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Abstract 

In this paper we are interested in the following question: what is the smallest number of 
circuits, s(n,r), that is sufficient to determine every uniform oriented matroid of rank r on n 
elements? We shall give different upper bounds for s(n,r) by using special coverings called 
connected coverings. (~) 1998 Elsevier Science B.V. All rights reserved 

1. Introduction 

Let n,r be positive integers with n>r.  Let ~¢/n,r be the uniform oriented matroid 
having as basis (as circuits) all r-subsets (all (r + 1)-subsets) of {1 . . . . .  n}. In this 
paper, we are interested in the following question. What is the smallest number of 
circuits that is sufficient to determine ~¢/n,r? We denote by s(n, r) such a number. The 
best known upper bound for s(n, r) is given by Hamidoune and Las Vergnas [4]. They 
proved that s(n,r)<<. ( n r l )  . 

We will achieve different upper bounds for s(n,r) by giving a relation between 
s(n,r) and covering numbers. In particular, we will be interested in a special covering 
number called the connected covering number. 

This paper is self-contained and is organised as follows. In Section 2, we give 
some basic definitions of oriented matroids. Also, we show that upper bounds for a 
connected covering number with special parameters lead to upper bounds for s(n,r). 
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In Section 3, we present two methods for finding upper bounds for connected covering 
numbers. We will be able to prove that one of those methods gives an upper bound 
b(n,r) (for s(n,r))  such that limn~oo b(n,r)/(n~ 1) ~ 1, for fixed integer r. In Section 
4, we give other upper bounds based on upper bounds for covering numbers. In fact, 
we find an upper bound d(n,r)  (for s(n,r))  such that l imn_~ d(n,r)/(~r) ~ I, for fixed 
integer r. Finally, in Section 5, we compute the values of different connected coverings 
given in previous sections for 7~<n~< 14 and 2<~r<~n- 1. 

2. Definitions and notations 

We recall some basic definitions of oriented matroids (for further details see [1]). 
A signed set is a set X together with a partition into two distinguished subsets X + and 
X - .  The opposite of X is the signed set - X  such that ( - X )  + = X -  and ( - X ) -  = X  +. 
An oriented matroid J¢ on a finite set E is defined by its collection cg of signed 
circuits, i.e. signed subsets of E satisfying the following two properties: 
(1) For all C1 E(~, C l i o  and --C1E(~, and for all q,C2EC£,  C2CC 1 implies 

C 2 = C  1 or -C l .  
(2) Elimination property. For all C1,C2 E c~ with C1 ~ - C 2  and all x E (C + n C2),  

there exists C3 E cg such that C f  c (C + U C +) \x  and C 3- c_ (C 1 U C 2) \x .  
By ignoring signs, a (non-oriented) underlying matroid ~_ is clearly attached to 

each oriented matroid Jg. The cocircuits of de' can be signed in a natural way in order 
to obtain an oriented matroid J///* having the dual ~/* of ___~ as underlying matroid. 
The bases of J /  are the maximal subsets of E which contain no circuit, that is, they 
are the bases of ~ .  The rank function of J4 is the rank function of ~ '  and is denoted 
by r. 

A basis orientation of an oriented matroid J / / i s  a mapping • of the set of ordered 
bases of ~ '  to { -1 ,  1 } satisfying the following two properties: 
(1) • is alternating and 
(2) for any two ordered bases of Jg of the form (e, x2 . . . . .  xr) and ( f ,  x2 . . . . .  Xr), e ~ f ,  

we have ~ ( f ,  x2 . . . . .  Xr) = - C ( e ) C ( f ) ~ ( e ,  x2 . . . . .  Xr), where C is one of the two 
opposite signed circuits of J /  in the set (e , f ,  x2 . . . . .  x~) and C ( f )  (and C(e)) 
denote the sign corresponding to element f (and e) in C. 

Las Vergnas [5,6] proved that every oriented matroid ~ '  has exactly two basis 
orientations and these two basis orientations are opposite, ~ and - 4 .  Lawrence [7] 
gave a complete characterization of oriented matroids in terms of an alternating function 

called chirotope (see also [2] for another description of oriented matroids). 

Remark. Let C be a circuit and B a basis of Jgn,r with B C C. Given the sign of B 
the signature of C allows us to sign the other r basis contained in C. 

We now relate the number s(n,r) with some special covering designs. In order to 
do that, we need the following definitions. 
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A (n, m, p) covering is a family of m-subsets, called blocks, of { 1 . . . . .  n} such that 
each p-subset is contained in at least one of the blocks, (n >/m/> p) (a detailed survey 
of results on the coveting numbers can be found in [3]). 

A (n, m, p) coveting is a connected covering if the blocks cannot be partitioned into 
two sets A and B such that WAn WB----0 where 

WA = { D  I ]DI = p  and D C S  for some block SEA},  

WB = {D I IDL : p and D C S for some block S E B}. 

We will say that the set of blocks B={bl  . . . . .  bs} of a (n,m,p) coveting forms a 
connected component if B cannot be partitioned into two sets as above. The number 
of blocks is the (connected) covering's size, and the minimum size of such a coveting 
(connected coveting) is called the covering number (the connected covering number), 
denoted by C(n, m, p) (CC(n, m, p)). 

A consequence of the above remark is the following theorem. 

Theorem 2.1. Let n,r be nonnegative integers with n>~r + 1. Then s(n,r)<. 
CC(n,r + 1,r). 

Proof. Let C = C ( n , r  + 1,r) be a (n,r + 1,r) connected coveting. We shall give a 
procedure to sign all the basis of J/t'n,r using at most ICI circuits. Let B =  {bl,... ,blq} 

be the blocks of C. We may refer to bi as either a block of C or as a circuit of ~'n,r 
(since Ibil--r + 1). Without loss of generality, suppose that bl is a block that contains 
{1 . . . . .  r ) .  

Procedure 
[1] Put go(1 . . . .  , r ) :  1 (or -1 ) .  Sign the other r basis (r-subsets) contained in the 

circuit bl and put B - -B \b l  and/~ = bl. 

Repeat 
[2] Find a block bi in B such that Ibi N byl--r for some bjE/~ (always possible 

since C is connected). 
[3] Sign the r -Jr 1 basis (r-subsets) contained in bi and put B --- B\bi and/~ : / ~  U bi 

(there are maybe some basis signed already). 

Until  IB} ---- 0. 

Note that in the end of the procedure all basis are signed since C is a coveting. 
Hence, the above procedure outputs a signature of all basis of ~¢¢n,r by using no more 
than ICI blocks (circuits). 

The upper bound given by Hamidoune and Las Vergnas [4] is easily derived from 
Theorem 2.1 by showing that the sets, HVl(n,r)=all (r + 1)-subsets that contains a 
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fixed integer j ,  1 ~<j ~<n and HV2(n, r ) =  all ( r +  1 )-subsets whose largest two elements 
are consecutive, are (n,r+ 1,r)  connected coverings and [nv~.(n,r)l = (n~-l) for i =  1,2. 

3. Upper bounds for CC(n,  r + 1, r) 

In this section we will study the number CC(n,r + 1,r). In particular, we will be 
interested in the case when n > r + 1. Of  course, CC(n, r + 1, r) >>. C(n, r + 1, r) as it is 
shown in the following proposition. 

Proposition 3.1. Let n,r be nonneffative integers with n>~r + 1. Then 

C(n,r+l,r)~> (~) --:C*(n,r) 
r + l  

and 

CC(n,r+ 1,r)~> (:) - 1 - :  CC*(n,r). 
r 

Proof.  (a) Since each block covers exactly r + 1 of  the (~) r-subsets. 
(b) Let b l  . . . . .  bs be the blocks of  a (n, r +  1, r )  connected coveting such that bl . . . . .  bi 

is connected for i = 2  . . . . .  s. So, bl covers exactly r +  1 r-subsets and bi covers at most 
r r-subsets not covered by bl . . . .  ,bi-1 for i = 2 , . . . , s .  Hence, r + 1 + ( s -  1)r>~ (n) or 

equivalently s >~ (~) - 1/r. [] 

Notice that (r n) - 1/r ~ CC(n, r + 1, r) <~ (n r 1). So, the upper bound is approximately 

r times the lower bound. 

Also, note that the lower bounds C*(n,r) and CC*(n,r) may not always be attain- 
able. For instance, by using exhaustive enumeration of  possibilities, it can be shown that 
for the case n = 5 and r = 3 (and n = 6 and r = 4) the minimal connected coveting C1 

(and C2) are such that It~1(5,4,3)1 = CC*(5 ,3 )+  1 (and IC2(6,5,4)1 = C C * ( 6 , 4 ) +  1), 
see Table 1; in Section 5. 

Theorem 3.2. Let n, r be nonnegative integers with n > r + 1. Then 

2L(n-r+O/2J(n-i) [ ~ 2 r l  
CC(n,r+ 1,r)~< Z r -  1 + " 

i=2 
/-even 

Proof. Let S(n, r + 1, r )  be the set of  all ( r  + 1)-subsets in { 1 , . . . ,  n} such that the last 
two elements are consecutive and the last element has the same parity as n. We claim 
that S(n,r + 1,r)  U {1 . . . . .  r} is a (n,r + l , r )  coveting. Let Un, r be the set o f  all 
r-tuples in {1 . . . . .  n}. Let B={bl,...,br}E Un, r\{1 . . . . .  r }  and let b' be the greatest 
integer in {1 . . . . .  n}\B with b'<br. Hence, if  br and n have the same parity then B is 
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contained in the block B U {b'}; otherwise, B is contained in the block B U {br + 1}. 
However, S(n,r + 1 , r )U  {1 . . . . .  r} is not connected. In fact, S(n,r + 1 , r )U  {1 . . . . .  r} 
has [(n - r + 1)/2J connected components, the blocks in which the last two elements 
are n - 2i and n - 2i - 1 for i =  0 . . . . .  [(n - r - 1)/2~. So, a connected covering is 
given by S(n, r + 1, r) = S(n, r + 1, r) U { 1,2, . . . ,  r - 1, n - 2i - 2, n - 2i}o <, i < [(n-r- 1 )/2]- 
So, we have, 

( r  - 1) (~ ~) ( r -n-r+al [ ~ " ~ ]  
n - 2  - n - 2L-- -T-J~ 

IS(n,r + 1,r)  l =  + + . . .  + } + , 

hence, 

2[(n-r+l)/2J 
J S ( n , r + l , r ) , =  ~ ( :  - i )  + [ ~ - ~ ]  . IS] 

i = 2  
/ - e v e n  

Corollary 3.3. Let r > l  be a fixed integer and let S(n,r + 1,r)  be the (n,r + 1,r)  
connected covering given in Theorem 3.2. Then 

lira IS(n'r + l ' r ) l  1 ---..> - - .  

,-*o~ (nrl)  2 

Proof .  It is known that 

( : )  n--l ( j 

E r-- j=r - 1 

So, by Theorem 3.2, 

1). 

1 n-r+1 2 L'-~+~ J 

j - e v e n  

= IS(n, r + 1, r) I, 

since for all i = 2  . . . . .  2[(n - r +  1)/2J, /-even we have (r_l) < ~ n - i  (n-i+l~r_l/" On the other 
hand, 

2 

( ) 2L(,-r+,)/2j 
2 r - 1  j=r - -  l j = 2  

j - e v e n  

( ~ - ~ )  <~lS(n,r + 1,r)  I. 

The result follows since l i m n ~  n n--1 ( r ) / (  r ) --* 1 for fixed integer r > 1. [] 

Corollary 3.4. Let n be an integer with n>~3. Then there exists a (n ,3 ,2)  connected 
covering ¢~(n,3,2) such that IC(n,3,2)l = CC*(n,2) + [~~7. 
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Proof. By Theorem 3.2 there exists a (n, 3, 2) connected covering C(n, 3, 2) such that, 
if n is even then 

]C(n, 3,2)1 = n - 2 + . . .  + 2 + n - 2  n - 2  ( ~ 2 2  ) n - 2  
2 +1 + - 5 -  

n(n - 2) n - 2 n 2 - -  4 
- -  _ _  - ] -  - -  - -  _ _  

4 2 4 

And, if n is odd then 

3 n 
IC(n,3,2)[ = n - 2 + . . .  + 1 + 

2 

n -  1 ( n ~ _ l  ) n - 3  n - 1  n 2 - - 5  

2 +1  + 2 ~ - -  4 
[] 

We illustrate Theorem 3.2 with the following example. Let n = 6 and r = 3. Hence, 
S(6,4,3) = {3456,2456,2356, 1356, 1456, 1256, 1234, 1246} with 1S(6,4,3)1 = (~) + (~) 
+ [4j = 8 which is better than 

HVl(6,4) = {1234, 1235, 1236, 1245, 1246, 1256, 1345, 1346, 1356, 1456} 
o r  

HV2(6, 4 ) =  { 1234, 1245, 1256, 1345, 1356, 1456, 2345, 2356, 2456, 3456} 

with ]HVi(6,4)]=(~)=10 for i=1 ,2 .  However, the minimum value 
CC(6,4,3)=CC*(6,3)= r(6) - 1 / 3 ]  = 7  is attained, for instance, by the set {1234, 
1235, 1236, 4561,4562, 4563, 2345} (note that 2345 is necessary for connectivity). From 
the former family, we may deduce another method to construct (n,r + 1, r) connected 
coverings. 

Theorem 3.5. Let n, r and k be positive integers with n > r, k. Let 

n - k  
( r + l )  /f a = 0 ,  

fa= ( k ) i f a = r + k _ n ,  
r + k - n + l  

where a = sup{0,r + k - n} and b =inf{r,k}. Then I b-a k n _ a _ i  ) 
i r + l  

CC(n,r + 1,r)~< 
] b-a-It/ k "x/ n - k  

[ii_~=~d~a+i)~ r + l - a - i )  

I b - a - 2  
[ +fb+ 2 

{k! r + 1 if b=r, 

r - k +  1 i fb=k ,  

if b - a is odd, 

otherwise 
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and 

" ) (  " - "  

i/eTe n \ a  + i / \ r  + 1 a - i 

I b - a - 1  
+ fa+------~"--- 

CC(n'r+l'r)<"lb-a(!)!i/Te n Cl i r +  n - k  a i 

t +so+7 

if b - a is odd, 

otherwise. 

Proof .  Let n,r and k be integers with n>r,k.  We will construct two (n,r + 1,r)  
connected coveting, M~l(n,r + 1,r) and Mk2(n,r + 1,r)  as follows. Partition {1 . . . . .  n} 

into sets A and B such that 1.41 = k  and IBI = n - k .  Let Ti be the set of  the r-subsets, ti 
of  {1 . . . .  ,n} with ]ti NA I = i, O<~i<~k and Iti nBI = r - i ,  O<<.r-i<<.n-k. Hence, the set 
of  all r-subsets o f  { 1 . . . . .  n}, U,,r, is given by Un,r = ub=a Ti where a = sup{0, r + k - n }  
and b = inf{r ,k}.  Let Li = {/-subsets o f  A} × {(r + 1 - / ) - s u b s e t s  o f  B} for a<~i<~b. 
It is clear that for each ti C Ti there exists a (r  + 1)-subset li E Zi with t i C li and/or a 
(r  + 1)-subset li+l ELi+2 with ti C li+|. Note that the (r + 1)-subsets l i and li+l c a n  

always be constructed except when [BI = r -  i and IAI = i respectively. Hence, 

kTl~=M~(n,r + l , r ) = ,  

/~¢~ = h~C~(n, r + 1 , r ) - - .  

and 

b - a  

U La+i if b - a is odd, 
i=1 

/ - o d d  

b - a - I  

U La+i U Lb otherwise 
i=1 

/--odd 

b--a--1 

U La+i U Lb if b - a is odd, 
i=0 

/ - e v e n  

b--a 

U L a + i  otherwise, 
i=O 

/ - e v e n  

are (n,r + 1,r)  coveting. Note that each Li is a connected component of  )Q~, i = 1,2. 
H o w e v e r ,  - i M~, i = 1,2 is not connected since [li N l j I<. r -  1 for either all 1 ~< i # j  <~ k, 
/ , j -odd or all 1 <.i#j<.k ,  / , j-even. Let 

b-a-1 e' e' t if  b - a is odd, M ~ U  U {el . . . . .  el, 1 . . . . . .  + l I i J  
i=2 

/--even 

M2(n,r + 1 , r ) =  
b - a - 2  

M~U U { e l , . . . , e i , '  t otherwise e l ,  • " . ,  e r+ l  - i }  
i=2 

/ - e v e n  
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and 

1~12 b-a-2 tO U {el,. ' .. e' • .,el, el,. , r + l - i }  i f b - a  is odd, 
i=l 

/ -odd  

M2(n'r + l ' r )=~ b-a-1 
[M~U U (el , .  ' .. e' . . ,e l ,  el , .  , r+l-i} otherwise, 

i=1 
/ -odd 

w h e r e  e l , . . . , e  i and , t e 1 . . . . .  er+l_ i are the first i and r + 1 - i elements in A and 
B, respectively. Clearly, M~(n,r + 1,r), i =  1,2 is a (n,r + 1,r) connected covering. 
Moreover, 

libi~--~ (aki)( r 
I + a-__21 

IMl(n'r + l 'r) i=l b_~_, l 2k , /  
Ca+/JC" 

I b - a - 2  

n-k ) 
+ l - a - i  

n-k ) 
+ 1 - a - i  +fb 

and 

with 

b-~-I ¢ k ~ (  n - k  i) 
iJ~-~en \ a  + i J  \ r  + 1 - a - 

b - a - 1  

'M2(n,r + l,r)[ = + fb + fa "q- L-----f--'-- J 
b.~_.a I / k "~ [ n - k 

,~enta-Fi) tr+ l - a - i )  

+ f a + b 2  a 

( n +  ~ )  if  a = 0 ,  

fa= ( k ) i f a = r + k _ n ,  
r + k - n + l  

where a=sup{O, r  + k - n} and b = in f{ r ,k} .  [] 

if  b - a is odd, 

otherwise 

if b - a is odd, 

otherwise, 

k (r+l) 
fb= (nk) 

r - k + l  

if  b--r, 

if b=k, 

In fact, we may do it much better than Theorem 3.5 as follows. 
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Theorem 3.6. Let n, r and k be positive integers with n > r, k. Then 

and 

with 

( b-a b - a -  
[ ~ E ( n , r , a + i ) + f b + - - - - ~  1 

/=odd 

| b - a - 1  b - a  - 2  CC(n ' r+l ' r )<"  I ~ E(n,r,a+i)-+- 

I ,  i ~-odd 

i f b - a i s o ~  

otherwise 

b - a - I  
~ E ( n , r , a + i ) +  f b + f ~ + b _ a _ 1  

/-even 

CC(n,r + 1,r)~< i f  b - a is odd, 

b-a  
I ~ E ( n , r , a + i ) +  f a + b - a  otherwise, 

2 
k /--even 

E(n,r,i) CC(k,i,i - n-k = 1)(r+l_i) + CC(n - k,r + 1 - i,r - i)(ki) 

-CC(k , i , i  - 1)CC(n - k,r + 1 - i,r - i), 

C C ( n - k , r +  1,r) / f  a = O, 

f a =  C C ( k , r + k - n + l , r + k - n )  i f a = r + k - n ,  

CC(k,r + 1,r)  i f  b=r,  

fb---- C C ( n - k , r - k + l , r - k )  i f b = k ,  

where a = sup{0,r  + k - n} and b =in f{ r , k} .  

Proof.  Let n,r and k be integers with n>r,k .  We may construct two (n,r + 1,r)  
connected coverings, Nl(n,r  + 1,r)  and N](n,r + 1,r)  (similarly as in Theorem 3.5) 
as follows. Partition {1 . . . . .  n} into sets A and B such that IAI = k  and IBI = n - k .  Let 
Mi = C( n - k, r + 1 - i, r - i) x {/-subsets of  A } and A~ti = (~(k, i, i - 1 ) x {(r + 1 - i)-subsets 
of  B)} for a<<.i<<.b a = s u p { 0 , r  + k -  n} and b=in f{r , k}  where C(l ,p  + 1, p )  is a 
(l, p + 1, p)  connected covering withlC(/, p + 1, P)I -- CC(I, p + 1, p). It is clear that 
for each r-subset t o f{1  . . . . .  n} with I t n A I - - i  (or I tnAI = i - 1 )  there exists a ( r +  1)- 
subset mi CMi (or rhi EA~ti) such that tCmi  (or tCrhi). Note that IMil = C C ( k , i , i -  

n--k 1)(r+t_i) + CC(n - k,r + 1 - i,r - i)(ki) - CC(k,i,i - 1)CC(n - k,r + 1 - i,r - i). 
From here, the rest of  the proof can be deduced by using similar arguments as in 
Theorem 3.5. [] 

4. Other upper bounds 

In this section, we will give upper bounds of  CC(n, r + 1, r) in terms of  C(n, r + 1, r). 
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Theorem 4.1. Let n and r be positive integers with n > r  + 1. Then CC(n,r + 1,r)~< 
2C(n, r + 1, r). 

Proof. Let /v=/v(n,r  + 1) be a (n,r + 1,r) covering with [/vl=C(n,r + 1,r). 
Suppose that /V has C1 . . . .  Cs, s ~> 1 connected components. We claim that it is always 
possible to form a (n , r+ 1,r) connected covering V =  V(n , r+ 1,r) with [V[ = l/v[ +s .  
Indeed, given a connected component Ck there always exists an r-subset b such that 
b C bl for some bl E Ck and an element e E {1 . . . . .  n} such that bU{e} ~ Ck (otherwise, 
Ck is a connected coveting since any r-subset is in Ck). Then bU {e} contains at least 
one r-subset b t such that b~E Ci for some 1 <~i¢k<~s. So, by adding block bU{e}  to 
V we reduce its number of components to at least s - 1, and so on. The result follows 
since [ V l = C ( n , r +  1 , r )+s<~2C(n , r+  1,r). [] 

Lemma 4.2. Let n and r be positive integers with n>r>~2. Then CC(n,r + 1,r)~< 
n--1 ~i=r+l C ( i , r , r -  1). 

Proof. Let Sn, r be the matrix with columns (and rows) all (r + 1)-subsets (r-subsets) 
of { 1,. . . ,  n} in lexicographic order from lett to tight (from top to bottom) respectively 
with si, y = 1 if the ith (r subset) row is contained in the j th ((r + 1)-subset) column, 

sid = 0 otherwise. 
We construct recursively a connected covering W = W(n, r+ 1, r) as follows: consider 

a ( n -  1 , r , r -  1) coveting W l ( n -  1 , r , r -  1) and a ( n -  1 , r +  1,r) connected covering 
W2(n - 1, r + 1, r). Since 

(s r 0) 
" Sn_l , r  

then W = W1 + n U W2 is a (n,r + 1,r) connected coveting where W1 + n =  {w U 
{n} lwE W1}, arld so on. [] 

The Turdn number T(n, l ,r)  is the minimum number of r-subsets of an {1 . . . . .  n} 
such that every /-subset contains at least one of the r-subsets. It is easy to see 
that C(v ,k , t )=  T ( v , v -  t , v -  k), so covering numbers are just Turfin numbers re- 
ordered. In 1941, Turfin [10] determined T(n,k,2) for any k. R6dl [8] proved that 
C ( n , m , p ) = L ( n , m , p ) ( 1  + o(1)) where L(n,m,p)=/m/m_l/[-n [-n--1 I - . . .  / r a - -p+ l  | [-n--p+l "] . . . ] ]]  and 
m, p are fixed and n ~ c~, (see [9] for further results on Tur~in numbers). We have 

the following corollary of Lemma 4.2. 

Corollary 4.3. CC ( n, r + 1, r) = ((~)/r)( 1 + o( 1 )) where r is f ixed and n --~ oo. 

Proof. Let W(n, r + 1, r)  be the (n, r + 1, r)  connected covering as in Lemma 4.2. We 
claim that 

[ W ( n , r ÷ l , r ) [ =  ( (n~)r ) (1+o(1) )  
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where r is fixed and n--~ o~. Indeed, from Rrdl's equality we have that 

C(n,r + 1 , r )=  (r + 1) (1 + o(1)) 

where r is fixed and n--* oo. Hence, 

n--1 

]W(n,r + 1, r ) l=  ~ C(i,r,r- 1)=  
i=r+l 

where r is fixed and n ~ cxz. 
The result follows by considering 

((~) -1)/r<~CC(n,r+ 1,r)<<.[W(n,r+l,r)[. [] 

°-1 (t-'l)( (n)( 
1 + o(11)= 1 + o(1)), 

r r 
i=r+l 

5. Numerical results 

Here, we will compute some of the upper bounds for CC(n, r + 1, r) given in the 
previous sections to compare them together with CC*(n,r). First, we give Table 1 
with minimal connected coverings for small values of n. 

Before giving the table with upper bounds for CC(n,r + 1,r), for reader's conve- 
nience, we give a brief summary of  notation, value and reference of some (n, r + 1, r) 
connected coverings given above. 

Let n, r and k be integers with n > r >I k >/0. 
(1) (Proposition 3.1) CC*(n,r)--( (7) - 1)/r. 
(2) (see [4]) tHVI = [HVl(n,r + 1,r) I = [HV2(n,r + 1,r) l = (~-l).  
(3) (Theorem 3.2) 

2 [(n--r+l)t2j 

[S[--[S(n,r+l,r)[= ~ (n- i )++[(n-r) /r2  j, 
i=2 

/-even 

(4) (Theorem 3.6, (see also Theorem 3.5)) 

IN~[ = ]N~(n,r -4- 1,r)l and [N21---tNek(n,r + 1,r)[. 

Table 1 

n, r CC*(n,r) Minimal connected covering 

4,2 3 
5,2 5 
5,3 3 
6,2 7 
6,3 7 
6,4 4 
7,2 10 

123, 124, 234 
123, 124, 145, 235, 345 
1234, t235, 1245, 2345 
126, 134, 156, 234, 235, 356, 456 
1234, 1235, 1236, 1456, 2345, 2456, 3456 
12345, 12346, 12356, 13456, 23456 
123, 124, 145, 167, 246, 257, 347, 356, 467, 567 
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Table 2 

n, r CC* (n, r) HV S N~ V 

7,3 12 20 15 15(2,3) 24 
7,4 9 15 12 10(3) 18 
7,5 4 6 6 6(1,2,3) 12 
8,2 14 21 15 14(2) - -  
8, 3 19 35 24 23(2) 28 
8, 4 18 35 26 24(3) 40 
8,5 11 21 17 13(4) 24 
8,6 5 7 7 7(1,2,3,4)  14 
9,2 18 28 19 19(2) - -  
9,3 28 56 37 37(2) 50 
9, 4 32 70 48 45(3) 60 
9,5 25 56 42 37(3) 60 
9,6 14 28 23 17(4) 32 
9,7 5 8 8 8(1,2,3,4)  16 

10,2 22 36 24 23(2) - -  
10,3 40 84 53 52(2) 60 
10,4 53 126 83 81(2) 102 
10,5 51 126 88 77(3) 100 
10,6 35 84 64 55(3,4) 90 
10,7 17 36 30 21(5) 40 
10,8 6 9 9 9(1,2 ,3 ,4 ,5)  - -  
11,2 27 45 29 29(2) - -  
11,3 55 120 74 74(2) 94 
11,4 83 210 133 130(2) 132 
11,5 93 252 169 161(3) 200 
11,6 77 210 150 125(3) 168 
11,7 47 120 93 76(4) 126 
11,8 21 45 38 26(5) 50 
11,9 6 10 10 10(1,2,3,4,5)  - -  
12,2 33 55 35 34(2) - -  
12,3 73 165 99 98(2) 114 
12,4 124 330 204 202(2) 226 
12,5 159 462 299 288(2) 264 
12,6 154 462 317 285(3,6) 354 
12,7 113 330 241 193(6) 252 
12,8 62 165 130 103(4) 168 
12,9 25 55 47 31(6) - -  
12,10 7 11 11 11(1,2,3,4 ,5 ,6)  - -  
13,2 39 66 41 41(2) - -  
13,3 95 220 130 130(2) 156 
13,4 179 495 299 296(2) 314 
13,5 258 792 500 492(2) 490 
13,6 286 924 613 549(6) 528 
13,7 245 792 556 477(6) 594 
13,8 161 495 369 279(6) 370 
13,9 80 220 176 136(5) - -  
13,10 29 66 57 37(6) - -  
13,11 7 12 12 12(1,2,3,4 ,5 ,6)  - -  
14,2 45 78 48 47(2) - -  
14,3 121 286 166 165(2) 182 
14,4 250 715 425 423(2) 470 
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Table 2. Continued. 
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14,5 401 1287 795 784(2) 770 
14,6 501 1716 1110 1032(6) 1018 
14,7 491 1716 1166 959(7) 948 
14,8 376 1287 923 753(6) 964 
14,9 223 715 543 387(6) 
14,10 100 286 232 174(5) - -  
14,11 33 78 68 43(7) - -  
14,12 8 13 13 13(1,2,3,4,5,6,7) - -  

(5) (Theorem 4.1) [Vl=lV(n,r+ 1,r)l=2C(n,r+ l ,r).  
In our calculations for the coverings Ark = min{N 1,N~ }, we will treat CC(n, r + 1, r) 

as the minimal value that we could find rather than the absolute minimum value (it may 
be). We actually give N** =min0~<k~[n/2] {Ark} and the integers l for which Nt* =Art 
for each n and r. 

For coverings V, we only write their values in the case when C(n, r + 1, r) is found 
in the tables given by Gordon et al. [3] (see Table 2). 
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