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1. Introduction

Throughout this paper, we consider a finite simple graph G = (V, E) and we denote by n its order. The distance between
two vertices u and v in G is denoted by d;(u, v), and is defined to be the length of a shortest path joining them in G. The size
of a largest independent set of G is called the independence number of G and is denoted by c.

A covering of a graph G is a family of elementary cycles of G such that each vertex of G lies in at least one cycle of this
family. For terms not defined here, we refer the reader to [1].

In the literature, many results dealing with the covering of a graph with cycles have appeared. Corradi and Hajnal (in [3])
have proved a result conjectured a few years before by Erdés, which is that if G is a graph of order n > 3k with minimum
degree § > 2k, then G contains k vertex disjoint cycles. Later on, several authors have been, in some sense, inspired by this
theorem and have sharpened it in many ways. In [9], Lesniak has discussed a variety of results dealing with the existence of
disjoint cycles in a given graph.

In [5,10], Enomoto and Wang have relaxed the degree condition given by Erdos. They have independently established
that a graph of order at least 3k in which d(u) + d(v) > 4k — 1 for every pair of non-adjacent vertices u and v contains k
vertex disjoint cycles. In [4], Egawa et al. have proved that by taking three integers d, k, and n such that k > 3,d > 4k — 1
and n > 3k and a graph G of order n, in which each pair of non-adjacent vertices x and y verifies d(x) + d(y) > d, then at least
min(d, n) vertices of G can be covered with k vertex disjoint cycles.

However, in what precedes, the interest was in the independence of the cycles rather than the fact that they cover all the
vertices of the graph. In [7], Kouider and Lonc have proved that the vertices of a 2-connected graph in which Y, ¢ dc(x) > n
for every independent set S of cardinality s can be covered with at most s — 1 cycles. In another paper[8], Kouider shows that
the vertices of any x connected graph are covered with at most [«/k] cycles.

But in all these results, no bound for the length of the cycles taken in the covering is imposed. Recently, in [6], Forge and
Kouider have laid down that the cycles taken in the covering are of length not exceeding k (where k is an integer fixed as a
preliminary). They have denoted by ¢, (G) the cardinality of a minimum covering in which each cycle satisfies the previous
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condition. They have bounded ¢;(G) by a function of the minimum degree and the order of the graph G. They have shown
that:
If p and k are two integers such that2 < p < g and if G is a graph of order n > %(p — 1) + (p — 1) and minimum degree

§ atleast & + F, then

3n log &

3
(@) = -+ ; )+(1—E)(p—2)+1.

—log(1 — -7
In this work, we intend to bound ¢, (G) by a function of the independence number of the graph and its order and we show,
among others, the Corollaries 2.8 and 2.9:

e Let G be a 2-connected graph of order n with independence number « > 1 and k be an integer such that k > 2« + 1.

Ifn > (%) then ¢ (G) < 25 + a(1+ log ).

e Let G be a 2-connected graph of order n with independence number « and k an integer such that 2((";:])) > 2. Then
n k 4

2. Covering the vertices with cycles of length at most k

Let k be an integer and G a graph of order n. We want to cover G with the minimum number of cycles of length at most k.

Each time we have a cycle in G, we check its length. If it is less than or equal to k then this cycle is taken in the covering;
otherwise, a chord may reduce its length. Therefore, we should assume that k > 2« + 1 so that any cycle of length larger
than k has at least one chord.

In what follows, we show that according to the prescribed value of k we can guarantee the existence in G of a cycle of
length not only at most k but at least a fraction of k as well.

Proposition 2.1. Let G be a graph of order n and independence number « and let k be an integer such that k > 2« + 1. If G has
a cycle of length more than k, then it has a cycle of length at least "J;—l and at most k.

Proof. Indeed, if Cis a cycle of G of length I(C) at least k+ 1 > 2« + 2, then there are at least « + 1 independent vertices on C
and thus at least two of these vertices (say x and y) are adjacent. Furthermore, 2 < dc(x,y) < @ The chord (x, y) divides the
cycle C into two smaller cycles; the bigger, Cy, is of length I(C;) between @ and I(C) — 1. We repeat the same construction
until we get a cycle G; such that 1 <1(G) <k. O

If we increase the lower bound for k in the previous theorem then the lower bound of the length for the cycle is increased.

Proposition 2.2. Let G be a graph of order n with independence number « and let k be an integer such that k > 4o + 3. If G
possesses a cycle of length at least % then it has a cycle of length at least % and at most k.

Proof. Let C be a cycle of G of length I > Z.
2k

IfI < k then Cis a cycle of length between 5 and k.

In the case where | > k, we are going to construct a cycle of length at least % and strictly smaller than L Clearly by
iterating the construction we will finally get a cycle of length between % and k.

Consider an orientation O on the cycle. We will use do(x, y) as the distance on the cycle using the orientation 0. Consider,
among all possible sets {vy, ..., v411} of (@ + 1) distinct vertices such that do(v;, viz1) = 2for 1 < i < «, the one that contains
two adjacent vertices vy and v; (adjacent in G) at minimum distance on C.

o Ifdo(vy,vy) < % then we have the desired cycle.

e If not, then consider the following set: S = {vy, ... V441, Vat2} Where do(Ves1, Ve42) is also 2 on C. Let v; and v, be
two adjacent vertices of S (as |S| = « + 1). We cannot have j > i; otherwise, since do(v;, v/) > do(vi,v;) > é

then do(v1, Vat2) > do(vi,vi) + do(v;, vv) > % but do(vq, ves2) < % (because | > 4(a + 1)). We get 1 > Z which

is a contradiction. Thus the segments [vq, v;] and [v;, v,] of C do intersect in at least two vertices. Let Iy = do(v1, V),

I =do(vj, vi) and I3 = do(v;, v;). We have l; + L, +13 < Land 4+ 25, + 15 > 2.1t follows that I, > é and consequently the

cycle C' = (vy, v;) Ulvi, vi1U(v;, vi) ULV, v1]is of length I > % Let us note that the vertex set of C’ is strictly contained in

the vertex set of C as it does not contain the neighbor v{ of vy. So I' < I This completes the proof. O

More generally, for an integer ¢ > 2 and for k > 2c(« 4+ 1) — 1, we have the following result.

Proposition 2.3. Let G be a graph of order n with independence number «. Let ¢ and k be two integers such that ¢ > 2 and
k> 2c(a+ 1) — 1. If G possesses a cycle of length at least (1 — %)k, then it has a cycle of length at least (1 — %)k and at most k.



S. Bekkai et al. / Discrete Mathematics 309 (2009) 1963-1966 1965

Proof. We use the definitions and techniques of the preceding proof. Let C be a cycle of G of length | > (1 — %)k.

If | < kthen Cis as desired.

Otherwise, consider, among all possible sets {v1, ..., v44+1} Of (o + 1) vertices such that dy(v;, vi 1) = 2for 1 <i < «, the
one that contains two adjacent vertices v, and v; at minimum distance on C.

o Ifdo(vy,v;) < 2 then we have the desired cycle.
o If do(vq,v;) > 3C L then consider the following set: S = {va, ...Vot1, Vai2}, Where do(ves1, Ves2) is also 2 on C. Let vj

and v, be two adjacent vertices of S. We have j < i; otherwise, on one hand do(vj, v.) > do(vy,vy) > 2 and then

do(V1, Vas2) = do(v1, i) + do(v;, v;) > 2, and on the other hand do(v1, va42) < ! (since I > 2c(a + 1)). We get 2<!
which is a contradiction. Thus the segments [v1,vi] and [v;, v,] of the cycle C do intersect in at least two vertrces Let
=do(v1,v)), lo = d(v;, v)) and Is = do(vi, v;). We have: I; + b+ 13 < Land l; + 2l + 13 > 5. Sol, > & and as a result

the cycle €' = (v, vi) Ulvi, vi1U(;, v¢) UIvr, vil is of length I, such that I — 1> 1' > (1 — %)l, as desired.

In the previous propositions, we supposed that a cycle exists to begin the construction. The next proposition of [2] ensures
the existence (maybe by adding conditions) of at least a cycle in G of sufficient length.

Proposition 2.4. Let G be a graph of independence number «; then G possesses a cycle, an edge or a vertex whose removal reduces
its independence number by at least 1. Therefore, G can be covered with at most « disjoint cycles, edges or vertices.

Proof. The proposition is obviously true for edgeless graphs; so we assume that the graph G has edges. Let P be a longest
path in G and let x be one of its endpoints. All the neighbors of x are on P; otherwise we get a contradiction. Two cases may
occur:

(1) xis not of degree 1in G. Then we consider u the furthermost neighbor of x on P. The cycle C made of the segment [x, u] on
P and the edge (x, u) contains x and all of its neighbors. Thus if we remove it, we get a graph with smaller independence
number: o(G — C) < a(G) — 1.

(2) xis of degree 1 in G. Then by suppressing the vertex x and its neighbor x’ we get «(G — {x, x¥'}) < @(G) — 1.

The second part can be deduced by induction. O

We note that the preceding proposition implies thatif n > 3¢, then there exists a cycle of length at least n/«. By combining
all the foregoing, and by supposing moreover that G is 2- connected with a vertex set large enough and with £ - large enough,
then we can cover G with at most a number of order of cycles of length at most k, as stated in the followmg result:

Theorem 2.5. Let G be a 2-connected graph of order n with independence number o > 1. Let ¢ and k be two integers such that
c=2andk > 2c(a+1) — 1If n > a(1 — £)k, then

©) < +alog 1= 3k +
C o 10g ———
Ay 873

Proof. The proof is composed of three steps depending on the size of N, the set of uncovered vertices. In the first step,
IN| > (1 — l)k and there exists a cycle of length at least (1 — —)k and at most k. When |N| is no longer greater than
a(l— %)k we go to the next step. In step 2, while |[N| > 3e, there exists a cycle of length at least |[N|/« and at most k. In Step
3, while |N| > o we cover the remaining vertices two by two, and then only one by one.

Step 1. While |N| > a(1 — 2 )k, then by Proposition 2.4, we have a cycle of length at least ™ > (1 — 2)k. If the length of
the cycle is greater than k then, by Proposition 2.3, we know how to reduce it, obtaining in any case a cycle which covers at
least (1 — )k vertices of N. At the end of this step, at most — « cycles would be used.

Now |N| < (1 — 3C)koz.

Step 2. While |N| > 3¢, then by Proposition 2.4 we can find a cycle in the induced subgraph G[N] of length at least |N|/«
and by Proposition 2.3 we can reduce its length. We then obtain a cycle of length at least |[N|/« and at most k. The number
of cycles used in this step is given by the number i of iterations carried out until [N| becomes < 3. After the first iteration,
there remain at most |N| — ‘N' = N|(1 — 1) uncovered vertices. After i iterations, there are at most |N|(1 — é)f uncovered

vertices. We stop when |N|(1 ;)’ becomes smaller than 3e. Since N| < (1 — l)koe, it is sufficient to stop for i satisfying

f)

log #
(1— 2)ka(1 — 1)" < 3a. 1t follows that i < Fa-f < alog 13 using that log(1 — by <

= log(1— gt H =

When this step is over, we have |[N| < 3c.

Step 3. While |N| is greater than «, we can cover its vertices two by two (by Proposition 2.4) and since the considered
graph G is 2-connected, then every edge lies in a cycle. If the length of this cycle is greater than k then we know how to
reduce it (Proposition 2.3). Thus we obtain at most & new cycles in the covering.

And finally, when |N| < a we can cover the vertices one by one and for the same aforementioned reasons we get at most

_1
o

« additional cycles in the covering. In short, we have a covering of G by at most Lo log ‘o cycles. O
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Remark 2.6.

(1) In order for the function log(1 — %) to be defined, the case « = 1 has been put aside. If this case occurs, then the
2-connected graph G is a clique and hence it can be covered with at most [} ] cycles.

(2) More generally, by taking just a non-zero integer c, the same bound holds on replacing (1 — %)k by y = max((1 —
%)k, 51). Note that the greater c is, the closer y and k are.

The previous bound for ¢, (G) remains even if n is not as large as assumed in the previous theorem. However, it can be
improved.

Theorem 2.7. Let G be a 2-connected graph of order n with independence number o > 1. Let ¢ and k be two integers such that
c>1,k>2c(+ 1) — Tand y = max((1 — 2)k, ).
If n > ay then ¢ (G) < 2 +a(l+log £),if 3a < n < ay then ¢ (G) < (2 + log ), and if n < 3« then ¢ (G) < 2a.

Proof. The proof of the first case is analogous to the proof of Theorem 2.5.
The proofs of the other two cases are quite similar starting from Step 2 and Step 3 respectively in the proof of
Theorem 2.5. O

_2

For the complete graph K, (n very large), we have c(K,) = {1 cycles, which is not so far from a 5 T + alog( a 33f)k)
3¢

given by Theorem 2.5 for k > 2c(a + 1) — 1 and c very large.

From the hypothesis k > 2c(o + 1) — 1 of Theorem 2.5, the first term ﬁ is not better than ﬁ

3c
We deduce naturally the following corollaries from Theorem 2.7. We obtain Corollary 2.8 by taking c = 1 and Corollary 2.9

by taking c = [2((";;]])) 1.

Corollary 2.8. Let G be a 2-connected graph of order n with independence number o > 1. Let k be an integer such that k > 2a.
(If) n ; a(%) then ¢ (G) < ki—”l + a(1 + log %), if3a <n < a(%) then ¢, (G) < a(2 + log %), and if n < 3« then
& (G) < 2.

Corollary 2.9. Let G be a 2-connected graph of order n with independence number o and k an integer such that 2((’:;1])) > 2. Then
(6 = matoy + a(logé + 1) ifn> ak—5(@+1); a(G) <a@+log)if 3a <n < alk— 3(a+ 1)) and o (G) < 2 if
o

n < 3a.

Proof. In the case n > a(k — 3 (e + 1)), as ¢ > 2, then y = (1 — 2 )k. Furthermore ¢ > 2<("aﬂ1)), sowegety > (1— ‘;((‘,’(‘L];)k >
(k — AerD)y

3
Then the first inequality of the corollary follows. =
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