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Bases in Orlik—Solomon Type Algebras

DAvID FORGE

Let M be a matroid orin] and€ be the graded algebra generated over a figjgnerated by the
elements leq, ..., en. Let 3(M) be the ideal of generated by the square% e e,% elements
of the forme;ej + & eje and ‘boundaries of circuits’, i.e., elements of the fopiy e, ..., _;
81 Cms with xj € kandg, ..., &, acircuit of the matroid with some special coefficients. The
X aIgebraA(M) is defined as the quotient 6fby J(M). Recall that the class gf-algebras contains
several studied algebras and in first place the Orlik—Solomon algebra of a matroid. We will essentially
construct the reduced @lboner basis ofs(M) for any term order and give some consequences.

(© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In a vector space, &éntral) hyperplane arrangemeit a finite collection of codimension 1
subspaces. Thmatroid of an hyperplane arrangemesdn be defined by saying that a subset
of the arrangement is independent if and only if the codimension of its intersection is equal
to its cardinality. Manifolds defined as complements of complex hyperplane arrangements are
important in the Aomoto—Gelfand theory 8fhypergeometric functions. I5] the cohomol-
ogy algebra of a manifold of this form is shown to be isomorphic to the Orlik—Solomon (OS)
algebra of the matroid of the arrangement. This result has motivated further research on OS
algebras. It is known that for OS algebras of matroids the set of ‘no broken circuits’ (NBC)
gives a basis. We refer the reader €& 9] for more details on OS-algebras and &) 8] for
good sources of matroid and oriented matroid theory.

In Section2, we recall the construction gf-algebras4] as the quotient of an algebéaby
an ideal(M). This is a generalization of OS algebras for which the set of NBC gives also
a basis. We also recall two commutative exampleg-@figebras: an algebra defined for an
arrangement of hyperplané|fand an algebra defined for an oriented matr8idA x-algebra
is defined by the quotient of an algel#faby an idealy(M) defined from the circuits oM.
In Section3, we construct the reduced @mer basis of the ide&l(M) for any term order
(Theorem3.5). This gives as a corollary a universald@bner basis which is shown to be
minimal. Finally we remark that the bases given by the NBC are also the bases corresponding
to the reduced Gibner bases for the different term orders.

2. x-ALGEBRAS

Let M be a simple matroid of rank on ground sefn] := {1, 2, ..., n}. We say that a
subsetJ C [n] is unidependenif it contains exactly one circuit, denoted B(U). For any
i € C(U) the subseU \ i is independent. This property characterizes unidependents among
dependentsa dependent D is unidependent if and only if there & D such that D\ i is
independent

Let | be an independent d¥l. We say that an elemente [n] is activewith respect tol
if 1 Ui contains a circuit with smallest eleméntAn independent set with at least one active
element is said to bactive andinactive otherwise. We denote hy(l) the smallest active
element with respect to an active independerihactive independents are often called NBC
in the literature, since a subsetaf is an inactive independent if and only if it contains NBC,
where abroken circuitsare the sets obtained by removing the smallest element from a circuit.
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Fix a setE = {e1, ..., en}. Let £ be the graded algebra over a fidddjenerated by the
elements ley, ..., e, and satisfying the relatioré =0foralleg € Eandej-g = & j& - €
with g j € k\Oforalli < j. Both the free exterior algebra and the free commutative algebra
with squares zero generated by the elementE afre such algebras (talegj = —1 resp.
g j = 1foralli < j)andwill be the only ones to be used in the examples. When writing a set
inthe formX = {i1, i, ..., im} we always suppose w.l.0.g. that we have< io < - -+ < ip.
Given a subseX = {i1,i2,...,im} C [n] we will denote byex the corresponding (pure)
elementsg, - &,, ..., 6,. Fix a mappingy : 2l . k. We define thex-boundaryof an

elementey by
{=m

dex = Y (=D x (X \ir)ex,-
=1
We extend to £ by linearity.
Let 3, (M) be the (right) ideal of generated by thg-boundarieqdec : C circuit}. We
say that
Ay (M) = £/3,(M)

is a x-algebra ify satisfies the following two properties:

(UC1) x(I) # 0Oiff I is independent
(UC2) for any unidependent U of M there iseak\ 0, such that

oey = a(decu))eu\cu)-

It can be observed that (UC2) implies thetU) = O for a unidependenti containing no
basis ofM. Values ofy on other dependents are irrelevant and can always be chosen null. For
convenience, we will also not for the residue class @ in A, (M). Note that g -algebra
is defined by the matroi¥, the algebra and the functiory.

EXAMPLE 2.1. The OS algebra of a matroifb]. Let M be a matroid or{n]. The OS
algebraO S(M) is the quotient of, the graded exterior algebra of the vector spaie, ke,
by the ideal generated by boundaries of circuitd/of

The OS algebra dil, O S(M), is the x -algebra obtained fo¥, the algebr& as above and
x defined forX C [n] by x (X) = 1 for every independent.

ExaMPLE 2.2. The Orlik—Terao algebra of a set of vectdid. Let V = {v1, v2, ..., vn}
be a set of vectors in a vector space dvefhe Orlik—Terao algebr® T (V) is the quotient
of £, the commutative graded algebra over the fiefgenerated by the elementsdl, . . ., en,
with squares zero, by the ideal generated by the elemengsaffthe form Z}zlm Aij &y
8,..-8, .8, -6, forany minimal non-trivial linear dependen@}zT Xijvi; =0among
the vectors o).

The Orlik—Terao algebra@T(V), is the x-algebra obtained as follows. L&fl be the
matroid of linear dependencies of the vectors/irand £ be the algebra as above. We fix
a basisBg for any flatF of the matroidM. Then forl = {i1,i2, ..., ik} independent irv
we definey (1) as the determinant det,, vi,, . . ., vi,) with respect taB().

ExXAMPLE 2.3. A commutative algebra defined for an oriented matf@idLet O M be an
oriented matroid oifin]. The commutative algebra(O M) is the quotient of, the commu-
tative graded algebra over the fidtdgenerated by the elementsel, .. ., e,, with squares
zero, by the ideal generated by the elements of the form) ; .- sac (i)ec\; for any signed
circuit C of O M with signaturesgc.
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The algebraA(O M) is the x -algebra obtained as follows. Lbt be the underlying matroid
of OM and¢& be the algebra as above. To defjpnewe fix a basis signature independently in
all restrictions ofO M to a flatF of M (we recall that a basis signature of an oriented matroid
is determined up to a factatl). Then forl independent il we definey (1) as the sign of
I in standard form for the chosen basis signature of the submatr@dwbn the geometric
closure ofl in M.

We say that a unidependéddtis inactiveif there is a (necessarily unique) active indepen-
dentl such thatU = | U «(l). Let D be the right ideal of generated by the elements
{ec : C circuit}. We will note&; andy; the algebra quotierfi/ D and its ideal quotient/D
respectively. We now rephrase the principal resulédf |

THEOREM 2.4 ([4]). Let M be a matroid orin] and A, (M) be a x-algebra. Then the
set{e : | inactive independent of Mis a basis ofA, (M) and the sefdey : U inactive
unidependent of Mis a basis ofy;.

3. REDUCED AND UNIVERSAL GROBNER BASIS

For general definitions on @bner bases, se&][ We begin by adapting some of them to
our context. LetM be a matroid£ be an algebra and, (M) a x-algebra as defined in the
previous section. A total order of the set of monomials (which is a standard basi&)of

T:={ex: X={i1,...,im}C[n],i1 < -+ <im},
is said to be @aerm orderof T if g5 = 1 is the minimal element and

Vex,ey,ez €&, (ex <ey)-(ex-ez #0)-(ey-ez #0) = exuz < eyuz.

ExampLE 3.1. A permutationt € S, defines a linear re-ordering of the element$rdf
71 <z 772 <z -+ <z 7 L(n). Consider the ordering, 13, <x €,-12 <x

© <z €;-1y. The corresponding degree lexicographic orderingl'its a term order,
denoted here by, .

Given a term ordek, and a non-zero elemeffite £, we may write
f =aiex, +aex, + - + amexy,

whereg; € k\0, andex,, < --- < ex,. We say that thej ey , [resp.ex;] are theterms[resp.
powerg of f. We say that Ip(f) := ex, [resp. It.(f) := azex,] is theleading poweiresp.
leading termpof f (with respect to<). Note that we can have lghg) # Ip_ (h)lp_ (g) when
Ip<(h)lp_(g) = 0. LetJ be an ideal of and let< be a term order off. A subset of non-
zero elementg C J is aGrobner basiof the idealy with respect to iff, for all non-zero
elementf € J, there existgy € I such that Ip(g) = ey divideslp<(f) = ex(< Y C X).
For any subseS§ of £, we define théeading power ideal of S with respect+q Lp<(S), to
be the ideal of spanned by the elemer{lp_(s) : s € S}. Consider the subset of powers

T; :={e, : | independent  and Ty := {ep : D dependent

LetKk[T;] andk[Tg] be thek-vector subspace & generated by the bas&s andTy, respec-
tively. So& = K[T;] & k[Tq4]. With the notation of Sectiog, we have thak[T4] = D and
K[Ti] = & . Let pi : € — K[Tj] be the first projection. We define the term order&lpin a
similar way to term orders df. It is clear that the restriction of every term orderlbfo the
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subsefT; is also a term order dff; . We can also add to[T; ] a structure ok-algebra with the
productx : K[Tj] x k[T;] — K[T;j], determined by the equalities x e = pj (e e ) for all
I, 1" independents. Note thatdf xe,» # O, thene, xe;r = e g (& e e/ £ 0iff INI' =0
andl U |’ is an independent set ™). So3; (M) := p; (I(M)) is an ideal ok[T;].

PROPOSITION3.2. Let < be a term order ofl. A Grobner basis ofsj (M) with respect to
< is also a Gbbner basis ofs(M) with respect to<.

PROOF Let G; be a Gbbner basis ofsj (M) with respect to the term ordet. Pick a non-
null elementf € J(M). If we seel(M) as ak-vector space it is clear thatM) = J; (M) &
K[Tq]. Soex := Ip_(f) € Ji(M) if X is an independent set & orex € k[Tq]\0 if X is
a dependent set dfl. If X is independent there is an elemgn& G such that Ip(g) = e
such thatl ¢ X, so Ip<(g) divides Ip.(f) in I(M). Suppose now thaX is a dependent set
of M. Then there is a circuit c X. We know thatdec € Jj(M) and if Ip<(dec) = ey
thenY c C c X. So, Ips(dec) divides Ip.(f) in I(M) andg; is also a Gdobner basis of
J(M). O

A Grobner basigj of an ideal is calledreduced(with respect to the term ordey) if for
every elemeng € G we have It (g) = Ip_(g), and for every two distinct elemengsg’ € G,
no term ofg’ is divisible by Ip;(g). A (finite) subset/ C 3 is called auniversal Gbbner
basisif U/ is a Gibbner basis of with respect to all term orders simultaneously.

ProOPOSITION3.3. Let G be a Gibbner basis of the ideak(M) with respect to the term
order < of T. Then

Bg :={ex: X C[n],ex ¢ Lp_(9) = Lp_(I(M))}
is a basis ot4, (M).

We say thai3g is thecanonical basis of thg -algebra.A, (M) for the Giobner basigy of
the idealI(M).

REMARK 3.4. From the preceding proposition we see that, for every term ordef T,
there is a unique monomial basis.4f, (M) denoted by5-. We say thaf3 is thecanonical
basis of4, (M). On the other hand it is well known that the term ordedetermines a unique
reduced Gibner basis of(M) denoted G, )~. From the definitions we can also deduce that
B.=B.s & (G« = (G« < Lp_(3(M)) = Lp_(3(M)).

For a term ordex of T we say thatr. € S, is thepermutation compatiblavith < if, for
every pairi, j € [n], we haveg < ¢ iff i <, j(& n;l(i) < n;l(j)). Let €, (M) be
the subset of circuits dfl such thatinf,_(C) = a;(C) andC\a, (C) is inclusion minimal
with this property. ¢, (C) is the minimum active element &\ inf___(C) where the order
used for activity and taking inf is;_.) In the following we may replacer.’ by ‘7’ when
no mistake can result.

THEOREM 3.5. Let < be a term order off compatible with the permutation € S,. Then
the familyGyeq := {dec : C € €;_ (M)} form a reduced Gibner basis ofs(M) with respect
to the term order.

PrROOFE From PropositiorB3.2 it is enough to prove thatG, )~ is a reduced Gibner of
3i(M). Let f be any element of; (M), we have from Theorer.4 (we noteil, the set of
inactive unidependent for the ordey;) that f = 3, §udeu, &u € k. Let now remark
that Ip. (dey) = ey\q, ) and that these terms are all different. We have then clearly that
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Ip<(f) = sup.{lp_(dey)}. GivenU € i (M) it is clear thate,(C(U)) = ar(U). So,
CU)\az(CU)) Cc U\a,(U). LetC’ be a circuit of¢,; such thatC’ \ «,(C") c C(U) \
a;(C(U)). So we have that Ip(dec/) divides Ip.(dey), and (G;)< is a Gibbner basis of
3 (M).

Suppose for a contradiction th@j; ) < is not a reduced @bner basis: i.e., there exist two
circuitsC andC’ in ¢, and an element € C such thateco, (/) dividesec\c(< C'\
a; (C") c C\c). First we can say that# a, (C) because the se® \ a; (C") andC\ a; (C)
are incomparable. This, in particular, implies tha{C) € C'\«a, (C’), anda (C’) < a; (C).
On the other hand we havg, (C') € cl(C’' \ a;(C")) C cl(C\ c) = cl(C \ a(C)), so
a; (C) < a; (C"), a contradiction. O

COROLLARY 3.6. G, := {dec : C € €(M)} form a minimal universal Gibner basis of
I(M).

PrROOF From Theoren3.5, the reduced Gibner basis constructed for the different orders
are all contained i, which proves the universality. We prove the minimality by contradic-

tion. LetCo = {i1,...,im} be a circuit ofM and letr € S, be a permutation such that
n—l(ij) =j,j=1,...,m Theng, := {dec : C € €\ Cp} is not a Gbbner basis since
Ip~, (9€cy) = €co\iy is notin Lp< (Gy). 0

To finish we give a characterization of the NBC bases of tka@lgebras in terms of the
Grobner bases of their ideals. Consider a permutation S, and the associated re-ordering
<z of [n]. When the<,-smallest element inf (C) of a circuitC € ¢€(M), |C| > 1, is
deleted, the remaining s&t,\ inf__(C), is called ar-broken circuitof M. We set

nbc, (M) := {ex : X C [n] contains nor-broken circuit ofM}.

As the algebrad, (M) does not depend on the ordering of the elementyl of is clear that
m-nbc(M) is a NBC basis ofd, (M).

COROLLARY 3.7. LetB be a basis ofd, (M). Then are equivalent:

(3.7.1) Bis the canonical basi -, for some term ordek of T.
(3.7.2) Bis thexr-NBC basist-nbc(M), for some permutation € S,.
(3.7.3) Bis the canonical basi8g, , for some reduced ®bner basigj; of the ideal3(M).

PROOF (3.7.1)= (3.7.2). Let< be a term order of. Since from Corollany3.6 G, is a
universal Gobner basis o&(M) itis trivially a Grobner basis relatively te. We have already
remarked that the leading term &é¢ is ec\inf_,_ (c)- From Propositior8.3we conclude that
B~ = m--nbc(M).

(3.7.2)= (3.7.3). Suppose th# = w-nbc(M). Let <, be the degree lexicographic order
of T determined by the permutatiane S,. Note thatr. = 7. From Theoren8.5we know
that (Gy)<, = {dec : C € €__} is the reduced Gbner basis ofs(M) with respect to the
term order<, . ThenJ3 is the canonical basis for the reduced@mer basiggy )~ , .

(3.7.3)= (3.7.1). This is a consequence of PropositioBand Remarl3.4. |
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