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Bases in Orlik–Solomon Type Algebras

DAVID FORGE

Let M be a matroid on[n] andE be the graded algebra generated over a fieldk generated by the
elements 1, e1, . . . , en. Let =(M) be the ideal ofE generated by the squarese2

1, . . . , e2
n, elements

of the formei ej + ai j ej ei and ‘boundaries of circuits’, i.e., elements of the form
∑

χ j ei1 . . . ei j −1
ei j +1 . . . eim , with χ j ∈ k andei1, . . . , eim a circuit of the matroid with some special coefficients. The
χ -algebraA(M) is defined as the quotient ofE by =(M). Recall that the class ofχ -algebras contains
several studied algebras and in first place the Orlik–Solomon algebra of a matroid. We will essentially
construct the reduced Gröbner basis of=(M) for any term order and give some consequences.

c© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In a vector space, a (central) hyperplane arrangementis a finite collection of codimension 1
subspaces. Thematroid of an hyperplane arrangementcan be defined by saying that a subset
of the arrangement is independent if and only if the codimension of its intersection is equal
to its cardinality. Manifolds defined as complements of complex hyperplane arrangements are
important in the Aomoto–Gelfand theory ofA-hypergeometric functions. In [5] the cohomol-
ogy algebra of a manifold of this form is shown to be isomorphic to the Orlik–Solomon (OS)
algebra of the matroid of the arrangement. This result has motivated further research on OS
algebras. It is known that for OS algebras of matroids the set of ‘no broken circuits’ (NBC)
gives a basis. We refer the reader to [6, 9] for more details on OS-algebras and to [2, 8] for
good sources of matroid and oriented matroid theory.

In Section2, we recall the construction ofχ -algebras [4] as the quotient of an algebraE by
an ideal=(M). This is a generalization of OS algebras for which the set of NBC gives also
a basis. We also recall two commutative examples ofχ -algebras: an algebra defined for an
arrangement of hyperplane [7] and an algebra defined for an oriented matroid [3]. A χ -algebra
is defined by the quotient of an algebraE by an ideal=(M) defined from the circuits ofM .
In Section3, we construct the reduced Gröbner basis of the ideal=(M) for any term order
(Theorem3.5). This gives as a corollary a universal Gröbner basis which is shown to be
minimal. Finally we remark that the bases given by the NBC are also the bases corresponding
to the reduced Gröbner bases for the different term orders.

2. χ -ALGEBRAS

Let M be a simple matroid of rankr on ground set[n] := {1, 2, . . . , n}. We say that a
subsetU ⊆ [n] is unidependentif it contains exactly one circuit, denoted byC(U ). For any
i ∈ C(U ) the subsetU \ i is independent. This property characterizes unidependents among
dependents:a dependent D is unidependent if and only if there is i∈ D such that D\ i is
independent.

Let I be an independent ofM . We say that an elementi ∈ [n] is activewith respect toI
if I ∪ i contains a circuit with smallest elementi . An independent set with at least one active
element is said to beactive, and inactiveotherwise. We denote byα(I ) the smallest active
element with respect to an active independentI . Inactive independents are often called NBC
in the literature, since a subset of[n] is an inactive independent if and only if it contains NBC,
where abroken circuitsare the sets obtained by removing the smallest element from a circuit.
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Fix a setE = {e1, . . . , en}. Let E be the graded algebra over a fieldk generated by the
elements 1, e1, . . . , en and satisfying the relationse2

i = 0 for all ei ∈ E andej ·ei = ai, j ei ·ej

with ai, j ∈ k \0 for all i < j . Both the free exterior algebra and the free commutative algebra
with squares zero generated by the elements ofE are such algebras (takeai, j = −1 resp.
ai, j = 1 for all i < j ) and will be the only ones to be used in the examples. When writing a set
in the formX = {i1, i2, . . . , im} we always suppose w.l.o.g. that we havei1 < i2 < · · · < im.
Given a subsetX = {i1, i2, . . . , im} ⊂ [n] we will denote byeX the corresponding (pure)
elementei1 · ei2, . . . , eim. Fix a mappingχ : 2[n]

→ k. We define theχ -boundaryof an
elementeX by

∂eX =

`=m∑
`=1

(−1)`χ(X \ i`)eX\i` .

We extend∂ to E by linearity.
Let =χ (M) be the (right) ideal ofE generated by theχ -boundaries{∂eC : C circuit}. We

say that
Aχ (M) = E/=χ (M)

is aχ -algebra ifχ satisfies the following two properties:

(UC1) χ(I ) 6= 0 iff I is independent,
(UC2) for any unidependent U of M there is a∈ k\0, such that

∂eU = a(∂eC(U ))eU\C(U ).

It can be observed that (UC2) implies thatχ(U ) = 0 for a unidependentU containing no
basis ofM . Values ofχ on other dependents are irrelevant and can always be chosen null. For
convenience, we will also noteeX for the residue class ofeX inAχ (M). Note that aχ -algebra
is defined by the matroidM , the algebraE and the functionχ .

EXAMPLE 2.1. The OS algebra of a matroid[6]. Let M be a matroid on[n]. The OS
algebraOS(M) is the quotient ofE , the graded exterior algebra of the vector space

∑n
i =1 kei ,

by the ideal generated by boundaries of circuits ofM .

The OS algebra ofM , OS(M), is theχ -algebra obtained forM , the algebraE as above and
χ defined forX ⊆ [n] by χ(X) = 1 for every independent.

EXAMPLE 2.2. The Orlik–Terao algebra of a set of vectors[7]. Let V = {v1, v2, . . . , vn}

be a set of vectors in a vector space overk. The Orlik–Terao algebraOT(V) is the quotient
of E , the commutative graded algebra over the fieldk generated by the elements 1, e1, . . . , en,
with squares zero, by the ideal generated by the elements ofE of the form

∑ j =m
j =1 λi j ei1

ei2 . . . ei j −1ei j +1 . . . eim for any minimal non-trivial linear dependency
∑ j =m

j =1 λi j vi j = 0 among
the vectors ofV.

The Orlik–Terao algebra,OT(V), is the χ -algebra obtained as follows. LetM be the
matroid of linear dependencies of the vectors inV andE be the algebra as above. We fix
a basisBF for any flatF of the matroidM . Then for I = {i1, i2, . . . , ik} independent inM
we defineχ(I ) as the determinant det(vi1, vi2, . . . , vik) with respect toBcl(I ).

EXAMPLE 2.3. A commutative algebra defined for an oriented matroid[3]. Let O M be an
oriented matroid on[n]. The commutative algebraA(O M) is the quotient ofE , the commu-
tative graded algebra over the fieldk generated by the elements 1, e1, . . . , en, with squares
zero, by the ideal generated by the elements ofE of the form

∑
i ∈C sgC(i )eC\i for any signed

circuit C of O M with signaturesgC.
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The algebraA(O M) is theχ -algebra obtained as follows. LetM be the underlying matroid
of O M andE be the algebra as above. To defineχ , we fix a basis signature independently in
all restrictions ofO M to a flatF of M (we recall that a basis signature of an oriented matroid
is determined up to a factor±1). Then forI independent inM we defineχ(I ) as the sign of
I in standard form for the chosen basis signature of the submatroid ofO M on the geometric
closure ofI in M .

We say that a unidependentU is inactiveif there is a (necessarily unique) active indepen-
dent I such thatU = I ∪ α(I ). Let D be the right ideal ofE generated by the elements
{eC : C circuit}. We will noteEi and=i the algebra quotientE/D and its ideal quotient=/D
respectively. We now rephrase the principal result of [4].

THEOREM 2.4 ([4]). Let M be a matroid on[n] andAχ (M) be aχ -algebra. Then the
set {eI : I inactive independent of M} is a basis ofAχ (M) and the set{∂eU : U inactive
unidependent of M} is a basis of=i .

3. REDUCED AND UNIVERSAL GRÖBNER BASIS

For general definitions on Gröbner bases, see [1]. We begin by adapting some of them to
our context. LetM be a matroid,E be an algebra andAχ (M) a χ -algebra as defined in the
previous section. A total order≺ of the set of monomials (which is a standard basis ofE):

T := {eX : X = {i1, . . . , im} ⊂ [n], i1 < · · · < im},

is said to be aterm orderof T if e∅ = 1 is the minimal element and

∀eX, eY, eZ ∈ E, (eX ≺ eY) · (eX · eZ 6= 0) · (eY · eZ 6= 0) H⇒ eX∪Z ≺ eY∪Z .

EXAMPLE 3.1. A permutationπ ∈ Sn defines a linear re-ordering of the elements of[n],
π−1(1) <π π−1(2) <π · · · <π π−1(n). Consider the orderingeπ−1(1) ≺π eπ−1(2) ≺π

· · · ≺π eπ−1(n). The corresponding degree lexicographic ordering inT is a term order,
denoted here by≺π .

Given a term order≺, and a non-zero elementf ∈ E , we may write

f = a1eX1 + a2eX2 + · · · + ameXm,

whereai ∈ k\0, andeXm ≺ · · · ≺ eX1. We say that theai eXi , [resp.eXi ] are theterms[resp.
powers] of f . We say that lp≺( f ) := eX1 [resp. lt≺( f ) := a1eX1] is the leading power[resp.
leading term] of f (with respect to≺). Note that we can have lp≺(hg) 6= lp≺(h)lp≺(g) when
lp≺(h)lp≺(g) = 0. Let = be an ideal ofE and let≺ be a term order ofT. A subset of non-
zero elementsG ⊂ = is aGröbner basisof the ideal= with respect to≺ iff, for all non-zero
element f ∈ =, there existsg ∈ = such that lp≺(g) = eY divideslp≺( f ) = eX(⇔ Y ⊂ X).
For any subsetS of E , we define theleading power ideal of S with respect to≺, Lp≺(S), to
be the ideal ofE spanned by the elements{lp≺(s) : s ∈ S}. Consider the subset of powers

Ti := {eI : I independent} and Td := {eD : D dependent}.

Let k[Ti ] andk[Td] be thek-vector subspace ofE generated by the basesTi andTd, respec-
tively. SoE = k[Ti ] ⊕ k[Td]. With the notation of Section2, we have thatk[Td] = D and
k[Ti ] ∼= Ei . Let pi : E → k[Ti ] be the first projection. We define the term orders ofTi in a
similar way to term orders ofT. It is clear that the restriction of every term order ofT to the
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subsetTi is also a term order ofTi . We can also add tok[Ti ] a structure ofk-algebra with the
product? : k[Ti ] × k[Ti ] → k[Ti ], determined by the equalitieseI ? eI ′ = pi (eI eI ′) for all
I , I ′ independents. Note that ifeI ? eI ′ 6= 0, theneI ? eI ′ = eI eI ′ (⇔ eI eI ′ 6= 0 iff I ∩ I ′

= ∅

and I ∪ I ′ is an independent set ofM). So=i (M) := pi (=(M)) is an ideal ofk[Ti ].

PROPOSITION3.2. Let≺ be a term order ofT. A Gröbner basis of=i (M) with respect to
≺ is also a Gr̈obner basis of=(M) with respect to≺.

PROOF. Let Gi be a Gr̈obner basis of=i (M) with respect to the term order≺. Pick a non-
null elementf ∈ =(M). If we see=(M) as ak-vector space it is clear that=(M) = =i (M) ⊕

k[Td]. SoeX := lp≺( f ) ∈ =i (M) if X is an independent set ofM or eX ∈ k[Td]\0 if X is
a dependent set ofM . If X is independent there is an elementg ∈ Gi such that lp≺(g) = eI

such thatI ⊂ X, so lp≺(g) divides lp≺( f ) in =(M). Suppose now thatX is a dependent set
of M . Then there is a circuitC ⊂ X. We know that∂eC ∈ =i (M) and if lp≺(∂eC) = eY

thenY ⊂ C ⊂ X. So, lp≺(∂eC) divides lp≺( f ) in =(M) andGi is also a Gr̈obner basis of
=(M). 2

A Gröbner basisG of an ideal= is calledreduced(with respect to the term order≺) if for
every elementg ∈ G we have lt≺(g) = lp≺(g), and for every two distinct elementsg, g′

∈ G,
no term ofg′ is divisible by lp≺(g). A (finite) subsetU ⊂ = is called auniversal Gr̈obner
basisif U is a Gr̈obner basis of= with respect to all term orders simultaneously.

PROPOSITION3.3. Let G be a Gr̈obner basis of the ideal=(M) with respect to the term
order≺ of T. Then

BG := {eX : X ⊂ [n], eX /∈ Lp≺
(G) = Lp≺

(=(M))}

is a basis ofAχ (M).

We say thatBG is thecanonical basis of theχ -algebraAχ (M) for the Gr̈obner basisG of
the ideal=(M).

REMARK 3.4. From the preceding proposition we see that, for every term order≺ of T,
there is a unique monomial basis ofAχ (M) denoted byB≺. We say thatB≺ is thecanonical
basis ofAχ (M). On the other hand it is well known that the term order≺ determines a unique
reduced Gr̈obner basis of=(M) denoted(Gr )≺. From the definitions we can also deduce that
B≺ = B≺′ ⇔ (Gr )≺ = (Gr )≺′ ⇔ Lp≺(=(M)) = Lp≺′(=(M)).

For a term order≺ of T we say thatπ≺ ∈ Sn, is thepermutation compatiblewith ≺ if, for
every pairi , j ∈ [n], we haveei ≺ ej iff i <π≺

j (⇔ π−1
≺ (i ) < π−1

≺ ( j )). Let Cπ≺
(M) be

the subset of circuits ofM such that inf<π≺
(C) = απ (C) andC\απ (C) is inclusion minimal

with this property. (απ (C) is the minimum active element ofC\ inf<π≺
(C) where the order

used for activity and taking inf is<π≺
.) In the following we may replace ‘π≺’ by ‘ π ’ when

no mistake can result.

THEOREM 3.5. Let≺ be a term order ofT compatible with the permutationπ ∈ Sn. Then
the familyGred := {∂eC : C ∈ Cπ≺

(M)} form a reduced Gr̈obner basis of=(M) with respect
to the term order≺.

PROOF. From Proposition3.2 it is enough to prove that(Gr )≺ is a reduced Gr̈obner of
=i (M). Let f be any element of=i (M), we have from Theorem2.4 (we noteUπ the set of
inactive unidependent for the order<π ) that f =

∑
U∈Uπ

ξU ∂eU , ξU ∈ k. Let now remark
that lp≺(∂eU ) = eU\απ (U ) and that these terms are all different. We have then clearly that
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lp≺( f ) = sup≺{lp≺(∂eU )}. Given U ∈ Uπ (M) it is clear thatαπ (C(U )) = απ (U ). So,
C(U )\απ (C(U )) ⊂ U \απ (U ). Let C′ be a circuit ofCπ such thatC′

\ απ (C′) ⊂ C(U ) \

απ (C(U )). So we have that lp≺(∂eC′) divides lp≺(∂eU ), and (Gr )≺ is a Gr̈obner basis of
=i (M).

Suppose for a contradiction that(Gr )≺ is not a reduced Gröbner basis: i.e., there exist two
circuits C andC′ in Cπ and an elementc ∈ C such thateC′\απ (C′) divides eC\c(⇔ C′

\

απ (C′) ⊂ C \c). First we can say thatc 6= απ (C) because the setsC′
\απ (C′) andC \απ (C)

are incomparable. This, in particular, implies thatαπ (C) ∈ C′
\απ (C′), andαπ (C′) ≺ απ (C).

On the other hand we haveαπ (C′) ∈ cl(C′
\ απ (C′)) ⊂ cl(C \ c) = cl(C \ απ (C)), so

απ (C) ≺ απ (C′), a contradiction. 2

COROLLARY 3.6. Gu := {∂eC : C ∈ C(M)} form a minimal universal Gr̈obner basis of
=(M).

PROOF. From Theorem3.5, the reduced Gröbner basis constructed for the different orders≺

are all contained inGu which proves the universality. We prove the minimality by contradic-
tion. Let C0 = {i1, . . . , im} be a circuit ofM and letπ ∈ Sn be a permutation such that
π−1(i j ) = j , j = 1, . . . , m. ThenG′

u := {∂eC : C ∈ C \ C0} is not a Gr̈obner basis since
lp≺π (∂eC0) = eC0\i1 is not in Lp≺π (G′

u). 2

To finish we give a characterization of the NBC bases of theχ -algebras in terms of the
Gröbner bases of their ideals. Consider a permutationπ ∈ Sn and the associated re-ordering
<π of [n]. When the<π -smallest element inf<π (C) of a circuit C ∈ C(M), |C| > 1, is
deleted, the remaining set,C \ inf<π (C), is called aπ -broken circuitof M . We set

nbcπ (M) := {eX : X ⊂ [n] contains noπ -broken circuit ofM}.

As the algebraAχ (M) does not depend on the ordering of the elements ofM it is clear that
π -nbc(M) is a NBC basis ofAχ (M).

COROLLARY 3.7. LetB be a basis ofAχ (M). Then are equivalent:

(3.7.1) B is the canonical basisB≺, for some term order≺ of T.
(3.7.2) B is theπ -NBC basisπ-nbc(M), for some permutationπ ∈ Sn.
(3.7.3) B is the canonical basisBGr , for some reduced Gröbner basisGr of the ideal=(M).

PROOF. (3.7.1)⇒ (3.7.2). Let≺ be a term order ofT. Since from Corollary3.6 Gu is a
universal Gr̈obner basis of=(M) it is trivially a Gröbner basis relatively to≺. We have already
remarked that the leading term of∂eC is eC\inf<π≺

(C). From Proposition3.3we conclude that
B≺ = π≺-nbc(M).

(3.7.2)⇒ (3.7.3). Suppose thatB = π -nbc(M). Let ≺π be the degree lexicographic order
of T determined by the permutationπ ∈ Sn. Note thatπ≺π = π . From Theorem3.5we know
that (Gr )≺π = {∂eC : C ∈ C≺π } is the reduced Gröbner basis of=(M) with respect to the
term order≺π . ThenB is the canonical basis for the reduced Gröbner basis(Gr )≺π .

(3.7.3)⇒ (3.7.1). This is a consequence of Proposition3.3and Remark3.4. 2
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