Covering the vertices of a graph with cycles of bounded length

Siham Bekkai ${ }^{\text {a }}$, David Forge ${ }^{\text {b }}$, Mekkia Kouider ${ }^{\text {b }}$
${ }^{\text {a }}$ LAID3, Faculte de Mathematiqués, U.S.T.H.B, BP.32, El-Alia Bab Ezzouar, 16111 Alger, Algérie
b LRI, Université Paris-Sud, UMR 8623, Bât. 490, 91405 Orsay Cedex, France

A R T I C L E IN F O

Article history:

Received 5 February 2007
Received in revised form 25 March 2008
Accepted 26 March 2008
Available online 27 May 2008

Keywords:

Cycle
Vertex covering
Independence number

Abstract

Let $c_{k}(G)$ be the minimum number of elementary cycles of length at most k necessary to cover the vertices of a given graph G. In this work, we bound $c_{k}(G)$ by a function of the order of G and its independence number.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we consider a finite simple graph $G=(V, E)$ and we denote by n its order. The distance between two vertices u and v in G is denoted by $d_{G}(u, v)$, and is defined to be the length of a shortest path joining them in G. The size of a largest independent set of G is called the independence number of G and is denoted by α.

A covering of a graph G is a family of elementary cycles of G such that each vertex of G lies in at least one cycle of this family. For terms not defined here, we refer the reader to [1].

In the literature, many results dealing with the covering of a graph with cycles have appeared. Corrádi and Hajnal (in [3]) have proved a result conjectured a few years before by Erdös, which is that if G is a graph of order $n \geq 3 k$ with minimum degree $\delta \geq 2 k$, then G contains k vertex disjoint cycles. Later on, several authors have been, in some sense, inspired by this theorem and have sharpened it in many ways. In [9], Lesniak has discussed a variety of results dealing with the existence of disjoint cycles in a given graph.

In [5,10], Enomoto and Wang have relaxed the degree condition given by Erdös. They have independently established that a graph of order at least $3 k$ in which $d(u)+d(v) \geq 4 k-1$ for every pair of non-adjacent vertices u and v contains k vertex disjoint cycles. In [4], Egawa et al. have proved that by taking three integers d, k, and n such that $k \geq 3, d \geq 4 k-1$ and $n \geq 3 k$ and a graph G of order n, in which each pair of non-adjacent vertices x and y verifies $d(x)+d(y) \geq d$, then at least $\min (d, n)$ vertices of G can be covered with k vertex disjoint cycles.

However, in what precedes, the interest was in the independence of the cycles rather than the fact that they cover all the vertices of the graph. In [7], Kouider and Lonc have proved that the vertices of a 2-connected graph in which $\sum_{x \in S} d_{G}(x) \geq n$ for every independent set S of cardinality s can be covered with at most $s-1$ cycles. In another paper[8], Kouider shows that the vertices of any κ connected graph are covered with at most $\lceil\alpha / \kappa\rceil$ cycles.

But in all these results, no bound for the length of the cycles taken in the covering is imposed. Recently, in [6], Forge and Kouider have laid down that the cycles taken in the covering are of length not exceeding k (where k is an integer fixed as a preliminary). They have denoted by $c_{k}(G)$ the cardinality of a minimum covering in which each cycle satisfies the previous

[^0]condition. They have bounded $c_{k}(G)$ by a function of the minimum degree and the order of the graph G. They have shown that:

If p and k are two integers such that $2 \leq p \leq \frac{k}{8}$ and if G is a graph of order $n \geq \frac{2 k}{3}(p-1)^{2}+(p-1)$ and minimum degree δ at least $\frac{n}{p}+\frac{2 k}{3}$, then

$$
c_{k}(G) \leq \frac{3 n}{k}+\frac{\log \frac{k}{3}}{-\log \left(1-\frac{1}{2(p-1)^{2}}\right)}+\left(1-\frac{3}{k}\right)(p-2)+1
$$

In this work, we intend to bound $c_{k}(G)$ by a function of the independence number of the graph and its order and we show, among others, the Corollaries 2.8 and 2.9:

- Let G be a 2-connected graph of order n with independence number $\alpha>1$ and k be an integer such that $k \geq 2 \alpha+1$. If $n>\alpha\left(\frac{k+1}{2}\right)$ then $c_{k}(G) \leq \frac{2 n}{k+1}+\alpha\left(1+\log \frac{k+1}{6}\right)$.
- Let G be a 2 -connected graph of order n with independence number α and k an integer such that $\frac{(k+1)}{2(\alpha+1)} \geq 2$. Then $c_{k}(G) \leq \frac{n}{k-\frac{4}{3}(\alpha+1)}+\alpha \log \frac{k}{3}$ if $n>\alpha\left(k-\frac{4}{3}(\alpha+1)\right)$.

2. Covering the vertices with cycles of length at most \boldsymbol{k}

Let k be an integer and G a graph of order n. We want to cover G with the minimum number of cycles of length at most k.
Each time we have a cycle in G, we check its length. If it is less than or equal to k then this cycle is taken in the covering; otherwise, a chord may reduce its length. Therefore, we should assume that $k \geq 2 \alpha+1$ so that any cycle of length larger than k has at least one chord.

In what follows, we show that according to the prescribed value of k we can guarantee the existence in G of a cycle of length not only at most k but at least a fraction of k as well.

Proposition 2.1. Let G be a graph of order n and independence number α and let k be an integer such that $k \geq 2 \alpha+1$. If G has a cycle of length more than k, then it has a cycle of length at least $\frac{k+1}{2}$ and at most k.

Proof. Indeed, if C is a cycle of G of length $l(C)$ at least $k+1 \geq 2 \alpha+2$, then there are at least $\alpha+1$ independent vertices on C and thus at least two of these vertices (say x and y) are adjacent. Furthermore, $2 \leq d_{C}(x, y) \leq \frac{l(C)}{2}$. The chord (x, y) divides the cycle C into two smaller cycles; the bigger, C_{1}, is of length $l\left(C_{1}\right)$ between $\frac{l(C)}{2}$ and $l(C)-1$. We repeat the same construction until we get a cycle C_{i} such that $\frac{k+1}{2} \leq l\left(C_{i}\right) \leq k$.

If we increase the lower bound for k in the previous theorem then the lower bound of the length for the cycle is increased.

Proposition 2.2. Let G be a graph of order n with independence number α and let k be an integer such that $k \geq 4 \alpha+3$. If G possesses a cycle of length at least $\frac{2 k}{3}$, then it has a cycle of length at least $\frac{2 k}{3}$ and at most k.

Proof. Let C be a cycle of G of length $l \geq \frac{2 k}{3}$.
If $l \leq k$ then C is a cycle of length between $\frac{2 k}{3}$ and k.
In the case where $l>k$, we are going to construct a cycle of length at least $\frac{2 k}{3}$ and strictly smaller than l. Clearly by iterating the construction we will finally get a cycle of length between $\frac{2 k}{3}$ and k.

Consider an orientation O on the cycle. We will use $d_{0}(x, y)$ as the distance on the cycle using the orientation 0 . Consider, among all possible sets $\left\{v_{1}, \ldots, v_{\alpha+1}\right\}$ of ($\alpha+1$) distinct vertices such that $d_{0}\left(v_{i}, v_{i+1}\right)=2$ for $1 \leq i \leq \alpha$, the one that contains two adjacent vertices v_{1} and v_{i} (adjacent in G) at minimum distance on C.

- If $d_{0}\left(v_{1}, v_{i}\right) \leq \frac{l}{3}$ then we have the desired cycle.
- If not, then consider the following set: $S=\left\{v_{2}, \ldots v_{\alpha+1}, v_{\alpha+2}\right\}$ where $d_{0}\left(v_{\alpha+1}, v_{\alpha+2}\right)$ is also 2 on C. Let v_{j} and v_{r} be two adjacent vertices of S (as $|S|=\alpha+1$). We cannot have $j \geq i$; otherwise, since $d_{0}\left(v_{j}, v_{r}\right) \geq d_{0}\left(v_{1}, v_{i}\right)>\frac{1}{3}$ then $d_{0}\left(v_{1}, v_{\alpha+2}\right) \geq d_{0}\left(v_{1}, v_{i}\right)+d_{0}\left(v_{j}, v_{r}\right) \geq \frac{2 l}{3}$ but $d_{0}\left(v_{1}, v_{\alpha+2}\right) \leq \frac{l}{2}$ (because $\left.l \geq 4(\alpha+1)\right)$. We get $\frac{l}{2} \geq \frac{2 l}{3}$ which is a contradiction. Thus the segments $\left[v_{1}, v_{i}\right]$ and $\left[v_{j}, v_{r}\right]$ of C do intersect in at least two vertices. Let $l_{1}=d_{0}\left(v_{1}, v_{j}\right)$, $l_{2}=d_{0}\left(v_{j}, v_{i}\right)$ and $l_{3}=d_{0}\left(v_{i}, v_{r}\right)$. We have $l_{1}+l_{2}+l_{3} \leq \frac{l}{2}$ and $l_{1}+2 l_{2}+l_{3} \geq \frac{2 l}{3}$. It follows that $l_{2} \geq \frac{l}{6}$ and consequently the cycle $C^{\prime}=\left(v_{1}, v_{i}\right) \cup\left[v_{i}, v_{j}\right] \cup\left(v_{j}, v_{r}\right) \cup\left[v_{r}, v_{1}\right]$ is of length $l^{\prime} \geq \frac{2 l}{3}$. Let us note that the vertex set of C^{\prime} is strictly contained in the vertex set of C as it does not contain the neighbor v_{1}^{+}of v_{1}. So $l^{\prime}<l$. This completes the proof.

More generally, for an integer $c \geq 2$ and for $k \geq 2 c(\alpha+1)-1$, we have the following result.
Proposition 2.3. Let G be a graph of order n with independence number α. Let c and k be two integers such that $c \geq 2$ and $k \geq 2 c(\alpha+1)-1$. If G possesses a cycle of length at least $\left(1-\frac{2}{3 c}\right) k$, then it has a cycle of length at least $\left(1-\frac{2}{3 c}\right) k$ and at most k.

Proof. We use the definitions and techniques of the preceding proof. Let C be a cycle of G of length $l \geq\left(1-\frac{2}{3 c}\right) k$.
If $l \leq k$ then C is as desired.
Otherwise, consider, among all possible sets $\left\{v_{1}, \ldots, v_{\alpha+1}\right\}$ of $(\alpha+1)$ vertices such that $d_{0}\left(v_{i}, v_{i+1}\right)=2$ for $1 \leq i \leq \alpha$, the one that contains two adjacent vertices v_{1} and v_{i} at minimum distance on C.

- If $d_{0}\left(v_{1}, v_{i}\right) \leq \frac{2 l}{3 c}$ then we have the desired cycle.
- If $d_{0}\left(v_{1}, v_{i}\right)>\frac{2 l}{3 c}$ then consider the following set: $S=\left\{v_{2}, \ldots v_{\alpha+1}, v_{\alpha+2}\right\}$, where $d_{0}\left(v_{\alpha+1}, v_{\alpha+2}\right)$ is also 2 on C. Let v_{j} and v_{r} be two adjacent vertices of S. We have $j<i$; otherwise, on one hand $d_{0}\left(v_{j}, v_{r}\right) \geq d_{0}\left(v_{1}, v_{i}\right)>\frac{2 l}{3 c}$ and then $d_{0}\left(v_{1}, v_{\alpha+2}\right) \geq d_{0}\left(v_{1}, v_{i}\right)+d_{0}\left(v_{j}, v_{r}\right) \geq \frac{4 l}{3 c}$, and on the other hand $d_{0}\left(v_{1}, v_{\alpha+2}\right) \leq \frac{l}{c}($ since $l \geq 2 c(\alpha+1))$. We get $\frac{4 l}{3 c} \leq \frac{l}{c}$ which is a contradiction. Thus the segments $\left[v_{1}, v_{i}\right]$ and $\left[v_{j}, v_{r}\right]$ of the cycle C do intersect in at least two vertices. Let $l_{1}=d_{0}\left(v_{1}, v_{j}\right), l_{2}=d\left(v_{j}, v_{i}\right)$ and $l_{3}=d_{0}\left(v_{i}, v_{r}\right)$. We have: $l_{1}+l_{2}+l_{3} \leq \frac{l}{c}$ and $l_{1}+2 l_{2}+l_{3} \geq \frac{4 l}{3 c}$. So $l_{2} \geq \frac{l}{3 c}$ and as a result the cycle $C^{\prime}=\left(v_{1}, v_{i}\right) \cup\left[v_{i}, v_{j}\right] \cup\left(v_{j}, v_{r}\right) \cup\left[v_{r}, v_{1}\right]$ is of length l^{\prime}, such that $l-1 \geq l^{\prime} \geq\left(1-\frac{2}{3 c}\right) l$, as desired.
In the previous propositions, we supposed that a cycle exists to begin the construction. The next proposition of [2] ensures the existence (maybe by adding conditions) of at least a cycle in G of sufficient length.

Proposition 2.4. Let G be a graph of independence number α; then G possesses a cycle, an edge or a vertex whose removal reduces its independence number by at least 1 . Therefore, G can be covered with at most α disjoint cycles, edges or vertices.

Proof. The proposition is obviously true for edgeless graphs; so we assume that the graph G has edges. Let P be a longest path in G and let x be one of its endpoints. All the neighbors of x are on P; otherwise we get a contradiction. Two cases may occur:
(1) x is not of degree 1 in G. Then we consider u the furthermost neighbor of x on P. The cycle C made of the segment $[x, u]$ on P and the edge (x, u) contains x and all of its neighbors. Thus if we remove it, we get a graph with smaller independence number: $\alpha(G-C) \leq \alpha(G)-1$.
(2) x is of degree 1 in G. Then by suppressing the vertex x and its neighbor x^{\prime} we get $\alpha\left(G-\left\{x, x^{\prime}\right\}\right) \leq \alpha(G)-1$.

The second part can be deduced by induction.
We note that the preceding proposition implies that if $n \geq 3 \alpha$, then there exists a cycle of length at least n / α. By combining all the foregoing, and by supposing moreover that G is 2 -connected with a vertex set large enough and with $\frac{k}{\alpha}$ large enough, then we can cover G with at most a number of order $\frac{n}{\left(1-\frac{2}{3 c}\right) k}$ of cycles of length at most k, as stated in the following result:

Theorem 2.5. Let G be a 2-connected graph of order n with independence number $\alpha>1$. Let c and k be two integers such that $c \geq 2$ and $k \geq 2 c(\alpha+1)-1$. If $n \geq \alpha\left(1-\frac{2}{3 c}\right) k$, then

$$
c_{k}(G) \leq \frac{n}{\left(1-\frac{2}{3 c}\right) k}+\alpha \log \frac{\left(1-\frac{2}{3 c}\right) k}{3}+\alpha .
$$

Proof. The proof is composed of three steps depending on the size of N, the set of uncovered vertices. In the first step, $|N| \geq \alpha\left(1-\frac{2}{3 c}\right) k$ and there exists a cycle of length at least $\left(1-\frac{2}{3 c}\right) k$ and at most k. When $|N|$ is no longer greater than $\alpha\left(1-\frac{2}{3 c}\right) k$ we go to the next step. In step 2 , while $|N| \geq 3 \alpha$, there exists a cycle of length at least $|N| / \alpha$ and at most k. In Step 3 , while $|N| \geq \alpha$ we cover the remaining vertices two by two, and then only one by one.

Step 1. While $|N| \geq \alpha\left(1-\frac{2}{3 c}\right) k$, then by Proposition 2.4, we have a cycle of length at least $\frac{|N|}{\alpha} \geq\left(1-\frac{2}{3 c}\right) k$. If the length of the cycle is greater than k then, by Proposition 2.3, we know how to reduce it, obtaining in any case a cycle which covers at least $\left(1-\frac{2}{3 c}\right) k$ vertices of N. At the end of this step, at most $\frac{n}{\left(1-\frac{2}{3 c}\right) k}-\alpha$ cycles would be used.

Now $|N|<\left(1-\frac{2}{3 c}\right) k \alpha$.
Step 2. While $|N| \geq 3 \alpha$, then by Proposition 2.4 we can find a cycle in the induced subgraph $G[N]$ of length at least $|N| / \alpha$ and by Proposition 2.3 we can reduce its length. We then obtain a cycle of length at least $|N| / \alpha$ and at most k. The number of cycles used in this step is given by the number i of iterations carried out until $|N|$ becomes $<3 \alpha$. After the first iteration, there remain at most $|N|-\frac{|N|}{\alpha}=|N|\left(1-\frac{1}{\alpha}\right)$ uncovered vertices. After i iterations, there are at most $|N|\left(1-\frac{1}{\alpha}\right)^{i}$ uncovered vertices. We stop when $|N|\left(1-\frac{1}{\alpha}\right)^{i}$ becomes smaller than 3α. Since $|N|<\left(1-\frac{2}{3 c}\right) k \alpha$, it is sufficient to stop for i satisfying $\left(1-\frac{2}{3 c}\right) k \alpha\left(1-\frac{1}{\alpha}\right)^{i} \leq 3 \alpha$. It follows that $i \leq \frac{\log \frac{3}{\left(1-\frac{2}{3 c}\right) k}}{\log \left(1-\frac{1}{\alpha}\right)} \leq \alpha \log \frac{\left(1-\frac{2}{3 c}\right) k}{3}$, using that $\log \left(1-\frac{1}{\alpha}\right)<-\frac{1}{\alpha}$.

When this step is over, we have $|N|<3 \alpha$.
Step 3. While $|N|$ is greater than α, we can cover its vertices two by two (by Proposition 2.4) and since the considered graph G is 2-connected, then every edge lies in a cycle. If the length of this cycle is greater than k then we know how to reduce it (Proposition 2.3). Thus we obtain at most α new cycles in the covering.

And finally, when $|N| \leq \alpha$ we can cover the vertices one by one and for the same aforementioned reasons, we get at most α additional cycles in the covering. In short, we have a covering of G by at most $\frac{n}{\left(1-\frac{2}{3 c}\right) k}+\alpha \log \frac{\left(1-\frac{2}{3 c}\right) k}{3}+\alpha$ cycles.

Remark 2.6.

(1) In order for the function $\log \left(1-\frac{1}{\alpha}\right)$ to be defined, the case $\alpha=1$ has been put aside. If this case occurs, then the 2-connected graph G is a clique and hence it can be covered with at most $\left\lceil\frac{n}{k}\right\rceil$ cycles.
(2) More generally, by taking just a non-zero integer c, the same bound holds on replacing $\left(1-\frac{2}{3 c}\right) k$ by $\gamma=\max ((1-$ $\left.\left.\frac{2}{3 c}\right) k, \frac{k+1}{2}\right)$. Note that the greater c is, the closer γ and k are.
The previous bound for $c_{k}(G)$ remains even if n is not as large as assumed in the previous theorem. However, it can be improved.

Theorem 2.7. Let G be a 2-connected graph of order n with independence number $\alpha>1$. Let c and k be two integers such that $c \geq 1, k \geq 2 c(\alpha+1)-1$ and $\gamma=\max \left(\left(1-\frac{2}{3 c}\right) k, \frac{k+1}{2}\right)$.

If $n>\alpha \gamma$ then $c_{k}(G) \leq \frac{n}{\gamma}+\alpha\left(1+\log \frac{\gamma}{3}\right)$, if $3 \alpha<n \leq \alpha \gamma$ then $c_{k}(G) \leq \alpha\left(2+\log \frac{\gamma}{3}\right)$, and if $n \leq 3 \alpha$ then $c_{k}(G) \leq 2 \alpha$.
Proof. The proof of the first case is analogous to the proof of Theorem 2.5.
The proofs of the other two cases are quite similar starting from Step 2 and Step 3 respectively in the proof of Theorem 2.5.

For the complete graph K_{n} (n very large), we have $c_{k}\left(K_{n}\right)=\left\lceil\frac{n}{k}\right\rceil$ cycles, which is not so far from $\frac{n}{\left(1-\frac{2}{3 c}\right) k}+\alpha \log \left(\frac{\left(1-\frac{2}{3 c}\right) k}{3}\right)$ given by Theorem 2.5 for $k \geq 2 c(\alpha+1)-1$ and c very large.

From the hypothesis $k \geq 2 c(\alpha+1)-1$ of Theorem 2.5, the first term $\frac{n}{\left(1-\frac{2}{3 c}\right) k}$ is not better than $\frac{n}{k-8 / 3}$.
We deduce naturally the following corollaries from Theorem 2.7. We obtain Corollary 2.8 by taking $c=1$ and Corollary 2.9 by taking $c=\left\lceil\frac{(k+1)}{2(\alpha+1)}\right\rceil$.

Corollary 2.8. Let G be a 2 -connected graph of order n with independence number $\alpha>1$. Let k be an integer such that $k \geq 2 \alpha$.
If $n>\alpha\left(\frac{k+1}{2}\right)$ then $c_{k}(G) \leq \frac{2 n}{k+1}+\alpha\left(1+\log \frac{k+1}{6}\right)$, if $3 \alpha<n \leq \alpha\left(\frac{k+1}{2}\right)$ then $c_{k}(G) \leq \alpha\left(2+\log \frac{k+1}{6}\right)$, and if $n \leq 3 \alpha$ then $c_{k}(G) \leq 2 \alpha$.

Corollary 2.9. Let G be a 2 -connected graph of order n with independence number α and k an integer such that $\frac{(k+1)}{2(\alpha+1)} \geq 2$. Then $c_{k}(G) \leq \frac{n}{k-\frac{4}{3}(\alpha+1)}+\alpha\left(\log \frac{k}{3}+1\right)$ if $n>\alpha\left(k-\frac{4}{3}(\alpha+1)\right)$; $c_{k}(G) \leq \alpha\left(2+\log \frac{k}{3}\right)$ if $3 \alpha \leq n \leq \alpha\left(k-\frac{4}{3}(\alpha+1)\right)$ and $c_{k}(G) \leq 2 \alpha$ if $n \leq 3 \alpha$.
Proof. In the case $n>\alpha\left(k-\frac{4}{3}(\alpha+1)\right)$, as $c \geq 2$, then $\gamma=\left(1-\frac{2}{3 c}\right) k$. Furthermore $c \geq \frac{(k+1)}{2(\alpha+1)}$, so we get $\gamma \geq\left(1-\frac{4(\alpha+1)}{3(k+1)}\right) k \geq$ $\left(k-\frac{4(\alpha+1)}{3}\right)$.

Then the first inequality of the corollary follows.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan \& Co, London, 1976.
[2] J.A. Bondy, Basic graph theory: Paths and circuits, in: Handbook of Combinatorics, North-Holland, Amsterdam, 1993.
[3] K. Corrádi, A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439.
[4] Y. Egawa, M. Hagita, K. Kawarabayashi, H. Wang, Covering vertices of a graph by k disjoint cycles, Discrete Math. 270 (2003) 115-125.
[5] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (1998) 487-492.
[6] D. Forge, M. Kouider, Coverings of the vertices of a graph by small cycles, Graphs Combin. 23 (2) (2007) 135-143.
[7] M. Kouider, Z. Lonc, Covering cycles and k-term degree sums, Combinatorica 16 (1996) 407-412.
[8] M. Kouider, Cycles in graphs with prescribed stability number and connectivity, J. Combin. Theory Ser. B 60 (1994) $315-318$.
[9] L. Lesniak, Independent cycles in graphs, J. Comb. Math. Comb. Comput. 17 (1995) 55-63.
[10] H. Wang, On the maximum number of independent cycles in a graph, Discrete Math. 205 (1999) 183-190.

[^0]: E-mail addresses: siham.bekkai@gmail.com (S. Bekkai), forge@lri.fr (D. Forge), km@lri.fr (M. Kouider).
 0012-365X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2008.03.031

