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ABSTRACT. We show new bijective proofs of previously known formulas for the number of regions
of some deformations of the braid arrangement, by means of a bijection between the no-broken-
circuit sets of the corresponding integral gain graphs and some kinds of labelled binary trees. This
leads to new bijective proofs for the Shi, Catalan, and similar hyperplane arrangements.

Mathematics Subject Classifications (2010): Primary 05C22; Secondary 05A19, 05C05, 05C30,
52C35.

Key words and phrases: Integral gain graph, no broken circuits, local binary search tree, Shi
arrangement, Braid arrangement, Affinographic hyperplane arrangement

1. INTRODUCTION

An integral gain graph is a graph whose edges are labelled invertibly by integers; that is,
reversing the direction of an edge negates the label (the gain of the edge). The affinographic
hyperplane arrangement, A[®], that corresponds to an integral gain graph ® is the set of all
hyperplanes in R™ of the form z; — x; = g for edges (7, j) with ¢ < j and gain ¢g in ®. (See
8, Section IV.4.1, pp. 270-271] or [4].)

In recent years there has been much interest in real hyperplane arrangements of this
type, such as the Shi arrangement, the Linial arrangement, and the composed-partition or
Catalan arrangement. For all these families, the characteristic polynomials and the number
of regions have been found. See for example [6]. For the Shi arrangement, Athanasiadis [1]
gave a bijection between the regions and the parking functions.

In this paper we give bijective proofs of the number of regions for some of these ar-
rangements by establishing bijections between the no-broken-circuit (NBC) sets and types
of labelled trees and forests, which can be counted directly. This means that we use the fact
that the number of regions is equal to the number of NBC sets.

!The research of the first author is supported by the ICOMB project, grant number ANR-08-JCJC-0011.
2The research of the last two authors is supported by the TEOMATRO project, grant number ANR-10-
BLAN 0207.
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2. BASIC DEFINITIONS

An integral gain graph ® = (L', ) consists of a graph I' = (V, F) and an orientable
function ¢ : E — Z, called the gain mapping. Orientability means that, if (¢, j) denotes an
edge oriented in one direction and (j,7) the same edge with the opposite orientation, then
©(j,1) = —p(i,7). We have no loops but multiple edges are permitted. For the rest of the
paper, we denote the vertex set by V' = {1,2,...,n} =: [n] with n > 1. We use the notations
(i,7) for an edge with endpoints i and j, oriented from i to j, and ¢(7,j) for such an edge
with gain g; that is, ¢(g(i,7)) = g. (Thus g(i,7) is the same edge as (—g)(j,4). The edge
g(i,7) corresponds to a hyperplane whose equation is z; — z; = g.) A circle is a connected
2-regular subgraph, or its edge set. Writing a circle C' as a word ejes - - - ¢;, the gain of C'
is o(C) = p(e1) + @(es) + -+ + @(e); then it is well defined whether the gain is zero or
nonzero. A subgraph is called balanced if every circle in it has gain zero. We will consider
most especially balanced circles.

Given a linear order < on the set of edges F, a broken circuit is the set of edges obtained
by deleting the smallest element in a balanced circle. A set of edges, N C F, is a no-broken-
circuit set (NBC set for short) if it contains no broken circuit. This notion from matroid
theory (see [2] for reference) is very important here. We denote by N the set of NBC sets
of the gain graph. It is well known that this set depends on the choice of the order, but its
cardinality does not.

We can now transpose some ideas or problems from hyperplane arrangements to gain
graphs. For any integers a, b, n, let K% be the gain graph built on vertices V = [n] by putting
on every edge (i,7) all the gains k, for a < k < b. These gain graphs are expansion of the
complete graph and their corresponding arrangements are called sometimes deformations
of the braid arrangement, truncated arrangements or affinographic arrangements. We have
four main examples coming from well known hyperplane arrangements. We denote by B,
the gain graph K and call it the braid gain graph, by L,, the gain graph K!!' and call it
the Linial gain graph, by S, the gain graph K9' and call it the Shi gain graph and finally
by C,, the gain graph K, !' and call it the Catalan gain graph.

3. HEIGHT

We introduce the notion of height function on an integral gain graph on the vertex set
[n]. A height function h defines two important things for the rest of the paper: the induced
gain subgraph ®[h] of a gain graph ® and an order O on the set of vertices extended
lexicographically to the set of edges.

Definition 1. A height function on a set V' is a function h from V' to N (the natural numbers
including 0) such that h=1(0) # (. The corner of the height function is the smallest element
of greatest height.

Let ® be a connected and balanced integral gain graph on a set V' of integers. The height
function of the gain graph is the unique function hg such that for every edge ¢(i,j) we have
he(j) — he(i) = g. (Such a function exists if and only if ® is balanced.) The corner of ® is
the corner of hg.

We say that an edge g(i,7) is coherent with h if h(j) — h(i) = g.

Definition 2. Let ¢ be a gain graph also on V' = [n]| and h be a height function on V. The
subgraph ®[h] of ® selected by h is the gain subgraph on the same vertex set V' whose edges

are the edges of ® that are coherent with h.
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FIGURE 1. The gain graph K{![h] for h(2) = h(4) =1 and k(1) = h(3) =0

Definition 3. Given a height function h on the set V, the order Oy, on the set V' = [n] is
defined by i <o, j if and only if h(:) > h(j) or (h(i) = h(j) and ¢ < j). The order Oy,
is extended lexicographically to an order O, on the set of edges coherent with the height
function.

For example if n = 4, a = 0, b = 1, and the height function h has h(2) = h(4) = 1 and
h(1) = h(3) = 0, we get the order 2 <p, 4 <o, 1 <o, 3. The corresponding KJ'[h] is given
in Figure 1. Note that only 5 of the 12 edges are coherent with the height function.

4. NBC SETs AND NBC TREES IN GAIN GRAPHS

Given a linear order < on the set of edges F, a broken circuit is the set of edges obtained
by deleting the smallest element in a balanced circle. An NBC set in a gain graph ® is
basically an edge set, as it arises from matroid theory. We usually assume an NBC set is
a spanning subgraph, i.e., it contains all vertices. Thus, an NBC tree is a spanning tree of
®. Sometimes we wish to have non-spanning NBC sets, such as the components of an NBC
forest; then we write of NBC subtrees, which need not be spanning trees. The set of the
NBC sets of ® with respect to an order O is denoted No(P).

Given a height function h, a gain graph ® and a linear order <o, on the edges, they
determine the set of NBC sets of the subgraph ®[h] relative to the order <¢,, denoted by
No(®[h]). As always, this set depends on the choice of the order but its cardinality does
not.

Lemma 4. Given an NBC tree A of height function h (h = ha) with corner c, the forest
A\ ¢ is a disjoint union of NBC subtrees of height functions hi,...,hy, and the orders Op,
are restrictions of the order Oy,. O

It is known from matroid theory that the NBC sets of the semimatroid of an affine ar-
rangement A, with respect to a given ordering <o of the edges, correspond to the regions of
the arrangement [6, Section 9]. The semimatroid of A[®] is the frame (previously “bias” in
[8]) semimatroid of ®, which consists of the balanced edge sets of the gain graph ® ([8, Sect.
I1.2] or [4]). Thus, the NBC sets of that semimatroid are spanning forests of ®. Therefore
|No(®)| equals the number of regions of A[®].

We show that the total number of NBC trees in an integral gain graph & equals the sum,
over all height functions h, of the number of NBC trees in ®[h].

Let ® be connected. Then we can decompose Np(®) into disjoint subsets No(P[h]), one

for each height function h that is coherent with ® (that means that ®[h] is also connected).
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FIGURE 2. The NBC trees of the gain graph K}![h]

We have now:
No(®) = |H{No(®[A]) | h is coherent with }.
h
Therefore, the total number of NBC trees of all ®[h] with respect to all possible height
functions h equals the number of NBC trees of ®.
For example, the NBC trees corresponding to the gain graph K{![h] from Figure 1 are
given in Figure 2.

5. [a,b]-GAIN GRAPHS AND THEIR NBC TREES

Let a and b be two integers such that @ < b. The interval [a,b] is the set {i € Z | a <
i < b}. We consider the gain graph K% with vertices labelled by [n] and with all the edges
g(i,7), such that i < j and g € [a,b]. These gain graphs, K, are called [a,b]-gain graphs.
The arrangements that correspond to these gain graphs, called deformations of the braid
arrangement, have been of particular interest. The braid arrangement corresponds to the
special case a = b = 0. Other well studied cases are a = —b (extended Catalan), a =b =1
(Linial) and a = b — 1 = 0 (Shi).

We will describe the set of NBC trees of K2[h] for a given height function h. The idea is
that, as mentioned above, the height function h defines an order Oy, on a balanced subgraph.

We will then be able to describe the NBC sets coherent with A for the order Oy,.

Proposition 5. Let a and b be integers such that a < b. Let h be a height function of
corner ¢ and let ® be a spanning tree of K[h)]. Suppose c is incident to the edges g;(c,v;),
1 <1<k, and let ®; be the connected component of ®\ ¢ containing ¢; (which is a subtree).
Then ® is an NBC tree if and only if all the ®; are NBC trees and each v; is the Oyp-smallest
vertex of ®; adjacent to ¢ in K®[h].

Proof. Everything comes from the choice of the order O, for the vertices and the edges. If
we have a vertex v in ®; such that v <o, v; for which the edge (c,v) € K2[h] exists then
this edge is smaller than all the edges of ®; + c¢. Such an edge then closes a balanced circle
being the smallest edge of the circuit which is not possible.

In the other direction, if ® is not an NBC tree then there is an edge (x,y) in K2[h] closing
a balanced circle by being the smallest edge of the circuit. Since the ®; are by hypothesis are
NBC trees the vertices  and y cannot be in the same ®;. They cannot be in two different ®,
either since the smallest edge would contain ¢ necessarily. The last solution is that one of the
vertex, say z, is ¢ and that the other vertex y is in a ®;. Since the edge (¢, v;) will be in the
circuit we need to have (z,y) <o, (c,v;). This implies the condition of the proposition. [
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6. [a,b]-GAIN GRAPHS WITH a +b =0 OR 1
We start this Section by a Lemma that will help us for our recursive construction.

Lemma 6. If a+b = 0 or 1, the vertices v; are the corners of the subtrees ®; (as in
Proposition 5).

Proof. In the case where a + b = 0, the interval [a,b] is of the form [—b,b] where b is a
nonnegative integer. Similarly in the case where a + b = 1 the interval [a, b] is of the form
[—b, b+ 1] where b is a positive integer. Therefore whenever a gain g is present in the graph
it implies that all gains in the interval [—|g| + 1, |g|] also exists in the graph. Therefore,
if there exists a vertex v in ®; with h(v) > h(v;) then the edge (c,v) necessarily exists in
K2[h]. In the case h(v) = h(c;) and v < ¢;, the edge (c,v) also necessarily exists in K%[h].

Let us suppose that ¢; is not the corner of its tree. Then there exists v such that h(v) >
h(c;) or h(v) = h(¢;) and v < ¢;. By taking the edge (c,¢;) along with the unique path
P(c;,v) in this subtree we get a path P which is a broken circuit of K[h] (because the edge
(¢,v) is smaller in the order O, than all the edges of P) and this contradicts the fact that
T is an NBC tree of K. Using Proposition 5, we get a contradiction and v; has to be the
corner of ®;. O

Note that this will not be true as soon as a+b = 2 as in the Linial case. We now introduce
our family of trees.

Definition 7. Let a and 5 be natural integers (including 0). An («, 5)-rooted labelled tree
with n vertices is a rooted, labelled and weighted tree on the set of vertices [n], such that
each edge of the tree, (i,j) where i is the ancestor and j the descendant, is weighted with
an integer from

e the interval [1,a] if i < j and

e the interval [1, ] if i > j.

Note that if one of the integers a or [ is equal to 0 then the corresponding interval is

empty. This just implies that such edges cannot exist. In the next theorem we go from the
NBC trees of K% to («, 3)-trees by cutting the interval [a, b] in two parts : the part [a, 0] of

the negative or null gains will correspond to v and the part [1,b] of the positive gains will
correspond to f3.

Theorem 8. Ifb+a = 0 or b+ a = 1, the NBC trees of K% are in bijection with the
(1 —a,b)-trees on [n].

Proof. We recursively decompose the NBC trees of K. Let ® be an NBC tree. Let ¢ be its

corner and let ¢y, co, ..., ¢ be the neighbors of ¢ with gains ¢, g, ..., gx. We now construct
a corresponding (1—a, b)-tree. The root of the (1—a, b)-tree is ¢, ¢y, ¢a, . . ., ¢ are its children
and the edges from c to ¢; get the label g; if it is strictly positive and 1 — g; otherwise. The
decomposition continues recursively on the trees with corners ¢y, cs,...,c,.

When we take out the vertex ¢ from ®, we get a forest of NBC trees, where each ¢; is in
a different tree. To prove that the decomposition is correct, we use Lemma 6 and we know
that each ¢; is the corner of its component. 0

A direct consequence of our Theorem is that :

Corollary 9. Ifb+a = 0 or b+ a = 1, the number of regions of A[K®] is equal to the

number of (1 — a, b)-rooted labelled forests with n vertices.
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Proof. To get this consequence from the previous theorem, we use the facts that for any
affine hyperplane arrangement the number of NBC sets is equal to the number of regions
and that an NBC set is a union of NBC trees. See Proposition 9.4 of [6]. O

Theorem 10. [6] The number of regions of A[K®] is

an(an —1)...(an —n+2), if a+b=0,
and

(an+1)""' if a+b=1.

To finish our proof of Theorem 10, we have to count the («, 3)-labelled trees and («, 3)-
labelled forests.

Proposition 11. The number of («, §)-rooted labelled trees with n vertices is

n—1

[T(e = B)i +ng].

i=1
The number of (o, B)-rooted labelled forests with n vertices is

n—1

[Ti(e - B)i+ns+1].

=1

Proof. We suppose that o > (. The other case is analogous. We first enumerate («, 5)-
rooted labelled trees. We split the edges of the trees into two groups :

e The edges with labels 4+ 1,..., .
e The edges with labels 1,2,..., 0.

Suppose that the first group has k edges. They form a decreasing forest on n vertices with
k edges, such that the edges can have (a — () different labels. The number of such forests is
well known to be |s(n,n — k)|(a — B)* where s(n, k) is the Stirling number of the first kind.

The second group is a rooted labelled forest on n vertices with n — k — 1 edges, such that
the edges can have 3 different labels. The number of such forests is (n8)"*~!. The two
groups have disjoint edges. Therefore, we deduce that the number of («, 3)-rooted labelled
trees with n vertices and k£ edges in the first group is :

[s(n,n = k)[(a = B)*(nB)" """,
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Therefore the number of (a, 8)-rooted labelled trees with n vertices is :

n

> Istnn = k)l(a = B (ng)"

k=0

_ % kz: Is(n,n — k)| (an_ﬁ@)nk

- %[{ (+5%5)

= nl((a — B)i+np) O

The proof for the number of (a, #)-rooted labelled forests is identical.

7. THE SPECIAL CASES OF THE BRAID AND THE SHI ARRANGEMENTS

The first cases of [a,b]-gain graphs with a +b = 0 or a + b = 1 are obtained by taking
a = 0. The gain graph with a + b = 0 and a = 0 corresponds to the braid arrangement
and the gain graph with a + b =1 and a = 0 corresponds to the Shi arrangement. A recent
bijective correspondence for the braid arrangement appears in the recent paper [5].

Corollary 12. The NBC sets of the braid arrangement in dimension n are in one-to-one
correspondence with the decreasing labelled trees on n + 1 wvertices.

Proof. Theorem 8 tells us that the set of NBC trees of the braid arrangement (case a = b = 0)
is in one-to-one correspondence with the set of (1,0)-labelled trees with n vertices. Such
labelled trees have no possible value on edges (7, j) when ¢ > j and have the value 1 on edges
(7,7) when i < j (and since there is no choice we can forget the value). This means that
the correspondence of NBC trees of the braid arrangement is with the set of rooted labelled
trees such that the label of the father is always smaller than the label of the son (such a
tree is called an increasing tree). To get the bijection between the set of NBC sets and the
set of increasing rooted labelled trees we just need to add vertex 0 and to connect it to the
different increasing rooted labelled trees coming from the NBC trees (components). O

Corollary 13. The NBC sets of the Shi arrangement in dimension n are in one-to-one
correspondence with the labelled trees on n + 1 vertices.

Proof. Theorem 8 tells us that the set of NBC trees of the Shi arrangement (case a = 0 and
b = 1) is in one-to-one correspondence with the set of (1,1)-labelled trees with n vertices.
Such labelled trees have the value 1 on edges (7, j) when i < j as well as when j > i. Asin
the previous proof, since there is only one possible value it can be ignored. This means that
the correspondence of NBC trees of the Shi arrangement is with the set of rooted labelled
trees. To get the bijection between the set of NBC sets and the set of labelled trees on n+ 1
vertices we just need to add vertex n + 1 and to connect the different rooted labelled trees
coming from the NBC trees (components). O



8. CONCLUSION

In this paper, we show that given a height function on a gain graph K% with a +b = 0

or 1, the corresponding NBC trees with n vertices and corner ¢ are in bijection with some
trees with n veritices and root c¢. In a following paper, we will show that this is still true in
the Linial case; that is, a = 0 and b = 2 [3]. It would be interesting to investigate whether
this is true for other deformations of the Braid arrangement.
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