@ Computing Systems for Signal Processing

Part 4: PC vs. Embedded -» Power, Reliability, Real-time
October 22 " 2010

@ Computing System Arcihtecture — Eric Debes

Summary ©

New architecture is driven by power and thermal

- Transistor count continues to increase thanks to Moore’s law
« Most systems are limited by thermals

Parallelism is needed for perf and power efficiency

» Instruction level parallelism: Pipeline, OO0, VLIW

- Data-level parallelism: SIMD, Vector, 2D SIMD Matrices

» Thread level parallelism: SMP, CMP, SMT/HT

- System level parallelism: I/Os, Memory Hierarchy

Key Issues with Parallelism

« Amdahl’'s law

Extracting parallelism from applications

« Systems Issues - the rest of the system needs to be well balanced
- Programming models need to be portable, easy to learn and efficient
Application Specific Signal Processors and SoCs

» Spectrum: ASICs, FPGA, Media Proc, DSP, GPP + ISA extensions
- Depending on power/performance constraints, often a mix (SoC)

PC Architecture ©

Computing System Arcihtecture — Eric Debes

w

PCs have been driving innovation in processors for 30 years

What are the key components in the PC architecture?

What is the difference between a PC and an embedded

architecture?

Key Component in the Early PC Architecture

©

L

Computing System Arcihtecture — Eric Debes

N

.

AGP
graphics
‘ controller
A
1 Levell AGREEY
! cache y
| {eg. 16k/16K)
=} Nerth
5C242 Host
processor bus

Level-2
cache
(eg 512k)

USE bus

IDE bus

South
bridge

bridge |
(hosu/PCIl DRAM
bridge}

bus

ISA bus

{PCVISA
bridge)

v

Ultra
{e]

Flappy disk
Serial port

Parallel port
Mouse part

K/B port
iR port

| Typical PC Platform Architecture @

Typical PC platform (2008)

New architecture integrate
the MCH in the CPU

&

@ Computing System Arcihtecture — Eric Debes

5
| QPI vs FSB based Platform @

Intel® Quick
Path Interface

(QPI)

MCH is now integrated on chip

@ Computing S
»

Core i7 Block Diagram ®©
4 g

DDR3 memory 8.5 Gb/s
Intel® I:or:anljt;ro:essor DDR3 memory 8.5 Gbfs
DDR3 memory 8.5 Gb/s

QPl{25.6 GB/s)

PCl Express* 2.0 Graphics

Support for up to
Multi-card configurations: - u—
1x16, 2x16, 4x8 or -
other combination

2 GB/s

12 Hi-Speed USB 2.0 Ports; el Intel* High
Dual EHCI; USB Port Disable Definition Audio

6 Serial ATA Ports; eSATA;
Port Disable

Intel* Matrix
10/100/1000 MAC
Intel” Turbo Memory
with User Pinning
Intel® Gigabit LAN Connect BIOS Support

Intel® Extreme Tuning —_—
Support N - Optional

Intel” X58 Express Chipset Block Diagram

DM

6 PCl Express® x1

@ Computing System Arcihtecture — Eric Debes

: Laptop Internal View (@

0 Computing System Arcihtecture — Eric Debes

@ Computing System Arcihtecture — Eric Debes

Future: PC on a Chip ©

L

Processor will integrate

- Big core for single thread perf

- Small core for multithreaded perf

- some dedicated hardware units for
- graphics

[mmolych_|

- media

- encryption

- networking function
- other function specific logic

Systems will be heterogeneous
Processor core will be connected to

- one or multiple many-core cards
- and dedicated function hw in the chipset

+ reconfigurable logic in the system or on chip?

a Computing System Arcihtecture — Eric Debes

Embedded Architecture: What's different?

©

L

@ Computing System Arcihtecture — Eric Debes

v v v Vv

Power constraints

Reliability

Redundancy

Predictability (for Certification)

EXAMPLES:
Rack
Airbus
Rafale: radar
Portable devices: cellphone, MP3 player
Consumer set top boxes
Satellite
Train

v v v v v v Vv

Reminder: Embedded System Examples

@ Computing System Arcihtecture — Eric Debes

Consumer : DVD/video players,
Set-top-box, Playstation,
printers, disk drives, GPS,
cameras, mp3 players

Communications: Cellphone,
Mobile Internet Devices,
Netbooks, PDAs with WiFi,
GSM/3G, WiMax, GPS,
cameras, music/video

Automotive: Driving innovation
for many embedded
applications, e.g. Sensors,
buses, info-tainment

Industrial Applications: Process
control, Instrumentation

Other niche markets: video
surveillance, satellites,
airplanes, sonars, radars,
military applications

A wide range of Software and Hardware @

L

Applications
Software « Target Recognition
« \/'xWorks « Radar Processing
10 Connections o Linux « Sensor Fusion
« Video « Integrity « Image Processing
*« RGB/DVI « Windows * Real Time Recorders
* LVDS «BIT * Mission Computing
* GigE « BSP « Digital Map
 Ethernet « VMEdriver « Signal Intelligence
* Fibre Channel « 1553
* SCSI « RDMA
* SFPDP « IPC/GBM
« RocketlO « DMA Platforms
« Canbus + HDLC/SDLC * VME
« MIL-STD-1553 « TCP/IP * cPCI
« ARINC « VITA 46/48
* RF Analog Custom form
« Low Speed Analog Factors
« Discrete 10 Processing Backplane Buses

* Serial RSxxx * PowerPC SBC « Raceway
» C40 Links * Quad PowerPC DSP « StarFabric
* SharcLinks * FPGA Processing « SRIO
* SCRAMnet » Graphics Processing «PCle
* Syncro/Resolver * Pentium SBC « ASI

« Front End Processing

@ Computing System Arcihtecture — Eric Debes

Typical Embedded PC Architecture @

Hardened PC

Examples of Embedded Boards (©

@ Computing System Arcihtecture — Eric Debes

XMC/PMC

Ruggedisation Levels @

L

Level 0 Level 50 AC Level 100 AC Level 200 AC Level 100 CC Level 200 CC
Operating 0C-50C -20C to 65C -40°C to 71°C -40°C to 85°C -40°C to 71°C -40°C to 85°C
Temperature
Storage -40C t085C -40°C to 85°C -55°C to 125°C -55°C to 125°C -55°C to 125°C -55°C to 125°C
Humidity 0to 95% non- 0to 95% non- 0to 100% non- 0to 100% non- 0to 100% non- 0to 100% non-
operating condensing condensing condensing condensing condensing condensing
Humidity Storage 0to 95% Non- 0 to 95% Non- 0 to 100% 0to 100% 0to 100% 0 to 100%

condensing condensing condensing condensing condensing condensing
Vibration sign 2 g peak 15-2 2 g peak 15-2 10gpeak 15-2 | 10gpeak 15-2 | 10g peak 15-2 10 g peak 15-2

kHz kHz kHz kHz kHz kHz

Vibration random

0.01 g2/Hz 15-2
kHz

0.01 g2/Hz 15-2
kHz

0.04 g2/Hz 15-2
kHz

0.0492/Hz 15-
2kHz

0.192/Hz 15-2
kHz

0.1g2/Hz 15 Hz-2
kHz

Shock

20 g Peak

20 g Peak

30 g peak

30 g peak

40 g peak

40 g peak

Conformal coat

No

9 Computing System Arcibtectire — Fric Debhe:

Challenge: How to use Multi-core?

L

@ Computing System Arcihtecture — Eric Debes

» Obviously, a multi-core platform shall offer the same level of
safety as a single-core processor device:

» WCET must be computable
» Partitioning must be ensured

» Main usage models:
» Two main ones: AMP and SMP
» Some others proposed by some RTOS vendors (e.g: BMP)
» Or a mix of AMP and SMP

AMP SMP BMP
Asymmetric multi- Symmetric multi- Bound multi-
processing processing processing

@ Computing Systems for Signal Processing
Part 5: Hard Real-Time Systems and RTOS
October 22 " 2010

a Computing System Arcihtecture — Eric Debes

Critical Systems (€

A critical system is any system whose ‘failure’ cou Id
threaten human life, the system’s environment or th e

business of the organisation which operates the sys tem.

‘Failure’ in this context does NOT mean failure to conform to a

specification but means any potentially threatening system behaviour .

G Computing System Arcihtecture — Eric Debes

©

: Critical Systems classes

Safety-critical systems

» Failure results in loss of life, injury or major environmental
damage;

» e.g. Flight control system, Nuclear plant protection system;
Mission-critical systems

» Failure results in failure of some goal-directed activity;

» e.g. spacecraft navigation system;
Business-critical systems

» Failure results in high economic losses;

» e.g. customer accounting system in a bank;

Many embedded systems are critical !

10

@ Computing System Arcihtecture — Eric Debes

: Dimensions of criticity — (©

Dependability

» The dependability in a system reflects the user’s trust in that system
Time-sensitiveness
Integration with the physical/environmental process es

Two classes of safety-critical embedded software
systems:
Primary safety-critical systems

» Embedded software systems whose failure can cause the associated
hardware to fail and directly threaten people.

Secondary safety-critical systems

» Systems whose failure results in faults in other systems which can
threaten people

@ Computing System Arcihtecture — Eric Debes

; The concept of dependability @

or critical systems, it is usually the case that the most
important system property is the dependability of the
system

» The dependability of a system reflects the user’s degree of trust in

that system. It reflects the extent of the user’s confidence that it will
operate as users expect and that it will not ‘fail’ in normal use

Dependability
Avadlability Reliability Safety Security
The ability of the The ability of the The ability of the The ability of the
system to deliver system to deliver system to opeate system to protect itelf
services when savices as gecified? without catastrophic agai nst accidental or
requested failure ddiverate intrusion

11

@ Computing System Arcihtecture — Eric Debes

Dependability Terminology @

Availability

Reliability
— i Safety Securit
AR Confidentiali v
Integrit
Maintainability

Fault Prevention
Dependability | Means Fault Tolerance
Fault Removal
Fault Forecasting

Faults
Errors
Failures

~ Threats

G Computing System Arcihtecture — Eric Debes

Availability and reliability @

Reliability
» The probability of failure-free system operation over a specified time
in a given environment for a given purpose. R(t) = probability of
functional correctness if it was satisfied at t=0
Availability

» The probability that a system, at a point in time, will be operational
and able to deliver the requested services.

Other adjacent dependability properties

» Repairability: Reflects the extent to which the system can be
repaired in the event of a failure

» Maintainability : Reflects the extent to which the system can be
adapted to new requirements;

» Survivability : Reflects the extent to which the system can deliver
services whilst under hostile attack;

» Error tolerance : Reflects the extent to which user input errors can
be avoided and tolerated.

12

: Socio-technical view of critical systems ~ (©

Hardware failure

» Hardware fails because of design and manufacturing errors
or because components have reached the end of their natural
life.

Software failure

» Software fails due to errors in its specification, design or
implementation.

Operational failure

» Human operators make mistakes. Now perhaps the largest
single cause of system failures.

» Eg Ariane V failure despite redundant code: process issue

@ Computing System Arcihtecture — Eric Debes

Reactive and Real-time (©

L

Embedded Systems are often reactive, real time, crit ical

LA reactive system is one which is in continual interaction
with is environment and executes at a pace determined by
that environment” [Bergé, 1995]

Reactive systems means Real Time responsiveness :
» Timeliness : response time within a given time slot
» A late response is a fault

Time critical systems ,A real-time constraint is called hard, if
not meeting that constraint could result in a catastrop he*
[Kopetz, 1997].

» Other constraints are called soft RT
» Response time is not statistical : worst case

6 Computing System Arcihtecture — Eric Debes

13

_¢ Key Example: Avionics Systems @

Flight management

@ Computing System Arcihtecture — Eric Debes

Some Technical Challenges
- g ®©

Embedded safety critical software development

» Productivity

» Validation, Verification, Certification

Design challenge: networked, embedded, hard real-ti me, safe and secure

Technical approaches
B Built-in reliability and real time behaviour on safe hybrid systems
m Joint Modelling of physical and computational features
m Formal methods, Modelling techniques (formalisms)
(B Automated test & validation processes
; m Software development productivity
m Cost-effective certification and security
: m Modularity of embedded software architecture
B Mission configurable reliable platforms

§ m Design techniques for cost effective reliable architectures: certifiably fault —
tolerant networks and middlewares

4 m dependable adaptive distributed middleware services, standards

14

G Computing System Arcihtecture — Eric Debes

L

Safety, Security @

Safety: system’s ability to operate, normally or abnormal ly,
without danger of causing human injury or death and without
damage to the system’s environment

Safety and reliability are related but distinct

» Reliability is concerned with conformance to a given specification and
delivery of service

> Safety is concerned with ensuring system cannot cause damage irrespective
of whether or not it conforms to its specification
Safety achievements : built-in properties for hazard
avoidance, hazard detection and removal, damage limi tation
Security is a system property that reflects the system’s abi lity
to protect itself from accidental or deliberate ext ernal attack

» Security is becoming increasingly important as systems are networked so
that external access to the system through the Internet is possible
Security is an essential pre-requisite for availabi lity, reliability
and safety : safety validation relies on demonstrating that a pa rticular
system is safe

G Computing System Arcihtecture — Eric Debes

_¢ In summary @

Computer-based systems are socio-technical systems
which include hardware, software, operational
processes, procedures and people.

An increasing number of socio-technical systems are
critical systems

Systems have emergent properties i.e. properties wh ich
are only apparent when all sub-systems are integrat ed.

Critical systems have dependability attributes -
reliability, availability, safety and security

15

@ Computing System Arcihtecture — Eric Debes

E Design of Critical Systems (@

esign & Engineering for Safety

» Most Critical Information Systems have to comply with safety regulations
(SWAL, DO-178B, SIL ...)

» Design and engineering for safety is currently costly and cumbersome
» Need for technologies enabling « safety proven » design and engineering

» Costs of critical system failure are so high that development methods may be
used that are not cost-effective for other types of system.

Some Research issues

» Insertion of formal methods for system specification, verification/ testing, timing
analysis (eg WCET)

» High integrity programming: incorporation of redundant code and self-checking
in programs, threads analysis, timing properties analysis (WCET)

» Control theory/functional modeling with software architecture
» Simulation based seamless integration from specification to test means

» Multidisciplinary / multiviewpoint engineering: include methodology,
architectures, and applications while ensuring efficiency of the architecture
=>standard design techniques must be adapted

@ Computing Systems for Signal Processing
Part 6: Power Constraints
October 22 " 2010

16

@ Computing System Arcihtecture — Eric Debes

Platform Power Measurements (€

Fluke NetDAQ

Connected to a PC - log files

Sense Resistors

Power: P=1xV

» Current: |

» Voltage: V

Shunt Resistor Method

» V =Voltage at Input to CPU

» 1=Vs/Rs
» Vs = Voltage Drop Across Rs
» With Rs = 100 mOhm

The same methodology is applied
to each power rail for each
component (CPU, Memory, GMCH,
ICH)

33

NetDAQ

.
TCP/IP I

Workstation

DC-DC
Power Supply

Test points

@ Computing System Arcihtecture — Eric Debes

Platform Power graphs @

3DMark03.csv

®

T
1[I
I |
|

|
Thrai

Power (W)

50ms Sample
100ms Average

1 Second Average
5 Second Average
Total Average

Time (s)
Data is acquired with a 50ms sampling rate and proc

to estimate power with other moving average window

34

T
20

essed

17

Computing System Arcihtecture — Eric Debes

w
&

Measured GMCH power @

Power (W)

5 Second Average

7777777 P m e —— ==
hrod I I

/#\ o I I

\ I I I

Sl N o |

I 1\ | |

Y 1™\ | |

| S | I
"‘:‘—T————F—X\ﬁ«w&”—ﬂ——74————\

| I : INRAYY I

- ‘\\Nw" V |

v oy |

————‘—k—gr«l—w‘—\—’—\ﬁ ——————— |

W I

» \ !

W |

7777777 O P R R W

Starwars-Intro.csv
55 — — — — — _ Ll _ O ____ R W S T — 3DMark03.csv
Quake4-Intro.csv

| Aquamark3.csv
Comanche4.csv

1 T
0 10 20 30 40 50
Time (s)
Power Profile for top 5 GMCH apps on Crestline with 5s moving average

gl——=

35

Computing System Arcihtecture — Eric Debes

w
8

Average Platform Power Distribution @

CPUIO, 0.09, 1%
WLAN, 0.05, 0%)

, ~GMCH, 1.12, 11%
HDD, 0.90, 8%, _ e Z ™ W nn>. —Memory, 0.28, 3%
/ ¥ L

2, CH, 0.71, 7%

Audio, 0.13, 1%

> ODD, 0.16, 1%

-
CPU, 0.81, 8%

Pl VR, 1.01, 9%

o = b " 0ther, 0.70, 6%

SN

-~ o
FTSpunel 0:85- 8%

18

T&L Cooling Design & Approach ©

L

Heat exchangers transfer energy to the air

Dedicated thermal solution on highest

Fan draws airin-and ‘ower devices

pushes it out

Heat pipe: moves heat, but can't get rid
of it, without fan/HX.

Why move it? To get it to where you
actually have room for a fan and heat
exehanger.

Place other components in straight
(sort of) line path from inlets to fan

@ Computing System Arcihtecture — Eric Debes

@ Computing Systems for Signal Processing
Part 7: Critical and Complex Systems
October 22 " 2010

19

Outline ©

Computing System Arcihtecture — Eric Debes

w
8

1. Embedded System Development
» Vcycle
2. System Modelling
» The right level of abstraction
3. Platform Based Design
» What's a platform?
» Meet in the middle
4. Platform Simulation
» Requirements
» Example: SystemC and TLM

Systems Development Lifecycle: V-Model @

L

Computing System Arcihtecture — Eric Debes

N
S

» The V-model is a graphical representation of the systems
development lifecycle. It summarizes the main steps to be taken in
conjunction with the corresponding deliverables within
computerized system validation framework

» The V-model is a process that represents the sequence of steps in
a project life cycle development. It describes the activities and
results that have to be produced during product development.

» The left side of the V represents the decomposition of requirements
and creation of system specifications

» The right side of the V represents integration of parts and their
verification

20

e Computing System Arcihtecture — Eric Debes

L

Systems Development Lifecycle: V-Model @

£ Requirements \

= :
/' Acceptance |

[/ Acceptance |

| Anaysis | """""""::"'\ T ™ Testing 2y
- —
N ’
s ’
y— ‘ —
[system NN o Sysewm System |
Design » TestDesign

\ Testing

- —

[Imegration O\ __ _y/ Integration

(Architecture '\’ Ji
/ TestDesign | Testing

Design

Unit

=% Testing

N
. -..:’ Cading ‘}4’--,?

e Computing System Arcihtecture — Eric Debes

V-Model Objectives (©

v

Minimization of Project Risks:

» The V-Model improves project transparency and project control by specifying
standardized approaches and describing the corresponding results and responsible
roles. It permits an early recognition of planning deviations and risks and improves
process management, thus reducing the project risk.

Improvement and Guarantee of Quality:

» As a standardized process model, the V-Model ensures that the results to be provided
are complete and have the desired quality. Defined interim results can be checked at
an early stage. Uniform product contents will improve readability, understandability and
verifiability.

Reduction of Total Cost over the Entire Project and System Life Cycle:

» The effort for the development, production, operation and maintenance of a system can
be calculated, estimated and controlled in a transparent manner by applying a
standardized process model. The results obtained are uniform and easily retraced. This
reduces the acquirers dependency on the supplier and the effort for subsequent
activities and projects.

Improvement of Communication between all Stakeholders:

» The standardized and uniform description of all relevant elements and terms is the
basis for the mutual understanding between all stakeholders. Thus, the frictional loss
between user, acquirer, supplier and developer is reduced.

21

e Computing System Arcihtecture — Eric Debes

Outline (©

1. Embedded System Development
» Vcycle
2. System Modelling
» The right level of abstraction
3. Platform Based Design
» What's a platform?
» Meet in the middle
4. Platform Simulation
» Requirements
» Example: SystemC and TLM

: The Quest for the Next Level of Abstraction

e Computing System Arcihtecture — Eric Debes

©

IP Blocks
EXTaea:E

22

3 Classes of Applications -> 3 Types of Processors @

* Reuse IP building

blocks
-LPIA T
« DRAM Controller 108
cache|
« Cache 1MB

cache|

 Network on Chip

NeC

« PCle controller

6 Computing System Arcihtecture — Eric Debes

1 ME
Y Accelerators cache
£ T
2 cache|
., * Target multiple apps ~ [omw
§ » Low-power
¢ rlaptop s cache] ctc
;’2 « Desktop elmales
£ cachefcache| ctir
H « Many-cores
£
8 +GPUs
: Electronic Systems Design Chain ~ (©

Interfaces

23

9 Computing System Arcihtecture — Eric Debes

Outline (©

1. Embedded System Development
» Vcycle
2. System Modelling
» The right level of abstraction
3. Platform Based Design
» What's a platform?
» Meet in the middle
4. Platform Simulation
» Requirements
» Example: SystemC and TLM

G Computing System Arcihtecture — Eric Debes

L

Platform Based Design

©

Why platform? Why not focus on processor?

» Power efficiency requires a mix of GPP and ASSP (and DSP/Media
processors)

» Partition the application between the different cores in the most
power efficient manner

What's different in Platform modeling vs. GPP uarch ?
» Asymmetric

» Mix of programmable (GPP, DSP) and non programmable cores
(ASSP)

- Platform simulation is different from cycle-accurate uarch simulators
What's different about platform-based design?

» Enable IP reuse

» Drag & Drop composability, menu-based architecture

» Validation through accurate modeling
What's a platform anyway?

» “A coordinated family of architectures that satisfy a set of
architectural constraints imposed to support reuse of hardware and
software components”

24

6 Computing System Arcihtecture — Eric Debes

Meet in the middle (©

» Structured methodology that limits the space of exploration,
yet achieves good results in limited time

» A formal mechanism for identifying the most critical hand-off
points in the design chain

» A method for design re-use at all abstraction levels

» An intellectual framework for the complete electronic design
process!

Platform
Mapping

Platform
Design-Space
Export

g Computing System Arcihtecture — Eric Debes

lop-Down:

Meet in the Middle ©

» Define a set of abstraction layers

» From specifications at a given level, select a solution (controls,
components) in terms of components (Platforms) of the following layer
and propagate constraints

Bottom-Up:

» Platform components (e.g., micro-controller, RTOS, communication
primitives) at a given level are abstracted to a higher level by their
functionality and a set of parameters that help guiding the solution
selection process. The selection process is equivalent to a covering
problem if a common semantic domain is used.

25

@ Computing System Arcihtecture — Eric Debes

Separation of Concerns (1990 Vintage!) @

Buses Operating
Systems

\ | / __\ J / "
Analysis
L ecua B ool

Specification
|_ecul

Implementation

Calibration

Afti S
Se

_¢ What's needed for PBD? ©

@ Computing System Arcihtecture — Eric Debes

High Level modeling of each core and of the interco nnect
to enable

» Fast simulation

» Accurate results

» Power and performance models

Connecting the modules
» Can it be automatic
» Type inference

Architecture Description Language
Constraint Description Language

» Performance,

» Size

» Power

26

@ Computing System Arcihtecture — Eri

Platform Design Methodology (€

Application Functional Specification

(including timing, power and other constraints)

Capture Resource Constraints

ADL (Architecture RDL (Resource Constraints
Description Language) Description)

Capture Platform Architecture

Architecture Design Space

DSP CPU Interconnect ASSPs

Explore the design space and simulate the perf/powe r of
different platform instances at multiple abstractio n levels

Impact on process and skills evolution
Massively parallel domain dedicated programmable pr 0Cessors @

Required skills to support Platform-based Process

m Platform architects: capable to design domain dedicated massively parall el processing platforms
m Algorithms architects: capable to design algorithms which can efficiently map to the platform
m Domain architects: capable to cross optimise algorithm and platform design strategies
m Parallel programmers: capable to quickly develop the parallel code for a given algorithm
Programme Driven Process Platform Based Process
Top-down design + independent programmes Algorithms and platform co-design and tuning
| Domain |
Programme 1 Programme 2 Programme 3 l
v v v Operational
. . . New needs New customer|
Algquthm Algquthm Algquthm programme e
design design design
g]]]
S| Chip Chip Chip
1| selection selection selection
/| from coTs from COTS from COTS _‘fee"ba‘ik feedback
] v v v
8 - - - Algorithm [o| Platform
£| Algorithm Algorithm Algorithm design 5] tuning
Z| implementation implementation implementation 3 3
o Algorithm
% @ @ @ implementation
= No optimisation of real-time performances ; L
B Implementation
E| No capitalisation across programmes
3 feedback
© 7 —

27

: Requirements for Platform based Simulation ©

1. Need efficient architecture experimentation, simu lation,
analysis framework.

» Component Integration of big IP blocks is cumbersome.
» Changing RTL is very time consuming and not desirable

2. Support IP variety in SoCs
» Wantto leverage existing C++, VHDL simulations
— Need wrapper & glue
» Simulation needs a “global/unifying” simulation queue.
» IP may be coming from external IP vendors

E 3. Desire to run “real SW” on simulations
E » More than trace driven simulations!
z » Complete Operating systems
H » Driver and App development in advance of real silicon.
1
®
: Simulation Taxonomy (©
Types of Simulations Simulations Qualifiers
System Architectural * UnTimed Functional

System Performance « Timed Functional

Functional Model * Bus Cycle Accurate

Transaction Level Model ’ E'n CydeTAccufrate
(TLM) » Reqgister Transfer

_ _ Accurate
Behavior Synthesis Model

Register Transfer Level
model (RTL)

Gate Level

Q Computing System Arcihtecture — Eric Debes

(&3]
~

@ Computing System Arcihtecture — Eric Debes

Industry landscape (an incomplete map..) (@

secification

Functional model

Performance model

Q Computing System Arcihtecture — Eric Debes

SystemC Intro (©

Open System C Initiative (OSCI)

» Open source libraries and reference runtime.

Commercial tools from Synopsis, CoWare,
Frontier, etc.

SystemC is:

» C++, Class libraries, Run time simulation system

» Provides:
» Simulation queue and time based events
» Concurrency models
» HW abstractions (Modules, ports, buses)

29

Why use SystemC? @

Use SystemC to create silicon IP
simulations

Can model an IP blocks
» RTL level to SoC level

Component composition “glue”

» Enable easy architectural experimentation and

analysis
Integrates heterogeneous solutions — can
wrap existing VHDL or C++ simulations.
» Very effective for SoCs

Reference model for RTL

htecture — Eric Debes

gPerformance! —very effective at coarse
egrained simulation
~Enable advance SW development and

2analysis before HW.

omputi

°Tool vendors provide SystemC based
(sanalysis hooks

Functional Mode!
{SystemC)
| ; ! System
Software Hardware LM [l | v
{€.C+) | 7 l"’ (SystemC) I :4- E;"mml

SystemC Modeling (@

L

Libraries Verification Library

Primitive Channels L
Signal, Mutex, Semaphare, FIFO, atc.

Core Language Data Types

Modules 4-valued Logic type
8 Forts 4-valued Logic Vectors
3 Processes Bits and Bit Veclors
2 Interfaces Arbilrary Precision Integers
| Channgls Fixed-point types
g Events C++ user-defined lypes
8 Eventdriven simulation
<
E
2 C++ Language Standard
12}
:
38

Master/Siave Library, etc, Staic Dataflow, otc. 3 i] @
g
:]_ P“""“)-e Channel 2 I

_ [Cosee]
SystemC Language Architecture
,
Methodology-Specific Layered Ubraes TS 00 15 e &) maanee

e b

= Module body
Process. h cess gy | Module instances

concurrent processes

» Simulations are built from
SystemC classes: Modules, Ports,
Channels

*Processes describe module
functionality...really just methods.

*Class are “simulation aware”

* Class Macros provided as cheats
for EE folks: SC_MODULE()

30

e Computing System Arcihtecture — Eric Debes

Transaction Level Modeling (TLM)

©

It's a simulation methodology.
» Dictates event granularity, standardized interfaces
Simulation has no “clock edge”
» Discrete events consume X time.
» Accurate, yet fast enough to execute real SW.

“The primary goal of Transaction Level Modeling is t
achieve dramatically increased simulation speeds,
while still offering enough accuracy for determinin
hardware response times.”

- High speed simulation

- Cycle accuracy
- Reduce detail & simplify modeling
- Handle complex bus topologies

- Support HDL Co-Simulation

L

TLM: Reducing Communication Detail

©

Transfers are used to reduce communication detail to a small

number of events. A Transaction

refers to the data-exchange

transfers (It excludes the arbitration transfers).

Request
Grant
Transfersare Address
used to
gonsolidate signal Contro
2 handshgkes :
Q Signals
2
“‘J Data
®
=2
g Ack
<
1
o
2
2] Transfers
2
3
£
o
o

i |
I R
X Addr X
X ContrLX
{__Daa X
I I

31

Q Computing System Arcihtecture — Eric Debes

Summary ©
r

» V-Cycle and separation of concerns are typically used for
system development to reduce risk & cost and improve
guality & communication between stakeholders.

» System modelling should be done at the highest possible
abstraction to integrate large IP sw&hw building blocks

» Platform-based design enable cost reduction and reuse of
hardware and software components

» A combination of top down (from apps) and bottom up (from
architecture space) enables optimal solution

» HW/SW co-design with constant feedback between sw and
hw architects is required for a power/perf optimized system

» Fast simulation (e.g. SystemC) of power and performance is
needed for sw development and platform refinements.

32

