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� What is this about?
� Introduction to power/performance tradeoffs and system architecture
� Overview of existing processor and system architectures 
� Consumer vs. Industrial/Embedded

� Why do we care? 
� Engineering added value is in complex and critical system architecture 
� Need to know different components available
� Software/Hardware System Architecture and Modelling
� Power/Performance/Price Tradeoffs

� What’s the plan?

Introduction
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1. Introduction 

2. General-Purpose Processors and Parallelism

3. Application Specific Processors: DSPs, FPGAs, accelerators, 
SoCs

4. PC Architecture vs. Embedded System Architecture

5. Hard Real-time Systems and RTOS

6. Power Constraints

7. Critical and Complex Systems, MDE, MDA

Planning
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� Embedded
� Size and thermal constraints
� Sometime battery life (energy) constraints

� Real-time
� Time constraints
� Can be hard real-time 
� Or soft-real time

� Systems
� Typically includes multiple components
� Requires different expertises: 

� Signal Processing, computer vision, machine learning/Cognition and other 
algorithmic expertise

� Software Architecture
� Hardware/Computing Architecture
� Thermal and mechanical engineering

Embedded Real-time Systems
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� Consumer : DVD/video players, 
Set-top-box, Playstation, 
printers, disk drives, GPS, 
cameras, mp3 players

� Communications: Cellphone, 
Mobile Internet Devices, 
Netbooks, PDAs with WiFi, 
GSM/3G, WiMax, GPS, 
cameras, music/video

� Automotive: Driving innovation 
for many embedded 
applications, e.g. Sensors, 
buses, info-tainment

� Industrial Applications: Process 
control, Instrumentation

� Other niche markets: video 
surveillance, satellites, 
airplanes, sonars, radars, 
military applications

Application Examples
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� Texec = NI * CPI * Tc 
� NI = Number of Instructions
� CPI = Clock per Instruction
� Tc = Cycle Time

� Texec = NI / (IPC * F)
� IPC = Instructions Per Cycle
� F = Frequency

� Performance improves with
� Silicon manufacturing technology

� Moore’s law contributing to higher frequency and parallelism

� Microarchitecture improvements 
� Higher frequencies with deeper pipelines
� Higher IPC through parallelism

Performance
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Performance
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� Dynamic Power = αCV²ƒ
� α = activity
� C = capacitance
� V = voltage
� ƒ = frequency

� Power = Pdyn + Pstatic

� Power is limited by 
� maximum current (Voltage regulator limitation)
� Thermal constraints

� Power ≠ Energy

Power
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� ASIC
� High-performance 
� Dedicated to one specific application
� Not programmable

� Processor
� Programmable
� General-purpose

� Reconfigurable Architecture
� Good compromise between programmability and performance

Processor Architecture Spectrum 

Microprocessor Reconfigurable ASIC
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Processor Architecture Spectrum 

12

Processor Architecture Spectrum 
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What are the key components in a Computing System?

� Processor with
� Arithmetic and Logic Units
� Register File
� Caches or local memory

� Memory

� Buses/Interconnect

� I/O Devices

Key Components of a Computing System

Computing Systems for Signal Processing
Part 2: General-purpose Processors and Parallelism
October 19 th 2009
Eric Debes
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Sequential laundry takes 6 hours for 4 loads
If they learned pipelining, how long would  laundry  take? 
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• Pipelining doesn’t help 
latency of single task, it 
helps throughput of 
entire workload

• Pipeline rate limited by 
slowest pipeline stage

• Multiple tasks operating 
simultaneously

• Potential speedup = 
Number pipe stages

• Unbalanced lengths of 
pipe stages reduces 
speedup

• Time to “fill” pipeline and 
time to “drain” it reduces 
speedup

Pipelining Lessons
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Parallel laundry takes 1.5 hours for 4 loads
Throughput is the same as in pipeline
Cost more

What is better? 

Parallel Laundry
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Moore’s Law ���� more transistors 
for advanced architectures

Delivers higher peak perf

But lower power efficiency

Performance = Frequency x 
Instruction per Clock Cycle

Power = Switching Activity x 
Dynamic Capacitance x 
Voltage x Voltage x 
Frequency

History: How did we increase Perf in the Past?

0

1

2

3

4

5

Pipelined S-Scalar OOO-
Spec

Deep Pipe

In
cr

ea
se

 (
X

)

Area X
Perf X

-1

0

1

2

3

Pipelined S-Scalar OOO-
Spec

Deep
Pipe

In
cr

ea
se

 (
X

)

Power X
Mips/W (%)



10

19

In many systems today power is the limiting factor and will 
drive most of the architecture decisions

New Goal: optimize performance in a given power enve lope

Why Multi-Cores?
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Dual Core

VoltageVoltage FrequencyFrequency PowerPower PerformancePerformance
1%1% 1%1% 3%3% 0.66%0.66%

Rule of thumb (in the same process technology)
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Freq      = 1
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Power   = 1
Perf       = 1

Voltage =  -15%
Freq      =  -15%
Area      =     2
Power   =     1
Perf       =  ~1.8

How to maximize performance in the same power envel ope?

Power = Dynamic Capacitance x Voltage x Voltage x F requency
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Thermal is the main limitation factor in future des ign (not size)

Move away from Frequency alone to deliver performan ce

Challenges in scaling ���� need to exploit thread level 
parallelism to efficiently use the transistors avai lable thanks 
to Moore’s law.

Power/performance tradeoffs dictate architectural c hoices

Multi-everywhere
� Multi-threading
� Chip level multi-processing

Throughput oriented designs

Summary: Why Multi-Cores?
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Processors are designed to address the need of the mass market. 

• Mobile applications � low power and good power management 
are top priorities to enable thinner systems and longer battery life 

• Office, image, video � single threaded perf matters, some level 
of multithreaded perf � Multi-core

• RMS (Recognition, Mining, Synthesis) Applications a nd 
Model based Computing � massively parallel apps, good scaling 
on a large number of cores � Many-core

Because of the large markets in each of the classes above, they 
are the focus of silicon manufacturers and are driving innovation in 
the semiconductor market

Application-driven Architecture Design
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RMS Scaling on a Many-Core Simulator
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• Low-power 
architecture and SoCs

• ARM based

• LPIA/Atom based

• Multi-core
• Core microarchitecture

• PowerPC 

• Many-core
• GP GPU

• Larrabee

3 Classes of Applications ���� 3 Types of Processors

26

Examples of Low power architectures and SoCs
• ARM-based: TI OMAP, Nvidia Tegra
• Atom based: Lincroft/Moorestown (MID), Canmore (CE)

Low-power Architecture and SoCs
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Intel Atom based for: 
• Mobile Internet Devices
• Consumer Electronic Devices
• Embedded Market

Towards PC on a chip
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• Multi-core
• IBM Power4 

• IBM Cell

• Intel Core microarchitecture

Multicore
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• Tick-Tock model
• Modular design to 

decrease cost 
(design, test, validation)

• Integrate graphics on chip

Intel Roadmap for Intel Core Microarchitecture

30

• Binning for leakage distribution and performance
P = α.C.v2.ƒƒƒƒ + leakage

• Turbo mode to optimize performance under a given 
power envelope

• Policy to balance thermal budget between general 
purpose cores, and between GPP cores and graphics

• Next: Maximize performance under a given thermal 
envelope at the platform level

Power/Performance Tradeoffs
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GP GPU: NVidia GeForce with up to 240 PEs 

32

• No need to put a lot of cache for GPUs because the 
number of threads are hiding the latency. The chip is 
designed for DRAM latency through a huge number of 
threads. Local memory are still present to limit ba ndwidth 
to GDDR

• CPU need multi-level large caches because the data need 
to be close to the execution units

• Fast growing video game industry exerts strong 
economic pressure that forces constant innovation

CPUs vs. GPUs
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Schematic of the Larrabee many-core CPU
�# of CPU cores and co-processors and I/O are 
implementation dependent

�Scalar and vector code execute in two ≠ units

�CPU Core is derived from the Pentium 
processor + 64-bit instructions + multithreading + 
16-wide VPU 

Larrabee Many-core
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For a given application, processor architectures sh ould be 
chosen depending on the performance/power efficienc y

• MIPS/Watt or Gflops/Watt
• Energy efficiency (Energy Delay Product) 

This is highly dependent on the application and tar geted 
power envelope. Examples: 
• ARM and Atom are optimized for mainstream office and media apps for 

a power envelope between 1W and <10W

• Core microarchitecture is optimized for high-end office and media apps 
for a power envelope between 15W and ~75W

• GPUs are optimized for graphics applications and some selected 
scientific applications between 10W and more than 400W

Performance/Power for different architectures
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Processor will integrate
- Big core for single thread perf
- Small core for multithreaded perf
- some dedicated hardware units for

- graphics

- media

- encryption

- networking function 

- other function specific logic

Systems will be heterogeneous
Processor core will be connected to 
- one or multiple many-core cards
- and dedicated function hw in the chipset
+ reconfigurable logic in the system or on chip?

Future: PC on a Chip
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Computing Systems for Signal Processing
Part 3: Application Specific Processors: DSPs, FPGA s, 
Accelerators, SoCs
October 19 th 2010
Eric Debes
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� What are application specific processors?
� Processors or System-on-chip targeting a specific (class of) 

application(s)

� Very common for 
� Audio: MP3, AAC coding and decoding in audio players
� Image: JPEG or JPEG2000 coding and decoding, e.g. Digital cameras
� Video: MPEG, H264 coding and decoding, e.g. DVD players or set-top-

boxes
� Encryption: RSA, AES
� Communication: GSM, 3G in cellphones

� Why?
� Large markets can justify the development of application specific 

processors 
� Dedicated circuits provide higher performance with lower power 

dissipation, better battery life and very often lower cost.

Application Specific Processors

38

Application Specific Signal Processor Spectrum
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� DSPs

� Dedicated ASICs

� FPGAs

� Accelerators as coprocessors

� ISA extensions

� SoCs

Different Types of ASPs

40

Summary of Architectural Features of DSPs

Data path configured for DSP 

� Fixed-point arithmetic

� MAC- Multiply-accumulate

Multiple memory banks and buses -

� Harvard Architecture: separate data and instruction memory

� Multiple data memories

Specialized addressing modes 

� Bit-reversed addressing

� Circular buffers

Specialized instruction set and execution control 

� Zero-overhead loops

� Support for MAC

Specialized peripherals for DSP
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DSP Example: 320C62x/67x DSP 
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� Many dedicated ASICs exist on the market, especially for media 
and communication applications. Example:

� MP3 player
� DVD player
� Video processing engines, e.g. De-interlacing, super-resolution
� Video Encoder/Decoder
� GSM/3G
� TCP/IP Offload engine 

� Advantages:
� Low power, high perf/power efficiency
� Small area compared to same functionality in DSP or GPP

� Drawbacks
� Cost of designing ASICs � requires large volume
� Not flexible: cannot handle different applications, cannot evolve to 

follow standard evolution

Dedicated ASICs
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Reconfigurable architectures
� FPGAs contain gates that can be programmed for a specific application

• Each logic element outputs one data bit

• Interconnect programmable between elements

� FPGAs can be reconfigured to target a different function by loading 
another configuration

44

�Spécifications 
� Input: RTL coding � structural or behavioral description

�RTL Simulation
� Functional simulation � check logic and data flow (no temporal 

analysis)

�Synthesis
� Translate into specific hardware primitives 

� Optimisation to meet area and performance constraints

�Place and Route
� Map hw primitives to specific places on the chip based on area 

and performance for the given technology

� Specify routing

� Temporal Analysis
� Verification that temporal specification are met

� Test and Verification of the component on the FPGA board

Flot de conception FPGAs
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Current generations of FPGAs 

add a GPP on the chip
� Hardwired PowerPC (Xilinx)
� NIOS Softcore (Altera)
� MicroBlaze Softcore (Xilinx)

FPGAs with On-chip GPP 
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DSP blocks in reconfigurable architectures

Stratix DSP blocks consist of hardware 
multipliers, adders, subtractors, 
accumulators, and pipeline registers

Some FPGAs add DSP blocks to increase performance o f DSP algorithms
Example: Stratix DSP blocks
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Reconf matrix of DSP blocks as media coproc.
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It is possible to build complex system based on rec ent FPGA architectures
Taking advantage of the regular structure of the DS P blocks in the FPGA matrix
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� Dedicated circuits to accelerate a specific part of the 
processor

� Typically will be connected to a general-purpose 
processor or a DSP 

� Granularity can vary
� accelerator for a DCT function

� Accelerator for a whole JPEG encoder

� Accelerators are very common in system on chip
� Are typically called through an API function call from the 

main CPU

Accelerators as Coprocessors
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� Extending the ISA of a general purpose processor with SIMD 
instructions and specific instructions targeting media and 
communication applications is very common

� It adds application specific features to a processor and turns a 
general purpose processor into a signal/image/video processor.

� Example:
� Intel MMX, SSE
� PowerPC AltiVec
� SUN VIS
� Xscale WMMX
� ARM Neon, Thumb-2, Trustzone, Jazelle, etc.

ISA extension in General-Purpose Processors
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Conflicting requirements

ASICs Media Proc/DSPs GPPs

Better Power efficiency, runs at lower frequency

Flexibility, re-programmability (vs. redesign cost)

Better programming tools, shorter TTM for new app

Smaller chip size, lower leakage
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The Energy-Flexibility Gap
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� SoCs integrate the optimal mix of processors and dedicated 
hardware units for the different applications targeted by the system.

� Typically integrate a general purpose processor, e.g. ARM

� Can integrate a DSP 

� Accelerators for specific functions

� Dedicated memories

� Integration boosts performance, cuts cost, reduces power 
consumption compared to a similar mix of processors on a card

System-on-Chip
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Digital Camera hardware diagram
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MPSoC: A Platform Story

What’s a platform? 
“A coordinated family of architectures that satisfy a set of 
architectural constraints imposed to support reuse of 
hardware and software components”

Best of all worlds: 
� Provides some level of flexibility

� While being power efficient

� And enabling some level of reusability

� Can last multiple product generations

� Requires forward-looking platform based design to integrate potential 
future application requirements in today’s platform

Programming model and design efficiency are key!
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ARM PrimeXsys Example in video phone
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TI OMAP
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TI OMAP
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� What features need to be supported? 

� What are the constraints? 

� What are the processors
� General purpose processors?
� DSPs?
� FPGAs?
� Dedicated processors?
� Accelerators?
� SoCs?

Let’s Design a SoC for a set top box!
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Intel Atom based for: 
• Mobile Internet Devices
• Consumer Electronic Devices
• Embedded Market

Consumer Electronics Platform Examples
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� Embedded Signal Processing Architectures have multiple opposite 
constraints
� Performance
� Power
� Size/Price

� Power/performance tradeoffs are crucial for an efficiently design 
system

� A wide spectrum of processors to handle such applications
� From simple in-order pipelined general purpose processors
� Out-of order processors
� Symmetric multicore architectures for better power efficiency
� Heterogeneous System on Chip
� Many-core/GPGPUs

Summary


