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a b s t r a c t

Let ck(G) be the minimum number of elementary cycles of length at most k necessary to
cover the vertices of a given graph G. In this work, we bound ck(G) by a function of the
order of G and its independence number.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we consider a finite simple graph G = (V, E) and we denote by n its order. The distance between
two vertices u and v in G is denoted by dG(u, v), and is defined to be the length of a shortest path joining them in G. The size
of a largest independent set of G is called the independence number of G and is denoted by α.

A covering of a graph G is a family of elementary cycles of G such that each vertex of G lies in at least one cycle of this
family. For terms not defined here, we refer the reader to [1].

In the literature, many results dealing with the covering of a graph with cycles have appeared. Corrádi and Hajnal (in [3])
have proved a result conjectured a few years before by Erdös, which is that if G is a graph of order n ≥ 3k with minimum
degree δ ≥ 2k, then G contains k vertex disjoint cycles. Later on, several authors have been, in some sense, inspired by this
theorem and have sharpened it in many ways. In [9], Lesniak has discussed a variety of results dealing with the existence of
disjoint cycles in a given graph.

In [5,10], Enomoto and Wang have relaxed the degree condition given by Erdös. They have independently established
that a graph of order at least 3k in which d(u) + d(v) ≥ 4k − 1 for every pair of non-adjacent vertices u and v contains k
vertex disjoint cycles. In [4], Egawa et al. have proved that by taking three integers d, k, and n such that k ≥ 3, d ≥ 4k − 1
and n ≥ 3k and a graph G of order n, in which each pair of non-adjacent vertices x and y verifies d(x)+ d(y) ≥ d, then at least
min(d, n) vertices of G can be covered with k vertex disjoint cycles.

However, in what precedes, the interest was in the independence of the cycles rather than the fact that they cover all the
vertices of the graph. In [7], Kouider and Lonc have proved that the vertices of a 2-connected graph in which

∑
x∈S dG(x) ≥ n

for every independent set S of cardinality s can be covered with at most s−1 cycles. In another paper[8], Kouider shows that
the vertices of any κ connected graph are covered with at most dα/κe cycles.

But in all these results, no bound for the length of the cycles taken in the covering is imposed. Recently, in [6], Forge and
Kouider have laid down that the cycles taken in the covering are of length not exceeding k (where k is an integer fixed as a
preliminary). They have denoted by ck(G) the cardinality of a minimum covering in which each cycle satisfies the previous
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condition. They have bounded ck(G) by a function of the minimum degree and the order of the graph G. They have shown
that:

If p and k are two integers such that 2 ≤ p ≤ k
8 and if G is a graph of order n ≥ 2k

3 (p− 1)2
+ (p− 1) and minimum degree

δ at least n
p
+

2k
3 , then

ck(G) ≤
3n
k
+

log k
3

− log(1− 1
2(p−1)2 )

+

(
1−

3
k

)
(p− 2)+ 1.

In this work, we intend to bound ck(G) by a function of the independence number of the graph and its order and we show,
among others, the Corollaries 2.8 and 2.9:

• Let G be a 2-connected graph of order n with independence number α > 1 and k be an integer such that k ≥ 2α+ 1.
If n > α( k+1

2 ) then ck(G) ≤ 2n
k+1 + α(1+ log k+1

6 ).
• Let G be a 2-connected graph of order n with independence number α and k an integer such that (k+1)

2(α+1)
≥ 2. Then

ck(G) ≤ n

k− 4
3 (α+1)

+ α log k
3 if n > α(k− 4

3 (α+ 1)).

2. Covering the vertices with cycles of length at most k

Let k be an integer and G a graph of order n. We want to cover G with the minimum number of cycles of length at most k.
Each time we have a cycle in G, we check its length. If it is less than or equal to k then this cycle is taken in the covering;

otherwise, a chord may reduce its length. Therefore, we should assume that k ≥ 2α + 1 so that any cycle of length larger
than k has at least one chord.

In what follows, we show that according to the prescribed value of k we can guarantee the existence in G of a cycle of
length not only at most k but at least a fraction of k as well.

Proposition 2.1. Let G be a graph of order n and independence number α and let k be an integer such that k ≥ 2α+ 1. If G has
a cycle of length more than k, then it has a cycle of length at least k+1

2 and at most k.

Proof. Indeed, if C is a cycle of G of length l(C) at least k+1 ≥ 2α+2, then there are at least α+1 independent vertices on C
and thus at least two of these vertices (say x and y) are adjacent. Furthermore, 2 ≤ dC(x, y) ≤

l(C)
2 . The chord (x, y) divides the

cycle C into two smaller cycles; the bigger, C1, is of length l(C1) between l(C)
2 and l(C)− 1. We repeat the same construction

until we get a cycle Ci such that k+1
2 ≤ l(Ci) ≤ k. �

If we increase the lower bound for k in the previous theorem then the lower bound of the length for the cycle is increased.

Proposition 2.2. Let G be a graph of order n with independence number α and let k be an integer such that k ≥ 4α + 3. If G
possesses a cycle of length at least 2k

3 , then it has a cycle of length at least 2k
3 and at most k.

Proof. Let C be a cycle of G of length l ≥ 2k
3 .

If l ≤ k then C is a cycle of length between 2k
3 and k.

In the case where l > k, we are going to construct a cycle of length at least 2k
3 and strictly smaller than l. Clearly by

iterating the construction we will finally get a cycle of length between 2k
3 and k.

Consider an orientation O on the cycle. We will use dO(x, y) as the distance on the cycle using the orientation O. Consider,
among all possible sets {v1, . . . , vα+1} of (α+1) distinct vertices such that dO(vi, vi+1) = 2 for 1 ≤ i ≤ α, the one that contains
two adjacent vertices v1 and vi (adjacent in G) at minimum distance on C.

• If dO(v1, vi) ≤
l
3 then we have the desired cycle.

• If not, then consider the following set: S = {v2, . . . vα+1, vα+2} where dO(vα+1, vα+2) is also 2 on C. Let vj and vr be
two adjacent vertices of S (as |S| = α + 1). We cannot have j ≥ i; otherwise, since dO(vj, vr) ≥ dO(v1, vi) > l

3
then dO(v1, vα+2) ≥ dO(v1, vi) + dO(vj, vr) ≥

2l
3 but dO(v1, vα+2) ≤

l
2 (because l ≥ 4(α + 1)). We get l

2 ≥
2l
3 which

is a contradiction. Thus the segments [v1, vi] and [vj, vr] of C do intersect in at least two vertices. Let l1 = dO(v1, vj),
l2 = dO(vj, vi) and l3 = dO(vi, vr). We have l1+ l2+ l3 ≤

l
2 and l1+2l2+ l3 ≥

2l
3 . It follows that l2 ≥ l

6 and consequently the
cycle C′ = (v1, vi)

⋃
[vi, vj]

⋃
(vj, vr)

⋃
[vr, v1] is of length l′ ≥ 2l

3 . Let us note that the vertex set of C′ is strictly contained in
the vertex set of C as it does not contain the neighbor v+1 of v1. So l′ < l. This completes the proof. �

More generally, for an integer c ≥ 2 and for k ≥ 2c(α+ 1)− 1, we have the following result.

Proposition 2.3. Let G be a graph of order n with independence number α. Let c and k be two integers such that c ≥ 2 and
k ≥ 2c(α+ 1)− 1. If G possesses a cycle of length at least (1− 2

3c )k, then it has a cycle of length at least (1− 2
3c )k and at most k.
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Proof. We use the definitions and techniques of the preceding proof. Let C be a cycle of G of length l ≥ (1− 2
3c )k.

If l ≤ k then C is as desired.
Otherwise, consider, among all possible sets {v1, . . . , vα+1} of (α+ 1) vertices such that dO(vi, vi+1) = 2 for 1 ≤ i ≤ α, the

one that contains two adjacent vertices v1 and vi at minimum distance on C.

• If dO(v1, vi) ≤
2l
3c then we have the desired cycle.

• If dO(v1, vi) >
2l
3c then consider the following set: S = {v2, . . . vα+1, vα+2}, where dO(vα+1, vα+2) is also 2 on C. Let vj

and vr be two adjacent vertices of S. We have j < i; otherwise, on one hand dO(vj, vr) ≥ dO(v1, vi) >
2l
3c and then

dO(v1, vα+2) ≥ dO(v1, vi) + dO(vj, vr) ≥
4l
3c , and on the other hand dO(v1, vα+2) ≤

l
c

(since l ≥ 2c(α + 1)). We get 4l
3c ≤

l
c

which is a contradiction. Thus the segments [v1, vi] and [vj, vr] of the cycle C do intersect in at least two vertices. Let
l1 = dO(v1, vj), l2 = d(vj, vi) and l3 = dO(vi, vr). We have: l1 + l2 + l3 ≤

l
c

and l1 + 2l2 + l3 ≥
4l
3c . So l2 ≥

l
3c and as a result

the cycle C′ = (v1, vi)
⋃
[vi, vj]

⋃
(vj, vr)

⋃
[vr, v1] is of length l′, such that l− 1 ≥ l′ ≥ (1− 2

3c )l, as desired.

In the previous propositions, we supposed that a cycle exists to begin the construction. The next proposition of [2] ensures
the existence (maybe by adding conditions) of at least a cycle in G of sufficient length.

Proposition 2.4. Let G be a graph of independence number α; then G possesses a cycle, an edge or a vertex whose removal reduces
its independence number by at least 1. Therefore, G can be covered with at most α disjoint cycles, edges or vertices.

Proof. The proposition is obviously true for edgeless graphs; so we assume that the graph G has edges. Let P be a longest
path in G and let x be one of its endpoints. All the neighbors of x are on P; otherwise we get a contradiction. Two cases may
occur:

(1) x is not of degree 1 in G. Then we consider u the furthermost neighbor of x on P. The cycle C made of the segment [x, u] on
P and the edge (x, u) contains x and all of its neighbors. Thus if we remove it, we get a graph with smaller independence
number: α(G− C) ≤ α(G)− 1.

(2) x is of degree 1 in G. Then by suppressing the vertex x and its neighbor x′ we get α(G− {x, x′}) ≤ α(G)− 1.

The second part can be deduced by induction. �

We note that the preceding proposition implies that if n ≥ 3α, then there exists a cycle of length at least n/α. By combining
all the foregoing, and by supposing moreover that G is 2-connected with a vertex set large enough and with k

α
large enough,

then we can cover G with at most a number of order n

(1− 2
3c )k

of cycles of length at most k, as stated in the following result:

Theorem 2.5. Let G be a 2-connected graph of order n with independence number α > 1. Let c and k be two integers such that
c ≥ 2 and k ≥ 2c(α+ 1)− 1. If n ≥ α(1− 2

3c )k, then

ck(G) ≤
n

(1− 2
3c )k
+ α log

(1− 2
3c )k

3
+ α.

Proof. The proof is composed of three steps depending on the size of N, the set of uncovered vertices. In the first step,
|N| ≥ α(1 − 2

3c )k and there exists a cycle of length at least (1 − 2
3c )k and at most k. When |N| is no longer greater than

α(1− 2
3c )k we go to the next step. In step 2, while |N| ≥ 3α, there exists a cycle of length at least |N|/α and at most k. In Step

3, while |N| ≥ αwe cover the remaining vertices two by two, and then only one by one.
Step 1. While |N| ≥ α(1− 2

3c )k, then by Proposition 2.4, we have a cycle of length at least |N|
α
≥ (1− 2

3c )k. If the length of
the cycle is greater than k then, by Proposition 2.3, we know how to reduce it, obtaining in any case a cycle which covers at
least (1− 2

3c )k vertices of N. At the end of this step, at most n

(1− 2
3c )k
− α cycles would be used.

Now |N| < (1− 2
3c )kα.

Step 2. While |N| ≥ 3α, then by Proposition 2.4 we can find a cycle in the induced subgraph G[N] of length at least |N|/α
and by Proposition 2.3 we can reduce its length. We then obtain a cycle of length at least |N|/α and at most k. The number
of cycles used in this step is given by the number i of iterations carried out until |N| becomes < 3α. After the first iteration,
there remain at most |N| − |N|

α
= |N|(1 − 1

α
) uncovered vertices. After i iterations, there are at most |N|(1 − 1

α
)i uncovered

vertices. We stop when |N|(1 − 1
α
)i becomes smaller than 3α. Since |N| < (1 − 2

3c )kα, it is sufficient to stop for i satisfying

(1− 2
3c )kα(1− 1

α
)i ≤ 3α. It follows that i ≤

log 3
(1− 2

3c )k

log(1− 1
α )
≤ α log (1− 2

3c )k

3 , using that log(1− 1
α
) < − 1

α
.

When this step is over, we have |N| < 3α.
Step 3. While |N| is greater than α, we can cover its vertices two by two (by Proposition 2.4) and since the considered

graph G is 2-connected, then every edge lies in a cycle. If the length of this cycle is greater than k then we know how to
reduce it (Proposition 2.3). Thus we obtain at most α new cycles in the covering.

And finally, when |N| ≤ αwe can cover the vertices one by one and for the same aforementioned reasons, we get at most
α additional cycles in the covering. In short, we have a covering of G by at most n

(1− 2
3c )k
+ α log (1− 2

3c )k

3 + α cycles. �
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Remark 2.6.

(1) In order for the function log(1 − 1
α
) to be defined, the case α = 1 has been put aside. If this case occurs, then the

2-connected graph G is a clique and hence it can be covered with at most d n
k
e cycles.

(2) More generally, by taking just a non-zero integer c, the same bound holds on replacing (1 − 2
3c )k by γ = max((1 −

2
3c )k,

k+1
2 ). Note that the greater c is, the closer γ and k are.

The previous bound for ck(G) remains even if n is not as large as assumed in the previous theorem. However, it can be
improved.

Theorem 2.7. Let G be a 2-connected graph of order n with independence number α > 1. Let c and k be two integers such that
c ≥ 1, k ≥ 2c(α+ 1)− 1 and γ = max((1− 2

3c )k,
k+1

2 ).
If n > αγ then ck(G) ≤ n

γ
+ α(1+ log γ

3 ), if 3α < n ≤ αγ then ck(G) ≤ α(2+ log γ
3 ), and if n ≤ 3α then ck(G) ≤ 2α.

Proof. The proof of the first case is analogous to the proof of Theorem 2.5.
The proofs of the other two cases are quite similar starting from Step 2 and Step 3 respectively in the proof of

Theorem 2.5. �

For the complete graph Kn (n very large), we have ck(Kn) = d
n
k
e cycles, which is not so far from n

(1− 2
3c )k
+ α log( (1− 2

3c )k

3 )

given by Theorem 2.5 for k ≥ 2c(α+ 1)− 1 and c very large.
From the hypothesis k ≥ 2c(α+ 1)− 1 of Theorem 2.5, the first term n

(1− 2
3c )k

is not better than n
k−8/3 .

We deduce naturally the following corollaries from Theorem 2.7. We obtain Corollary 2.8 by taking c = 1 and Corollary 2.9
by taking c = d (k+1)

2(α+1)
e.

Corollary 2.8. Let G be a 2-connected graph of order n with independence number α > 1. Let k be an integer such that k ≥ 2α.
If n > α( k+1

2 ) then ck(G) ≤ 2n
k+1 + α(1 + log k+1

6 ), if 3α < n ≤ α( k+1
2 ) then ck(G) ≤ α(2 + log k+1

6 ), and if n ≤ 3α then
ck(G) ≤ 2α.

Corollary 2.9. Let G be a 2-connected graph of order n with independence number α and k an integer such that (k+1)
2(α+1)

≥ 2. Then
ck(G) ≤ n

k− 4
3 (α+1)

+ α(log k
3 + 1) if n > α(k− 4

3 (α+ 1)); ck(G) ≤ α(2+ log k
3 ) if 3α ≤ n ≤ α(k− 4

3 (α+ 1)) and ck(G) ≤ 2α if
n ≤ 3α.

Proof. In the case n > α(k− 4
3 (α+ 1)), as c ≥ 2, then γ = (1− 2

3c )k. Furthermore c ≥ (k+1)
2(α+1)

, so we get γ ≥ (1− 4(α+1)
3(k+1)

)k ≥

(k− 4(α+1)
3 ).

Then the first inequality of the corollary follows. �
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