
1

Computing Systems for Signal Processing
Part 4: PC vs. Embedded ���� Power, Reliability, Real-time
October 22 nd 2010

2

• New architecture is driven by power and thermal
• Transistor count continues to increase thanks to Moore’s law

• Most systems are limited by thermals

• Parallelism is needed for perf and power efficiency
• Instruction level parallelism: Pipeline, OOO, VLIW

• Data-level parallelism: SIMD, Vector, 2D SIMD Matrices

• Thread level parallelism: SMP, CMP, SMT/HT

• System level parallelism: I/Os, Memory Hierarchy

• Key Issues with Parallelism
• Amdahl’s law

• Extracting parallelism from applications

• Systems Issues � the rest of the system needs to be well balanced

• Programming models need to be portable, easy to learn and efficient

• Application Specific Signal Processors and SoCs
• Spectrum: ASICs, FPGA, Media Proc, DSP, GPP + ISA extensions

• Depending on power/performance constraints, often a mix (SoC)

Summary

2

3

� PCs have been driving innovation in processors for 30 years

� What are the key components in the PC architecture?

� What is the difference between a PC and an embedded
architecture?

PC Architecture

4

Key Component in the Early PC Architecture

3

5

5

Typical PC Platform Architecture

Typical PC platform (2008)

New architecture integrate
the MCH in the CPU

PCI-E

DRAM

CPU

Opt.
Gfx

Flash

WiFiGbE

GMCH

HDD

DMI

SPI

ICH

6

6

QPI vs FSB based Platform

MCH is now integrated on chip

4

7

7

Core i7 Block Diagram

8

Laptop Internal View

5

9

MCH MCH

CPU CPU

GFx GFx

IBM
T43

10

Processor will integrate
- Big core for single thread perf
- Small core for multithreaded perf
- some dedicated hardware units for

- graphics

- media

- encryption

- networking function

- other function specific logic

Systems will be heterogeneous
Processor core will be connected to
- one or multiple many-core cards
- and dedicated function hw in the chipset
+ reconfigurable logic in the system or on chip?

Future: PC on a Chip

IA IA IA IA

IA IA IA IA

IA IA IA IA

IA IA IA IA

PCI-Ex PCI-Ex

Gfx/Media

Memory Ch

High-End Add-in

IA IA IA IA

IA IA IA IA

IA IA IA IA

IA IA IA IA

PCI-Ex PCI-Ex

Gfx/Media

Memory Ch

IA
(Big core)

IA
(Big core)

GCHGCH

6

11

� Power constraints

� Reliability

� Redundancy

� Predictability (for Certification)

� EXAMPLES:
� Rack
� Airbus
� Rafale: radar
� Portable devices: cellphone, MP3 player
� Consumer set top boxes
� Satellite
� Train

Embedded Architecture: What’s different?

12

� Consumer : DVD/video players,
Set-top-box, Playstation,
printers, disk drives, GPS,
cameras, mp3 players

� Communications: Cellphone,
Mobile Internet Devices,
Netbooks, PDAs with WiFi,
GSM/3G, WiMax, GPS,
cameras, music/video

� Automotive: Driving innovation
for many embedded
applications, e.g. Sensors,
buses, info-tainment

� Industrial Applications: Process
control, Instrumentation

� Other niche markets: video
surveillance, satellites,
airplanes, sonars, radars,
military applications

Reminder: Embedded System Examples

7

13

A wide range of Software and Hardware

IO Connections
• Video
• RGB/DVI
• LVDS
• GigE
• Ethernet
• Fibre Channel
• SCSI
• SFPDP
• RocketIO
• Canbus
• MIL-STD-1553
• ARINC
• RF Analog
• Low Speed Analog
• Discrete IO
• Serial RSxxx
• C40 Links
• SharcLinks
• SCRAMnet
• Syncro/Resolver

Backplane Buses
• Raceway
• StarFabric
• SRIO
• PCIe
• ASI

Platforms
• VME
• cPCI
• VITA 46/48
• Custom form

Factors

Applications
• Target Recognition
• Radar Processing
• Sensor Fusion
• Image Processing
• Real Time Recorders
• Mission Computing
• Digital Map
• Signal Intelligence

Processing
• PowerPC SBC
• Quad PowerPC DSP
• FPGA Processing
• Graphics Processing
• Pentium SBC
• Front End Processing

Software
• VxWorks
• Linux
• Integrity
• Windows
• BIT
• BSP
• VMEdriver
• 1553
• RDMA
• IPC/GBM
• DMA
• HDLC/SDLC
• TCP/IP

14

Hardened PC

Typical Embedded PC Architecture

8

15

Examples of Embedded Boards

6U VME6U VPX

XMC/PMC3U VPX

16

Ruggedisation Levels

Level 0 Level 50 AC Level 100 AC Level 200 AC Level 100 CC Level 200 CC

Operating
Temperature

0C – 50C -20C to 65C -40°C to 71°C -40°C to 85°C -40°C to 71°C -40°C to 85°C

Storage -40C to85C -40°C to 85°C -55°C to 125°C -55°C to 125°C -55°C to 125°C -55°C to 125°C

Humidity
operating

0 to 95% non-
condensing

0 to 95% non-
condensing

0 to 100% non-
condensing

0 to 100% non-
condensing

0 to 100% non-
condensing

0 to 100% non-
condensing

Humidity Storage 0 to 95% Non-
condensing

0 to 95% Non-
condensing

0 to 100%
condensing

0 to 100%
condensing

0 to 100%
condensing

0 to 100%
condensing

Vibration sign 2 g peak 15-2
kHz

2 g peak 15-2
kHz

10 g peak 15-2
kHz

10 g peak 15-2
kHz

10 g peak 15-2
kHz

10 g peak 15-2
kHz

Vibration random 0.01 g2/Hz 15-2
kHz

0.01 g2/Hz 15-2
kHz

0.04 g2/Hz 15-2
kHz

0.04 g2/Hz 15-
2 kHz

0.1 g2/Hz 15-2
kHz

0.1 g2/Hz 15 Hz-2
kHz

Shock 20 g Peak 20 g Peak 30 g peak 30 g peak 40 g peak 40 g peak

Conformal coat No Yes Yes Yes Yes Yes

9

17

Challenge: How to use Multi-core?

� Obviously, a multi-core platform shall offer the same level of
safety as a single-core processor device:
� WCET must be computable

� Partitioning must be ensured

� Main usage models:
� Two main ones: AMP and SMP

� Some others proposed by some RTOS vendors (e.g: BMP)

� Or a mix of AMP and SMP

Core 0 Core 1 Core 2

OS 0 OS 1 OS 2

A
1

A
2

A
3

A
4

A
5

A
6

Core 0 Core 1 Core 2

OS

A
1

A
2

A
3

A
4

A
5

A
6

Core 0 Core 1 Core 2

OS

A
1

A
2

A
3

A
4

A
5

A
6

AMP
Asymmetric multi-
processing

SMP
Symmetric multi-
processing

BMP
Bound multi-
processing

Computing Systems for Signal Processing
Part 5: Hard Real-Time Systems and RTOS
October 22 nd 2010

10

19

Critical Systems

A critical system is any system whose ‘failure’ cou ld
threaten human life, the system’s environment or th e
business of the organisation which operates the sys tem.
‘Failure’ in this context does NOT mean failure to conform to a
specification but means any potentially threatening system behaviour .

20

Critical Systems classes

Safety-critical systems
� Failure results in loss of life, injury or major environmental

damage;

� e.g. Flight control system, Nuclear plant protection system;

Mission-critical systems
� Failure results in failure of some goal-directed activity;

� e.g. spacecraft navigation system;

Business-critical systems
� Failure results in high economic losses;

� e.g. customer accounting system in a bank;

Many embedded systems are critical !

11

21

Dimensions of criticity

Dependability
� The dependability in a system reflects the user’s trust in that system

Time-sensitiveness
Integration with the physical/environmental process es

Two classes of safety-critical embedded software
systems:

Primary safety-critical systems
� Embedded software systems whose failure can cause the associated

hardware to fail and directly threaten people.

Secondary safety-critical systems
� Systems whose failure results in faults in other systems which can

threaten people

22

The concept of dependability
For critical systems, it is usually the case that the most
important system property is the dependability of the
system
�The dependability of a system reflects the user’s degree of trust in
that system. It reflects the extent of the user’s confidence that it will
operate as users expect and that it will not ‘fail’ in normal use

Dependability

Availabil ity Reliability Security

The ability of the
system to deliver

services w hen
requested

The ability of the
system to deliver

services as specified?

The ability of the
system to operate

without catastrophic
failure

The ability of the
system to protect itelf
against accidental or
deliverate in trusion

Safety

12

23

Dependability Terminology

24

Availability and reliability

Reliability
� The probability of failure-free system operation over a specified time

in a given environment for a given purpose. R(t) = probability of
functional correctness if it was satisfied at t=0

Availability
� The probability that a system, at a point in time, will be operational

and able to deliver the requested services.

Other adjacent dependability properties
� Repairability: Reflects the extent to which the system can be

repaired in the event of a failure

� Maintainability : Reflects the extent to which the system can be
adapted to new requirements;

� Survivability : Reflects the extent to which the system can deliver
services whilst under hostile attack;

� Error tolerance : Reflects the extent to which user input errors can
be avoided and tolerated.

13

25

Socio-technical view of critical systems

Hardware failure
� Hardware fails because of design and manufacturing errors

or because components have reached the end of their natural
life.

Software failure
� Software fails due to errors in its specification, design or

implementation.

Operational failure
� Human operators make mistakes. Now perhaps the largest

single cause of system failures.

� Eg Ariane V failure despite redundant code: process issue

26

Reactive and Real-time

Embedded Systems are often reactive, real time, crit ical

„A reactive system is one which is in continual interaction
with is environment and executes at a pace determined by
that environment“ [Bergé, 1995]

Reactive systems means Real Time responsiveness :
� Timeliness : response time within a given time slot

� A late response is a fault

Time critical systems „A real-time constraint is called hard , if
not meeting that constraint could result in a catastrop he“
[Kopetz, 1997].
� Other constraints are called soft RT

� Response time is not statistical : worst case

14

27

Key Example: Avionics Systems

Cockpit system

Flight management

Galileo Egnos Comm.

28

Some Technical Challenges

Embedded safety critical software development
� Productivity

� Validation, Verification, Certification

Design challenge: networked, embedded, hard real-ti me, safe and secure

Technical approaches
� Built-in reliability and real time behaviour on safe hybrid systems

� Joint Modelling of physical and computational features

� Formal methods, Modelling techniques (formalisms)

� Automated test & validation processes
� Software development productivity

� Cost-effective certification and security

� Modularity of embedded software architecture

� Mission configurable reliable platforms
� Design techniques for cost effective reliable architectures: certifiably fault –

tolerant networks and middlewares

� dependable adaptive distributed middleware services, standards

15

29

Safety, Security

Safety : system’s ability to operate, normally or abnormal ly,
without danger of causing human injury or death and without
damage to the system’s environment
Safety and reliability are related but distinct
� Reliability is concerned with conformance to a given specification and

delivery of service
� Safety is concerned with ensuring system cannot cause damage irrespective

of whether or not it conforms to its specification

Safety achievements : built-in properties for hazard
avoidance, hazard detection and removal, damage limi tation
Security is a system property that reflects the system’s abi lity
to protect itself from accidental or deliberate ext ernal attack
� Security is becoming increasingly important as systems are networked so

that external access to the system through the Internet is possible

Security is an essential pre-requisite for availabi lity, reliability
and safety : safety validation relies on demonstrating that a pa rticular
system is safe

30

In summary

Computer-based systems are socio-technical systems
which include hardware, software, operational
processes, procedures and people.

An increasing number of socio-technical systems are
critical systems

Systems have emergent properties i.e. properties wh ich
are only apparent when all sub-systems are integrat ed.

Critical systems have dependability attributes -
reliability, availability, safety and security

16

31

Design of Critical Systems

Design & Engineering for Safety
� Most Critical Information Systems have to comply with safety regulations

(SWAL, DO-178B, SIL …)

� Design and engineering for safety is currently costly and cumbersome

� Need for technologies enabling « safety proven » design and engineering

� Costs of critical system failure are so high that development methods may be
used that are not cost-effective for other types of system.

Some Research issues
�Insertion of formal methods for system specification, verification/ testing, timing
analysis (eg WCET)

�High integrity programming: incorporation of redundant code and self-checking
in programs, threads analysis, timing properties analysis (WCET)

�Control theory/functional modeling with software architecture

�Simulation based seamless integration from specification to test means

�Multidisciplinary / multiviewpoint engineering: include methodology,
architectures, and applications while ensuring efficiency of the architecture
=>Standard design techniques must be adapted

Computing Systems for Signal Processing
Part 6: Power Constraints
October 22 nd 2010

17

33

33

Platform Power Measurements

Fluke NetDAQ
Connected to a PC ���� log files
Sense Resistors
Power: P = I x V
� Current: I
� Voltage: V
Shunt Resistor Method
� V = Voltage at Input to CPU
� I = Vs/Rs

� Vs = Voltage Drop Across Rs
� With Rs = 100 mOhm

The same methodology is applied
to each power rail for each
component (CPU, Memory, GMCH,
ICH)

Workstation

NetDAQ
TCP/IP

DC-DC
Power Supply Test points

+ Vsense -

+

Vcc

-

DC CPU

C2

0

0

0

0

0

C11

0

0

0

0

0

Rs

+

-

+

-

N
e

tD
A

Q

34

34

Platform Power graphs

0 5 10 15 20 25
3

4

5

6

7

8

9

10
3DMark03.csv

P
ow

er
 (

W
)

Time (s)

50ms Sample

100ms Average

1 Second Average
5 Second Average

Total Average

Data is acquired with a 50ms sampling rate and proc essed
to estimate power with other moving average window

18

35

35

Measured GMCH power

0 10 20 30 40 50 60
5

5.5

6

6.5

7

7.5

8

8.5

9
5 Second Average

P
ow

er
 (

W
)

Time (s)

Starwars-Intro.csv

3DMark03.csv

Quake4-Intro.csv
Aquamark3.csv
Comanche4.csv

Power Profile for top 5 GMCH apps on Crestline with 5s moving average

36

CPU, 0.81, 8%

HDD, 0.90, 8%

GMCH, 1.12, 11%

Memory, 0.28, 3%

ICH, 0.71, 7%

Audio, 0.13, 1%

BKLT, 2.85, 27%

CK410, 0.98, 9%

Panel, 0.85, 8%

CPUIO, 0.09, 1%

ODD, 0.16, 1%

LAN, 0.13, 1%

Other, 0.70, 6%

VR, 1.01, 9%

WLAN, 0.05, 0%

10.8

Average Platform Power Distribution

19

37

T&L Cooling Design & ApproachT&L Cooling Design & Approach

HDD

Express Card

FAN

CPU RHE

Battery CellsCPU VR

ICH TMDS
SO DIMM
Memory

Kybd
Conn

Clk Gen

RJ45
RJ11

DDR VR

VCCP VR

LVDS

Hinge
Mount

Spkr

Spkr

Express Card
LAN

CPU
GMCH

GMCH RHE

ODD

Heat exchangers transfer energy to the air

Fan draws air in and
pushes it out

Dedicated thermal solution on highest
power devices

Place other components in straight
(sort of) line path from inlets to fan

Heat pipe: moves heat, but can’t get rid
of it, without fan/HX.
Why move it? To get it to where you
actually have room for a fan and heat
exchanger.

Computing Systems for Signal Processing
Part 7: Critical and Complex Systems
October 22 nd 2010

20

39

1. Embedded System Development
� V cycle

2. System Modelling
� The right level of abstraction

3. Platform Based Design
� What’s a platform?
� Meet in the middle

4. Platform Simulation
� Requirements
� Example: SystemC and TLM

Outline

40

� The V-model is a graphical representation of the systems
development lifecycle. It summarizes the main steps to be taken in
conjunction with the corresponding deliverables within
computerized system validation framework

� The V-model is a process that represents the sequence of steps in
a project life cycle development. It describes the activities and
results that have to be produced during product development.

� The left side of the V represents the decomposition of requirements
and creation of system specifications

� The right side of the V represents integration of parts and their
verification

Systems Development Lifecycle: V-Model

21

41

Systems Development Lifecycle: V-Model

42

� Minimization of Project Risks:
� The V-Model improves project transparency and project control by specifying

standardized approaches and describing the corresponding results and responsible
roles. It permits an early recognition of planning deviations and risks and improves
process management, thus reducing the project risk.

� Improvement and Guarantee of Quality:
� As a standardized process model, the V-Model ensures that the results to be provided

are complete and have the desired quality. Defined interim results can be checked at
an early stage. Uniform product contents will improve readability, understandability and
verifiability.

� Reduction of Total Cost over the Entire Project and System Life Cycle:
� The effort for the development, production, operation and maintenance of a system can

be calculated, estimated and controlled in a transparent manner by applying a
standardized process model. The results obtained are uniform and easily retraced. This
reduces the acquirers dependency on the supplier and the effort for subsequent
activities and projects.

� Improvement of Communication between all Stakeholders:
� The standardized and uniform description of all relevant elements and terms is the

basis for the mutual understanding between all stakeholders. Thus, the frictional loss
between user, acquirer, supplier and developer is reduced.

V-Model Objectives

22

43

1. Embedded System Development
� V cycle

2. System Modelling
� The right level of abstraction

3. Platform Based Design
� What’s a platform?
� Meet in the middle

4. Platform Simulation
� Requirements
� Example: SystemC and TLM

Outline

44

Transistor Model
Capacity Load

Gate Level Model
Capacity Load

SDF
Wire Load

IP Block Performance
Inter IP Communication
Performance Models

The Quest for the Next Level of Abstraction

ab
st

ra
ct

cluster

RTL

IP Blocks

RTL
Clusters

SW
Models

cluster

cluster

1970s 1980s 1990s 2000+

abstract

abstract

abstract

23

45

3 Classes of Applications ���� 3 Types of Processors

• Reuse IP building
blocks

• LPIA

• DRAM Controller

• Cache

• Network on Chip

• PCIe controller

• Accelerators

• Target multiple apps
• Low-power

• Laptop

• Desktop

• Many-cores

• GPUs

46

Electronic Systems Design Chain

Interfaces

Manufacturing

Implementation

System Design

IP

24

47

1. Embedded System Development
� V cycle

2. System Modelling
� The right level of abstraction

3. Platform Based Design
� What’s a platform?
� Meet in the middle

4. Platform Simulation
� Requirements
� Example: SystemC and TLM

Outline

48

Platform Based Design

Why platform? Why not focus on processor?
� Power efficiency requires a mix of GPP and ASSP (and DSP/Media

processors)
� Partition the application between the different cores in the most

power efficient manner
What’s different in Platform modeling vs. GPP uarch ?
� Asymmetric
� Mix of programmable (GPP, DSP) and non programmable cores

(ASSP)
� Platform simulation is different from cycle-accurate uarch simulators
What’s different about platform-based design?
� Enable IP reuse
� Drag & Drop composability, menu-based architecture
� Validation through accurate modeling
What’s a platform anyway?
� “A coordinated family of architectures that satisfy a set of

architectural constraints imposed to support reuse of hardware and
software components”

25

49

�Structured methodology that limits the space of exploration,
yet achieves good results in limited time

�A formal mechanism for identifying the most critical hand-off
points in the design chain

�A method for design re-use at all abstraction levels

�An intellectual framework for the complete electronic design
process!

Meet in the middle

Platform
Design-Space

Export

Platform
Mapping

Architectural Space

Application Space
Application Instance

Platform Instance

Platform

50

Top-Down:
�Define a set of abstraction layers

�From specifications at a given level, select a solution (controls,
components) in terms of components (Platforms) of the following layer
and propagate constraints

Bottom-Up:
�Platform components (e.g., micro-controller, RTOS, communication

primitives) at a given level are abstracted to a higher level by their
functionality and a set of parameters that help guiding the solution
selection process. The selection process is equivalent to a covering
problem if a common semantic domain is used.

Meet in the Middle

26

51

Specification

Analysis

After Sales
Service

Calibration

Implementation

D
ev

el
op

m
en

t P
ro

ce
ss

BusesBuses
Matlab

CPUs Buses Operating
Systems

Behavior Components Virtual Architectural Com ponents

C-Code
IPs

ASCET

ECUECU--11 ECUECU--22

ECUECU--33
BusBus

f1f1 f2f2

f3f3

System Behavior System Platform

Mapping

Performance
Analysis

Refinement

Evaluation of
Architectural
and
Partitioning
Alternatives

Separation of Concerns (1990 Vintage!)

52

What’s needed for PBD?

High Level modeling of each core and of the interco nnect
to enable
� Fast simulation
� Accurate results
� Power and performance models

Connecting the modules
� Can it be automatic
� Type inference

Architecture Description Language
Constraint Description Language
� Performance,
� Size
� Power

27

53

Architecture Design Space

Platform Design Methodology

DSP CPU Interconnect ASSPs

ADL (Architecture
Description Language)

RDL (Resource Constraints
Description)

Application Functional Specification

(including timing, power and other constraints)

Capture Platform Architecture

Capture Resource Constraints
Architecture
Design Tools

Explore the design space and simulate the perf/powe r of
different platform instances at multiple abstractio n levels

54

Impact on process and skills evolution

Programme 1 Programme 2 Programme 3

Algorithm
design

Chip
selection
from COTS

Algorithm
implementation

No optimisation of real-time performances
No capitalisation across programmes

New
programme

New customer
demand

Algorithm
implementation

Implementation
feedback

Programme Driven Process
Top-down design + independent programmes

Platform Based Process
Algorithms and platform co-design and tuning

Algorithm
design

Chip
selection
from COTS

Algorithm
implementation

Algorithm
design

Chip
selection
from COTS

Algorithm
implementation

� Platform architects: capable to design domain dedicated massively parall el processing platforms
� Algorithms architects: capable to design algorithms which can efficiently map to the platform
� Domain architects: capable to cross optimise algorithm and platform design strategies
� Parallel programmers: capable to quickly develop the parallel code for a given algorithm

Required skills to support Platform-based Process

co-tuning

Domain

Operational
needs

New
functions

New
functions

feedbackfeedback

Massively parallel domain dedicated programmable pr ocessors

List of
functions

Algorithm
design

Platform
tuning

28

55

Requirements for Platform based Simulation

1. Need efficient architecture experimentation, simu lation,
analysis framework.
� Component Integration of big IP blocks is cumbersome.
� Changing RTL is very time consuming and not desirable

2. Support IP variety in SoCs
� Want to leverage existing C++, VHDL simulations

– Need wrapper & glue
� Simulation needs a “global/unifying” simulation queue.

� IP may be coming from external IP vendors

3. Desire to run “real SW” on simulations
� More than trace driven simulations!
� Complete Operating systems
� Driver and App development in advance of real silicon.

56

Simulation Taxonomy

Types of Simulations
System Architectural
System Performance
Functional Model
Transaction Level Model

(TLM)
Behavior Synthesis Model
Register Transfer Level

model (RTL)
Gate Level

Simulations Qualifiers
• UnTimed Functional
• Timed Functional
• Bus Cycle Accurate
• Pin Cycle Accurate
• Register Transfer

Accurate

29

57

57

Specification IPs

Industry landscape (an incomplete map..)

Functional model

Platforms Design
Constraints

Performance model Architecture
exploration

Software
Development

Hardware
Development

UML

Virtio
Axys

Lisatek
Vast

CoWare
CoFluent

58

SystemC Intro

Open System C Initiative (OSCI)
�Open source libraries and reference runtime.

Commercial tools from Synopsis, CoWare,
Frontier, etc.

SystemC is:
�C++, Class libraries, Run time simulation system

�Provides:
� Simulation queue and time based events

� Concurrency models

� HW abstractions (Modules, ports, buses)

30

59

Why use SystemC?

Use SystemC to create silicon IP
simulations

Can model an IP blocks
� RTL level to SoC level

Component composition “glue”
� Enable easy architectural experimentation and

analysis

Integrates heterogeneous solutions – can
wrap existing VHDL or C++ simulations.
� Very effective for SoCs

Reference model for RTL

Performance! –very effective at coarse
grained simulation
Enable advance SW development and
analysis before HW.

Tool vendors provide SystemC based
analysis hooks

60

SystemC Modeling

• Simulations are built from
SystemC classes: Modules, Ports,
Channels

•Processes describe module
functionality…really just methods.

•Class are “simulation aware”

• Class Macros provided as cheats
for EE folks: SC_MODULE()

31

61

Transaction Level Modeling (TLM)

It’s a simulation methodology.
� Dictates event granularity, standardized interfaces
Simulation has no “clock edge”
� Discrete events consume X time.
� Accurate, yet fast enough to execute real SW.

“The primary goal of Transaction Level Modeling is t o
achieve dramatically increased simulation speeds,
while still offering enough accuracy for determinin g
hardware response times.”

- High speed simulation
- Cycle accuracy
- Reduce detail & simplify modeling
- Handle complex bus topologies
- Support HDL Co-Simulation

62

Request

Contro
l

Signals

Data

Ack

Addr

Control

Data

TLM: Reducing Communication Detail

Data Ack

Grant

Address

Transfers

Transaction

Transfers are used to reduce communication detail to a small
number of events. A Transaction refers to the data-exchange
transfers (It excludes the arbitration transfers).

Address
&

Control

GrantRequest

Transfers are
used to

consolidate signal
handshakes

Arbitration

32

63

�V-Cycle and separation of concerns are typically used for
system development to reduce risk & cost and improve
quality & communication between stakeholders.

�System modelling should be done at the highest possible
abstraction to integrate large IP sw&hw building blocks

�Platform-based design enable cost reduction and reuse of
hardware and software components

�A combination of top down (from apps) and bottom up (from
architecture space) enables optimal solution

�HW/SW co-design with constant feedback between sw and
hw architects is required for a power/perf optimized system

�Fast simulation (e.g. SystemC) of power and performance is
needed for sw development and platform refinements.

Summary

