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On Counting the k-face Cells of Cyclic Arrangements

D. FORGE AND J. L. RAM ÍREZ ALFONŚIN

In this paper, we compute the exact number ofk-face cells of thecyclic arrangementswhich
are the dual to the well-known cyclic polytopes. The proof uses the combinatorial interpretation of
arrangements in terms of oriented matroids.
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1. INTRODUCTION

A projective d-arrangement of n hyperplanes H(d,n) is a finite collection of hyperplanes
in the real projective spacePd such that no point belongs to every hyperplane ofH(d,n).
Any arrangementH(d,n) decomposesPd into a d-dimensional cell complexK . We may
call cellsof H(d,n) thed-cells of K , andfacetsof H(d,n) the (d − 1)-cells of K . Clearly
any cell of H(d,n) has at least (resp. at most)d + 1 (resp.n) facets. We shall denote by
f p[H(d,n)] the number ofd-cells of H(d,n) having exactlyp facets,d + 1≤ p ≤ n.

The cyclic polytopeof dimensiond with n verticesCd(t1, . . . , tn) was discovered by
Carath́eodory [3, 4] and has been rediscovered many times; it is usually defined as the convex
hull in the Euclidean spaceRd, d ≥ 2, of n, n ≥ d + 1, different pointsx(t1), . . . , x(tn) of
themoment curve x: R→ Rd, t → (t, t2, . . . , td). Cyclic polytopes, and simplicial neigh-
bourly polytopes, in general, play an important role in the combinatorial convex geometry due
to their connection with certain extremal problems. For example, the upper bound theorem es-
tablished by McMullen [7, 8], says that the number ofj -dimensional faces ofd-polytope with
n vertices is maximized byCd(t1, . . . , tn).

Here, we focus our attention tocyclic arrangements, A(d,n), defined as the dual to cyclic
polytopesCd(t1, . . . , tn). As for cyclic polytopes, cyclic arrangements also have extremal
properties. For instance, Shannon [12] has introduced cyclic arrangementsA(d,n) as exam-
ples of projective arrangements with a minimum number of cells with(d + 1)-facets. In this
paper, we give an explicit formula to computef p[A(d,n)] for eachd + 1≤ p ≤ n.

THEOREM 1.1. Let d,n, p be positive integers such that d+ 1≤ p ≤ n. Then

f p[A(d,n)] =

{∑d−2
i=0

(n−1
i

)
+
( d
n−d

)
+
( d−1
n−d−1

)
if p = n,(n−d−1

n−p

)( d
p−d

)
+
(n−d
n−p

)( d−1
p−d−1

)
if p < n.

Our proof uses the combinatorial interpretation of the cyclic arrangements in terms of ori-
ented matroid. Indeed, cyclic arrangements ofn hyperplanes inPd are combinatorially equiv-
alent toalternating oriented matroidsof rankr = d + 1 onn elements, by the representation
of Folkman and Lawrence [6] (for the basic notation of oriented matroid theory, we refer
the reader to [1]). The (uniform)alternating oriented matroidA(r,n) of rank r on n ele-
ments is defined as follows, see [1]: let E denote ann-element set withn ≥ r , together
with a total order<. The signed circuits ofA(r,n) are the subsetsC = {e1, . . . ,er+1},
e1 < e2 < · · · < er+1, of E with the signatureC+ = {ei , i odd} andC− = {ei , i even}, and
their negatives.

In Section2, we give general results concerning the acyclic reorientations together with their
corresponding interior elements of the alternating oriented matroid that play an important role
in the main result.
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In Section3, we prove Theorem1.1. Finally, in Section4, we apply Theorem1.1 to give
straightforward proofs for some known results and to improve an upper bound on the number
of completecells in A(d,n).

2. INTERIOR ELEMENTS OFA(r,n)

LetM(r,n) be an oriented matroid of rankr with n elements. LetT ∈ {+,−}n. We call
T a sign n-vectorand denote byT(i ) the sign of elementi in T . We denote byMT (r,n) the
oriented matroid obtained fromM by reorientingelementi if and only if T(i ) = −. Notice
that T partitions{1, . . . ,n} into signed intervals I1, . . . , Im, 1 ≤ m ≤ n, whereI j denote a
maximal set of consecutive elements having the same sign. We denote by|I j | the number of
elements inI j and byd(T) the number of intervals inT .

OBSERVATIONS. Let T be a signn-vector andk ∈ {1, . . . ,n}. Let T ′ be a signn-vector
such thatT ′( j ) = T( j ) for all j 6= k andT ′(k) = −T(k).
(A) If 2 ≤ k ≤ n− 1 then:

(i) d(T ′) = d(T)+ 2 if and only if T(k) = T(k+ 1) = T(k− 1),
(ii) d(T ′) = d(T)− 2 if and only if T(k) = −T(k+ 1) = −T(k− 1) and

(iii) d(T ′) = d(T) if and only if T(k+ 1) = −T(k− 1).

(B) If k = 1 (resp.k = n) then:

(i) d(T ′) = d(T)+ 1 if and only if T(1) = T(2) (resp.T(n) = T(n− 1)),
(ii) d(T ′) = d(T)− 1 if and only if T(1) = −T(2) (resp.T(n) = −T(n− 1)).

Recall that an oriented matroidM = (E, C) is acyclic if it does not contain positive circuits
(otherwise,M is calledcyclic).

LEMMA 2.1. Let T be a sign n-vector. ThenAT (r,n) is acyclic if and only if d(T) ≤ r .

PROOF. We shall show thatAT (r,n) is cyclic if and only if d(T) > r . Suppose that
AT (r,n) is cyclic. Let C = (e1, . . . ,er+1) be a positive circuit inAT (r,n). SinceC was
alternating inA(r,n) then this implies thatT(ei ) = C(ei ) or−C(ei ) whereC(i ) denote the
sign of elementi in C. Therefore,T must have at leastr + 1 intervals.

Let T be a signn-vector having as intervalsI1, . . . , Il with l > r . Let C = (e1, . . . ,er+1)

be a circuit inA(r,n) such thatei ∈ I i for eachi = 1, . . . , r + 1. SinceT(ei ) = −T(ei+1),
i = 1, . . . , r and the elements ofC are signed alternatively thenC is a positive circuit in
AT (r,n). 2

We say that an elemente ∈ E of an uniform oriented acyclic matroid isinterior if there
exists a signed circuitC = (C+,C−) with C− = {e}. It is equivalent to define the interior
elements as the elements whose reorientation give a cyclic matroid.

LEMMA 2.2. Let T be a sign n-vector such thatAT (r,n) is acyclic. Then (a)2≤ i ≤ n−1
is an interior element inAT (r,n) if and only if d(T) = r or r − 1, and T(i ) = T(i + 1) =
T(i − 1) and (b)1 (resp. n) is an interior element inAT (r,n) if and only if d(T) = r and
T(1) = T(2) (resp. T(n) = T(n− 1)).

PROOF. Let T be a signn-vector andk ∈ {1, . . . ,n}. Let T ′ be the signn-vector such that
T ′( j ) = T( j ) for all j 6= k andT ′(k) = −T(k). We know thatk is an interior element if and
only if AT (r,n) is acyclic andAT ′(r,n) is cyclic. Equivalently,k is an interior element if and
only if d(T) ≤ r andd(T ′) ≥ r + 1. Hence,
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(a) by observation A(i ), 2 ≤ k ≤ n − 1 is an interior element if and only ifd(T) ≤ r ,
d(T ′) ≥ r + 1 andd(T ′) = d(T)+ 2 or equivalently if and only ifd(T) = r or r − 1
andT(k) = T(k+ 1) = T(k− 1).

(b) By observation B(i ), 1 (resp.n) is an interior element if and only ifd(T) ≤ r , d(T ′) ≥
r + 1 andd(T ′) = d(T)+ 1 or equivalently if and only ifd(T) = r andT(1) = T(2)
(resp.T(n) = T(n− 1)). 2

3. THE FORMULA

Let H(d,n) = {hi }1≤i≤n be an arrangement of hyperplanes andMH(d,n) its corresponding
oriented matroid. We denote byei the element ofMH(d,n) corresponding to hyperplanehi .
It is well known [6] that an acyclic reorientation ofMH(d,n) having {ei1, . . . ,ei l }, l ≤ n
as interior elements corresponds to a cell inH(d,n) which is boarded by hyperplanesh j 6∈

{hi1, . . . , hi l }.
Hence, f p[A(d,n)] can be computed by counting all signn-vectorsT such thatAT (r,n)

has exactlyp non-interior elements withd + 1≤ p ≤ n.

PROPOSITION3.1. Let T be a sign n-vector with intervals I1, . . . , Ir−1. Then Ij contains
exactly|I j | − 2 interior elements inAT (r,n) if |I j | ≥ 3 and no interior element if|I j | ≤ 2.
Moreover, if L= |{I j ||I j | ≥ 2}| then there are exactly r− 1+ L non-interior elements.

PROOF. We have two cases.

(a) 2 ≤ i ≤ r − 1. Let I i be an interval ofT and suppose thate ∈ I i . By Lemma2.2 (a),
e is an interior element if and only ifT(e) = T(e− 1) = T(e+ 1), in other words if
and only ife− 1,e+ 1 ∈ I i . That is,e is an interior element if and only ife is not an
end of I i . So, if |I i | ≥ 3 thenI i contains|I i | − 2 interior elements and if|I i | ≤ 2 then
I i contains no interior elements.

(b) i = 1 orr −1. Assume thate∈ I1 (the case fori = r −1 is analogous). By Lemma2.2
(b), 1 is not an interior element. So,e is an interior element if and only ife−1,e+1 ∈ I1
ande 6= 1. That is,e is an interior element if and only ife is not an end ofI1.

Finally, there areL intervals of length at least 2. So there arer − 1− L of length 1 and the
number of non-interior elements isr − 1− L + 2L = r − 1+ L. 2

PROPOSITION3.2. Let T be a sign n-vector with intervals I1, . . . , Ir . Then (a) for each
2 ≤ j ≤ r − 1, I j contains exactly|I j | − 2 interior elements inAT (r,n) if |I j | ≥ 3 and
no interior element if|I j | ≤ 2 and (b) I1 (resp. Ir ) contains|I1| − 1 (resp.|Ir | − 1) interior
elements inAT (r,n). Moreover, if L= |{I j ||I j | ≥ 2, 2 ≤ j ≤ r − 1}| then there are exactly
r + L non-interior elements.

PROOF. Part (a) is similar to Proposition3.1 (a). For part (b) assume thate ∈ I1 (the case
for i = r is analogous). Suppose that|I1| > 1 (if |I1| = 1 then I1 contains no interior
elements). SinceT(1) = T(2) then by Lemma2.2(b) 1 is an interior element. Now,e 6= 1 is
an interior element if and only ife− 1,e+ 1 ∈ I1. Hence, the right-end ofI1 is the only not
interior element. Therefore,I1 contains|I1| − 1 interior elements.

Finally, the first (and the last) interval has 1 non-interior element and there are exactlyL
intervals of length at least 2 (other than the first and last intervals). So, there arer−2−L inter-
vals of length 1 and the number of non-interior elements is 2+ r − 2− L + 2L = r + L. 2
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PROOF OFTHEOREM 1.1. Let hk(n, r, p) be the number of signn-vectorsT having 1≤
k ≤ r intervals such thatAT has exactlyp non-interior elements. We shall computehk(n, r, p)
for each 1≤ k ≤ r since f p[A(d,n)] =

∑r
k=1 hk(n, r, p). We have three cases.

CASE (I). k = r . By Proposition3.2 we know thatp = r + L. Thus, we must count all
signn-vectorsT = I1, . . . , Ir havingL intervals, sayI i1, . . . , I i L with 2≤ i j ≤ r −1, of size
at least 2. In other words, we have to find all the solutions of

(∗) x1+ · · · + xr = n such that
(a) x1, xr ≥ 1,
(b) xi j ≥ 2 with 2≤ i1 ≤ · · · ≤ i L ≤ r − 1
(c) xi ′ = 1 with 2≤ i ′ ≤ r − 1, i ′ 6= i j .

By settingxi j − 1= yi j we have that number of solutions of(∗) is
(r−2

L

)
(number of choices

for (b)) times the number of solutions of(∗∗)

(∗∗) x1+ yi1 + · · · + yi L + xr = n− (r − 2− L)− L with x1, xr , yi1, . . . , yi L ≥ 1.

Since the number of solutions of(∗∗) is equal to
(n−r+2−1

L+2−1

)
then hr (n, r, p) =

(r−2
L

)(n−r+2−1
L+1

)
. Notice that by settingr = d + 1 andL = p− r we have that

hr (n, r, p) =
(r−2

p−r

)(n−r+1
p−r+1

)
=
( d−1

p−d−1

)(n−d
p−d

)
=
( d−1

p−d−1

)(n−d
n−p

)
.

CASE (II). k = r−1. By Proposition3.1we know thatp = r−1+L. Thus, we must count
all signn-vectorsT = I1, . . . , Ir−1 havingL intervals of size at least 2. By similar arguments
as in Case(I) we have thathr−1(n, r, p) =

(r−1
L

)(n−(r−1)−1
L−1

)
. Notice that by settingr = d+1

andL = p− r + 1 we have that
hr−1(n, r, p) =

( r−1
p−r+1

)( n−r
p−r+1−1

)
=
( d

p−d

)(n−d−1
p−d−1

)
=
( d

p−d

)(n−d−1
n−p

)
.

CASE (III). If 1 ≤ k < r − 1 then by Lemma2.2we have that

hk(n, r, p) =

{
0 if p < n,(n−1
k−1

)
if p = n.

Hence,

f p[A(d,n)] =

{∑d−2
i=0

(n−1
i

)
+
( d
n−d

)
+
( d−1
n−d−1

)
if p = n,(n−d−1

n−p

)( d
p−d

)
+
(n−d
n−p

) ( d−1
p−d−1

)
if p < n. 2

4. SOME APPLICATIONS

Let us have a closer look at the extremals cells of theA(d,n), that is,simplices(i.e.,(d+1)-
facet cells) andcomplete cells(i.e.,n-facets cells).

Shannon [12] has proven thatA(d,n) has exactlyn simplices. This can easily be verified
by checking thatfd+1[A(d,n)] = n. Moreover, Shannon gave the set of simplices explicitly.

THEOREM 4.1 ([12]). Let n,d be integers with n≥ d + 1. Then A(d,n), has exactly n
simplices given by the set of d+ 1 consecutive elements in the set{1, . . . ,n} in cyclic order,
that is,(1,2, . . . ,d + 1), (2,3, . . . ,d + 2), . . . , (n,1, . . . ,d).

Shannon’s proof uses long geometric arguments. We propose a purely combinatorial proof.
By Theorem1.1, A(d,n) has exactlyn simplices. Now, consider the following two sets of
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sign n-vectors given as a set of intervals (recall that the set of elements of two consecutive
intervals has opposite sign). For eachi = 2, . . . ,n− r + 2,

Pi = [1, . . . , i − 1], [i ], . . . , [i + r − 3]︸ ︷︷ ︸
r−2

, [i + r − 2, . . . ,n] and

Pn−r+3 = [1, . . . ,n− r + 2], [n− r + 3], . . . , [n]︸ ︷︷ ︸
r−2

. And, for eachj = 2, . . . r − 2,

Q j = [1], [2], . . . , [ j − 1], [ j, . . . , j + n− r + 1], [ j + n− r + 2], . . . , [n]︸ ︷︷ ︸
r− j+1

andQr−1 = [1], [2], . . . , [r − 2], [r − 1, . . . ,n].
We claim that each of the signed vectorsPi andQ j correspond to a simplex inA(d,n). We

leave the proof of this claim to the reader, as an easy combinatorial exercise.
Roudneff [9] has shown that the number of complete cells ofA(d,n) is at least

∑d−2
i=0

(n−1
i

)
and that this is tight for alln ≥ 2d + 1 (see also [2] where an asymptotically tight upper
bound on the number of complete cells in arrangements is given). Theorem1.1 gives the
exact number of complete cells ofA(d,n) for anyn.

Finally, we mention the following result due to Grünbaum [5] (see also [10]).

THEOREM 4.2 ([5, P. 29]). Let L(2,n), n ≥ 5 be an arrangement of n lines. Then
f4[L(2,n)] ≤ n(n − 3)/2. Moreover, for each n≥ 5, there exists (up to isomorphism) a
unique simple arrangement L′ of n lines satisfying f4[L ′(2,n)] = n(n− 3)/2.

Although no proof was given, Grünbaum certainly had in mindA(2,n), n ≥ 5, for the sec-
ond part of the above theorem. This can easily be verified since, by Theorem1.1, f4[A(2,n)] =
n(n− 3)/2.
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2. I. Báŕany, H. Bunting, D. G. Larman and J. Pach, Rich cells in an arrangement of hyperplanes,
Linear Algebr. Appl., 226–228(1995), 567–575.

3. C. Carath́eodory,Über den Variabiliẗatsbereich der Koeffizienten von Potentzreihen die gegeberne
Wete nicht annehemen,Math. Ann., 64 (1904), 95–115.
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