISA extensions

• Depending on power/performance constraints, often a mix (SoC)

� PCs have been driving innovation in processors for 30 years

� What are the key components in the PC architecture?

� What is the difference between a PC and an embedded
architecture?

PC Architecture

3

Key Component in the Early PC Architecture

4

Typical PC Platform Architecture

Typical PC platform (2008)

New architecture integrate
the MCH in the CPU

DRAM

CPU

Opt.
Gfx GMCH

5

5

PCI-E

Flash

WiFiGbE

HDD

DMI

SPI

ICH

QPI vs FSB based Platform

6

6

MCH is now integrated on chip

Core i7 Block Diagram

7

7

Laptop Internal View

8

CPU CPU

IBM
T43

9

MCH MCH

GFx GFx

Processor will integrate
- Big core for single thread perf
- Small core for multithreaded perf
- some dedicated hardware units for

- graphics

- media

- encryption

Future: PC on a Chip

High -End Add -in

IA IA IA IA

IA IA IA IA

IA IA IA IA

IA IA IA IA

PC I- Ex PC I- Ex

Gfx/Media

Memory C h

IA
(Big core)

IA
(Big core)

10

- encryption

- networking function

- other function specific logic

Systems will be heterogeneous
Processor core will be connected to
- one or multiple many-core cards
- and dedicated function hw in the chipset
+ reconfigurable logic in the system or on chip?

IA IA IA IA

IA IA IA IA

IA IA IA IA

IA IA IA IA

PC I- Ex PC I- Ex

Gfx/Media

Memory C h

High -End Add -in

GCHGCH

� Power constraints
� Reliability
� Redundancy
� Predictability (for Certification)

� EXAMPLES:

Embedded Architecture: What’s different?

11

� Rack
� Airbus
� Rafale: radar
� Portable devices: cellphone, MP3 player
� Consumer set top boxes
� Satellite
� Train

� Consumer : DVD/video players,
Set-top-box, Playstation,
printers, disk drives, GPS,
cameras, mp3 players

� Communications: Cellphone,
Mobile Internet Devices,
Netbooks, PDAs with WiFi,
GSM/3G, WiMax, GPS,
cameras, music/video

Reminder: Embedded System Examples

12

cameras, music/video
� Automotive: Driving innovation

for many embedded
applications, e.g. Sensors,
buses, info-tainment

� Industrial Applications: Process
control, Instrumentation

� Other niche markets: video
surveillance, satellites,
airplanes, sonars, radars,
military applications

A wide range of Software and Hardware

IO Connections
• Video
• RGB/DVI
• LVDS
• GigE
• Ethernet
• Fibre Channel
• SCSI

Applications
• Target Recognition
• Radar Processing
• Sensor Fusion
• Image Processing
• Real Time Recorders
• Mission Computing
• Digital Map
• Signal Intelligence

Software
• VxWorks
• Linux
• Integrity
• Windows
• BIT
• BSP
• VMEdriver
• 1553
• RDMA

13

• SFPDP
• RocketIO
• Canbus
• MIL-STD-1553
• ARINC
• RF Analog
• Low Speed Analog
• Discrete IO
• Serial RSxxx
• C40 Links
• SharcLinks
• SCRAMnet
• Syncro/Resolver

Backplane Buses
• Raceway
• StarFabric
• SRIO
• PCIe
• ASI

Platforms
• VME
• VPX
• cPCI
• VITA 46/48
• Custom form

Factors
Processing
• PowerPC SBC
• Quad PowerPC DSP
• FPGA Processing
• Graphics Processing
• Pentium SBC
• Front End Processing

• RDMA
• IPC/GBM
• DMA
• HDLC/SDLC
• TCP/IP

Hardened PC

Typical Embedded PC Architecture

14

Examples of Embedded Boards

6U VME6U VPX

15

XMC/PMC3U VPX

Ruggedisation Levels

Level 0 Level 50 AC Level 100 AC Level 200 AC Level 100 CC Level 200 CC

Operating
Temperature

0C – 50C -20C to 65C -40°C to 71°C -40°C to 85°C -40°C to 71°C -40°C to 85°C

Storage -40C to85C -40°C to 85°C -55°C to 125°C -55°C to 125°C -55°C to 125°C -55°C to 125°C

Humidity
operating

0 to 95% non-
condensing

0 to 95% non-
condensing

0 to 100% non-
condensing

0 to 100% non-
condensing

0 to 100% non-
condensing

0 to 100% non-
condensing

Humidity Storage 0 to 95% Non-
condensing

0 to 95% Non-
condensing

0 to 100%
condensing

0 to 100%
condensing

0 to 100%
condensing

0 to 100%
condensing

16

condensing condensing condensing condensing condensing condensing

Vibration sign 2 g peak 15-2
kHz

2 g peak 15-2
kHz

10 g peak 15-2
kHz

10 g peak 15-2
kHz

10 g peak 15-2
kHz

10 g peak 15-2
kHz

Vibration random 0.01 g2/Hz 15-2
kHz

0.01 g2/Hz 15-2
kHz

0.04 g2/Hz 15-2
kHz

0.04 g2/Hz 15-
2 kHz

0.1 g2/Hz 15-2
kHz

0.1 g2/Hz 15 Hz-2
kHz

Shock 20 g Peak 20 g Peak 30 g peak 30 g peak 40 g peak 40 g peak

Conformal coat No Yes Yes Yes Yes Yes

Challenge: How to use Multi-core?

� Obviously, a multi-core platform shall offer the same level of
safety as a single-core processor device:
� WCET must be computable

� Partitioning must be ensured

� Main usage models:
� Two main ones: AMP and SMP

� Some others proposed by some RTOS vendors (e.g: BMP)

17

� Some others proposed by some RTOS vendors (e.g: BMP)

� Or a mix of AMP and SMP

Core 0 Core 1 Core 2

OS 0 OS 1 OS 2

A
1

A
2

A
3

A
4

A
5

A
6

Core 0 Core 1 Core 2

OS

A
1

A
2

A
3

A
4

A
5

A
6

Core 0 Core 1 Core 2

OS

A
1

A
2

A
3

A
4

A
5

A
6

AMP
Asymmetric multi-
processing

SMP
Symmetric multi-
processing

BMP
Bound multi-
processing

Computing Systems for Signal Processing
Part 5: Hard Real-Time Systems and RTOS
October 25 th 2011

Critical Systems

A critical system is any system whose ‘failure’ cou ld
threaten human life, the system’s environment or th e
business of the organisation which operates the sys tem.
‘Failure’ in this context does NOT mean failure to conform to a
specification but means any potentially threatening system behaviour .

19

Critical Systems classes

Safety-critical systems
� Failure results in loss of life, injury or major environmental

damage;

� e.g. Flight control system, Nuclear plant protection system;

Mission-critical systems
� Failure results in failure of some goal-directed activity;

20

� e.g. spacecraft navigation system;

Business-critical systems
� Failure results in high economic losses;

� e.g. customer accounting system in a bank;

Many embedded systems are critical !

Dimensions of criticity

Dependability
� The dependability in a system reflects the user’s trust in that system

Time-sensitiveness
Integration with the physical/environmental process es

Two classes of safety-critical embedded software
systems:

21

systems:
Primary safety-critical systems

� Embedded software systems whose failure can cause the associated
hardware to fail and directly threaten people.

Secondary safety-critical systems
� Systems whose failure results in faults in other systems which can

threaten people

The concept of dependability
For critical systems, it is usually the case that the most
important system property is the dependability of the
system
�The dependability of a system reflects the user’s degree of trust in
that system. It reflects the extent of the user’s confidence that it will
operate as users expect and that it will not ‘fail’ in normal use

Dependability

22

Dependability

Availability Reliability Security

The ability of the
system to deliver

services when
requested

The ability of the
system to deliver

serv ices as specified?

The ability of the
system to operate

without catastrophic
failure

The ability of the
system to protect itelf
against accidental o r
deliverate in trusion

Safety

Dependability Terminology

23

Availability and reliability

Reliability
� The probability of failure-free system operation over a specified time

in a given environment for a given purpose. R(t) = probability of
functional correctness if it was satisfied at t=0

Availability
� The probability that a system, at a point in time, will be operational

and able to deliver the requested services.

Other adjacent dependability properties

24

Other adjacent dependability properties
� Repairability: Reflects the extent to which the system can be

repaired in the event of a failure

� Maintainability : Reflects the extent to which the system can be
adapted to new requirements;

� Survivability : Reflects the extent to which the system can deliver
services whilst under hostile attack;

� Error tolerance : Reflects the extent to which user input errors can
be avoided and tolerated.

Socio-technical view of critical systems

Hardware failure
� Hardware fails because of design and manufacturing errors

or because components have reached the end of their natural
life.

Software failure
� Software fails due to errors in its specification, design or

25

� Software fails due to errors in its specification, design or
implementation.

Operational failure
� Human operators make mistakes. Now perhaps the largest

single cause of system failures.

� Eg Ariane V failure despite redundant code: process issue

Reactive and Real-time

Embedded Systems are often reactive, real time, crit ical

„A reactive system is one which is in continual interaction
with is environment and executes at a pace determined by
that environment“ [Bergé, 1995]

Reactive systems means Real Time responsiveness :
Timeliness : response time within a given time slot

26

� Timeliness : response time within a given time slot

� A late response is a fault

Time critical systems „A real-time constraint is called hard , if
not meeting that constraint could result in a catastrop he“
[Kopetz, 1997].
� Other constraints are called soft RT

� Response time is not statistical : worst case

Key Example: Avionics Systems

Flight management

27

Cockpit system

Galileo Egnos Comm.

Some Technical Challenges

Embedded safety critical software development
� Productivity

� Validation, Verification, Certification

Design challenge: networked, embedded, hard real-ti me, safe and secure

Technical approaches
� Built-in reliability and real time behaviour on safe hybrid systems

� Joint Modelling of physical and computational features

28

� Formal methods, Modelling techniques (formalisms)

� Automated test & validation processes
� Software development productivity

� Cost-effective certification and security

� Modularity of embedded software architecture

� Mission configurable reliable platforms
� Design techniques for cost effective reliable architectures: certifiably fault –

tolerant networks and middlewares

� dependable adaptive distributed middleware services, standards

Safety, Security

Safety : system’s ability to operate, normally or abnormal ly,
without danger of causing human injury or death and without
damage to the system’s environment
Safety and reliability are related but distinct
� Reliability is concerned with conformance to a given specification and

delivery of service
� Safety is concerned with ensuring system cannot cause damage irrespective

of whether or not it conforms to its specification

29

Safety achievements : built-in properties for hazard
avoidance, hazard detection and removal, damage lim itation
Security is a system property that reflects the system’s abi lity
to protect itself from accidental or deliberate ext ernal attack
� Security is becoming increasingly important as systems are networked so

that external access to the system through the Internet is possible

Security is an essential pre-requisite for availabi lity, reliability
and safety : safety validation relies on demonstrating that a pa rticular
system is safe

In summary

Computer-based systems are socio-technical systems
which include hardware, software, operational
processes, procedures and people.

An increasing number of socio-technical systems are
critical systems

30

Systems have emergent properties i.e. properties wh ich
are only apparent when all sub-systems are integrat ed.

Critical systems have dependability attributes -
reliability, availability, safety and security

Design of Critical Systems

Design & Engineering for Safety
� Most Critical Information Systems have to comply with safety regulations

(SWAL, DO-178B, SIL …)

� Design and engineering for safety is currently costly and cumbersome

� Need for technologies enabling « safety proven » design and engineering

� Costs of critical system failure are so high that development methods may be
used that are not cost-effective for other types of system.

Some Research issues

31

Some Research issues
�Insertion of formal methods for system specification, verification/ testing, timing
analysis (eg WCET)

�High integrity programming: incorporation of redundant code and self-checking
in programs, threads analysis, timing properties analysis (WCET)

�Control theory/functional modeling with software architecture

�Simulation based seamless integration from specification to test means

�Multidisciplinary / multiviewpoint engineering: include methodology,
architectures, and applications while ensuring efficiency of the architecture
=>Standard design techniques must be adapted

Computing Systems for Signal Processing
Part 6: Power Constraints
October 25 th 2011

Platform Power Measurements

Fluke NetDAQ
Connected to a PC ���� log files
Sense Resistors
Power: P = I x V
� Current: I
� Voltage: V
Shunt Resistor Method

Workstation

NetDAQ
TCP/IP

DC-DC
Power Supply

Test points

+ Vsense -

+

Vcc

-

33

33

Shunt Resistor Method
� V = Voltage at Input to CPU
� I = Vs/Rs

� Vs = Voltage Drop Across Rs
� With Rs = 100 mOhm

The same methodology is applied
to each power rail for each
component (CPU, Memory, GMCH,
ICH)

-

DC CPU

C2

0

0

0

0

0

C11

0

0

0

0

0

Rs

+

-

+

-

N
e

tD
A

Q

Platform Power graphs

7

8

9

10
3DMark03.csv

P
ow

er
 (

W
)

34

34

0 5 10 15 20 25
3

4

5

6

P
ow

er
 (

W
)

Time (s)

50ms Sample

100ms Average

1 Second Average
5 Second Average

Total Average

Data is acquired with a 50ms sampling rate and proc essed
to estimate power with other moving average window

Measured GMCH power

7

7.5

8

8.5

9
5 Second Average

P
ow

er
 (

W
)

35

35

0 10 20 30 40 50 60
5

5.5

6

6.5

7

P
ow

er
 (

W
)

Time (s)

Starwars-Intro.csv

3DMark03.csv

Quake4-Intro.csv
Aquamark3.csv

Comanche4.csv

Power Profile for top 5 GMCH apps on Crestline with 5s moving average

CPU, 0.81, 8%

HDD, 0.90, 8%

GMCH, 1.12, 11%

Memory, 0.28, 3%

ICH, 0.71, 7%

Audio, 0.13, 1%

BKLT, 2.85, 27%

CK410, 0.98, 9%

CPUIO, 0.09, 1%

ODD, 0.16, 1%

WLAN, 0.05, 0%

10.8

Average Platform Power Distribution

36

BKLT, 2.85, 27%

Panel, 0.85, 8%

LAN, 0.13, 1%

Other, 0.70, 6%

VR, 1.01, 9%

T&L Cooling Design & ApproachT&L Cooling Design & Approach

FAN

CPU RHE

Battery CellsCPU VR Kybd
Conn

RJ45
RJ11

LVDS
LAN

GMCH RHE

Heat exchangers transfer energy to the air

Fan draws air in and
pushes it out

Dedicated thermal solution on highest
power devices

Heat pipe: moves heat, but can’t get rid
of it, without fan/HX.
Why move it? To get it to where you
actually have room for a fan and heat
exchanger.

37

HDD

Express Card

Battery Cells

ICH TMDS
SO DIMM
Memory

Conn

Clk Gen

DDR VR

VCCP VR

Hinge
Mount

Spkr

Spkr

Express Card CPU
GMCH

ODD

Place other components in straight
(sort of) line path from inlets to fan

Computing Systems for Signal Processing
Part 7: Critical and Complex Systems
October 25 th 2011

1. Embedded System Development
� V cycle

2. System Modelling
� The right level of abstraction

3. Platform Based Design
� What’s a platform?
� Meet in the middle

4. Platform Simulation

Outline

39

4. Platform Simulation
� Requirements
� Example: SystemC and TLM

� The V-model is a graphical representation of the systems
development lifecycle. It summarizes the main steps to be taken in
conjunction with the corresponding deliverables within
computerized system validation framework

� The V-model is a process that represents the sequence of steps in
a project life cycle development. It describes the activities and
results that have to be produced during product development.

� The left side of the V represents the decomposition of requirements

Systems Development Lifecycle: V-Model

40

� The left side of the V represents the decomposition of requirements
and creation of system specifications

� The right side of the V represents integration of parts and their
verification

Systems Development Lifecycle: V-Model

41

� Minimization of Project Risks:
� The V-Model improves project transparency and project control by specifying

standardized approaches and describing the corresponding results and responsible
roles. It permits an early recognition of planning deviations and risks and improves
process management, thus reducing the project risk.

� Improvement and Guarantee of Quality:
� As a standardized process model, the V-Model ensures that the results to be provided

are complete and have the desired quality. Defined interim results can be checked at
an early stage. Uniform product contents will improve readability, understandability and
verifiability.

V-Model Objectives

42

� Reduction of Total Cost over the Entire Project and System Life Cycle:
� The effort for the development, production, operation and maintenance of a system can

be calculated, estimated and controlled in a transparent manner by applying a
standardized process model. The results obtained are uniform and easily retraced. This
reduces the acquirers dependency on the supplier and the effort for subsequent
activities and projects.

� Improvement of Communication between all Stakeholders:
� The standardized and uniform description of all relevant elements and terms is the

basis for the mutual understanding between all stakeholders. Thus, the frictional loss
between user, acquirer, supplier and developer is reduced.

1. Embedded System Development
� V cycle

2. System Modelling
� The right level of abstraction

3. Platform Based Design
� What’s a platform?
� Meet in the middle

4. Platform Simulation

Outline

43

4. Platform Simulation
� Requirements
� Example: SystemC and TLM

Transistor Model
Capacity Load

Gate Level Model
Capacity Load

SDF
Wire Load

IP Block Performance
Inter IP Communication
Performance Models

The Quest for the Next Level of Abstraction

IP Blocks

abstract

abstract

44

ab
st

ra
ct

cluster

RTL RTL
Clusters

SW
Models

cluster

cluster

1970s 1980s 1990s 2000+

abstract

3 Classes of Applications ���� 3 Types of Processors

• Reuse IP building
blocks

• LPIA

• DRAM Controller

• Cache

• Network on Chip

• PCIe controller

45

• PCIe controller

• Accelerators

• Target multiple apps
• Low-power

• Laptop

• Desktop

• Many-cores

• GPUs

Electronic Systems Design Chain

Interfaces

System Design

46

Manufacturing

Implementation IP

1. Embedded System Development
� V cycle

2. System Modelling
� The right level of abstraction

3. Platform Based Design
� What’s a platform?
� Meet in the middle

4. Platform Simulation

Outline

47

4. Platform Simulation
� Requirements
� Example: SystemC and TLM

Platform Based Design

Why platform? Why not focus on processor?
� Power efficiency requires a mix of GPP and ASSP (and DSP/Media

processors)
� Partition the application between the different cores in the most

power efficient manner
What’s different in Platform modeling vs. GPP uarch ?
� Asymmetric
� Mix of programmable (GPP, DSP) and non programmable cores

(ASSP)

48

(ASSP)
� Platform simulation is different from cycle-accurate uarch simulators
What’s different about platform-based design?
� Enable IP reuse
� Drag & Drop composability, menu-based architecture
� Validation through accurate modeling
What’s a platform anyway?
� “A coordinated family of architectures that satisfy a set of

architectural constraints imposed to support reuse of hardware and
software components”

�Structured methodology that limits the space of exploration,
yet achieves good results in limited time

�A formal mechanism for identifying the most critical hand-off
points in the design chain

�A method for design re-use at all abstraction levels

�An intellectual framework for the complete electronic design
process!

Meet in the middle

49

process!

Platform
Design-Space

Export

Platform
Mapping

Architectural Space

Application Space
Application Instance

Platform Instance

Platform

Top-Down:
�Define a set of abstraction layers

�From specifications at a given level, select a solution (controls,
components) in terms of components (Platforms) of the following layer
and propagate constraints

Bottom-Up:
�Platform components (e.g., micro-controller, RTOS, communication

primitives) at a given level are abstracted to a higher level by their

Meet in the Middle

50

primitives) at a given level are abstracted to a higher level by their
functionality and a set of parameters that help guiding the solution
selection process. The selection process is equivalent to a covering
problem if a common semantic domain is used.

Specification

Analysis

BusesBuses
Matlab

CPUs Buses Operating
Systems

Behavior Components Virtual Architectural Com ponents

C-Code
IPs

ASCET

ECUECU--11f1f1 f2f2

System Behavior System Platform

Separation of Concerns (1990 Vintage!)

51

Specification

After Sales
Service

Calibration

Implementation

D
ev

el
op

m
en

t P
ro

ce
ss

ECUECU--11 ECUECU--22

ECUECU--33
BusBus

f1f1 f2f2

f3f3

Mapping

Performance
Analysis

Refinement

Evaluation of
Architectural
and
Partitioning
Alternatives

What’s needed for PBD?

High Level modeling of each core and of the interco nnect
to enable
� Fast simulation
� Accurate results
� Power and performance models

Connecting the modules
� Can it be automatic

52

� Can it be automatic
� Type inference

Architecture Description Language
Constraint Description Language
� Performance,
� Size
� Power

Platform Design Methodology

ADL (Architecture
Description Language)

RDL (Resource Constraints
Description)

Application Functional Specification

(including timing, power and other constraints)

Capture Resource Constraints
Architecture
Design Tools

53

Architecture Design Space

DSP CPU Interconnect ASSPs

Capture Platform Architecture

Explore the design space and simulate the perf/powe r of
different platform instances at multiple abstractio n levels

Impact on process and skills evolution

Programme 1 Programme 2 Programme 3

New New customer

Programme Driven Process
Top-down design + independent programmes

Platform Based Process
Algorithms and platform co-design and tuning

� Platform architects: capable to design domain dedicated massively parall el processing platforms
� Algorithms architects: capable to design algorithms which can efficiently map to the platform
� Domain architects: capable to cross optimise algorithm and platform design strategies
� Parallel programmers: capable to quickly develop the parallel code for a given algorithm

Required skills to support Platform-based Process

Domain

Operational
needs

Massively parallel domain dedicated programmable pr ocessors

54

Algorithm
design

Chip
selection
from COTS

Algorithm
implementation

No optimisation of real-time performances
No capitalisation across programmes

New
programme

New customer
demand

Algorithm
implementation

Implementation
feedback

Algorithm
design

Chip
selection
from COTS

Algorithm
implementation

Algorithm
design

Chip
selection
from COTS

Algorithm
implementation

co-tuning

needs

New
functions

New
functions

feedbackfeedback

List of
functions

Algorithm
design

Platform
tuning

Requirements for Platform based Simulation

1. Need efficient architecture experimentation, simu lation,
analysis framework.
� Component Integration of big IP blocks is cumbersome.
� Changing RTL is very time consuming and not desirable

2. Support IP variety in SoCs
� Want to leverage existing C++, VHDL simulations

55

� Want to leverage existing C++, VHDL simulations
– Need wrapper & glue

� Simulation needs a “global/unifying” simulation queue.

� IP may be coming from external IP vendors

3. Desire to run “real SW” on simulations
� More than trace driven simulations!
� Complete Operating systems
� Driver and App development in advance of real silicon.

Simulation Taxonomy

Types of Simulations
System Architectural
System Performance
Functional Model
Transaction Level Model

Simulations Qualifiers
• UnTimed Functional
• Timed Functional
• Bus Cycle Accurate
• Pin Cycle Accurate

56

Transaction Level Model
(TLM)

Behavior Synthesis Model
Register Transfer Level

model (RTL)
Gate Level

• Pin Cycle Accurate
• Register Transfer

Accurate

Specification IPs

Industry landscape (an incomplete map..)

Functional model

Platforms Design
Constraints

UML

57

57

Performance model Architecture
exploration

Software
Development

Hardware
Development

Virtio
Axys

Lisatek
Vast

CoWare
CoFluent

SystemC Intro

Open System C Initiative (OSCI)
�Open source libraries and reference runtime.

Commercial tools from Synopsis, CoWare,
Frontier, etc.

SystemC is:

58

SystemC is:
�C++, Class libraries, Run time simulation system

�Provides:
� Simulation queue and time based events

� Concurrency models

� HW abstractions (Modules, ports, buses)

Why use SystemC?

Use SystemC to create silicon IP
simulations

Can model an IP blocks
� RTL level to SoC level

Component composition “glue”
� Enable easy architectural experimentation and

analysis

Integrates heterogeneous solutions – can

59

Integrates heterogeneous solutions – can
wrap existing VHDL or C++ simulations.
� Very effective for SoCs

Reference model for RTL

Performance! –very effective at coarse
grained simulation
Enable advance SW development and
analysis before HW.

Tool vendors provide SystemC based
analysis hooks

SystemC Modeling

60

• Simulations are built from
SystemC classes: Modules, Ports,
Channels

•Processes describe module
functionality…really just methods.

•Class are “simulation aware”

• Class Macros provided as cheats
for EE folks: SC_MODULE()

Transaction Level Modeling (TLM)

It’s a simulation methodology.
� Dictates event granularity, standardized interfaces
Simulation has no “clock edge”
� Discrete events consume X time.
� Accurate, yet fast enough to execute real SW.

“The primary goal of Transaction Level Modeling is t o

61

“The primary goal of Transaction Level Modeling is t o
achieve dramatically increased simulation speeds,
while still offering enough accuracy for determinin g
hardware response times.”

- High speed simulation
- Cycle accuracy
- Reduce detail & simplify modeling
- Handle complex bus topologies
- Support HDL Co-Simulation

Request

Addr

TLM: Reducing Communication Detail

Grant

Address

Transfers are used to reduce communication detail to a small
number of events. A Transaction refers to the data-exchange
transfers (It excludes the arbitration transfers).

Transfers are

62

Contro
l

Signals

Data

Ack

Addr

Control

Data

Data Ack

Address

Transfers

Transaction

Address
&

Control

GrantRequest

Transfers are
used to

consolidate signal
handshakes

Arbitration

�V-Cycle and separation of concerns are typically used for
system development to reduce risk & cost and improve
quality & communication between stakeholders.

�System modelling should be done at the highest possible
abstraction to integrate large IP sw&hw building blocks

�Platform-based design enable cost reduction and reuse of
hardware and software components

Summary

63

hardware and software components

�A combination of top down (from apps) and bottom up (from
architecture space) enables optimal solution

�HW/SW co-design with constant feedback between sw and
hw architects is required for a power/perf optimized system

�Fast simulation (e.g. SystemC) of power and performance is
needed for sw development and platform refinements.

