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Abstract. This paper deals with test case selection from axiomatic
specifications whose axioms are quantifier-free first-order formulae. Test
cases are modeled as ground formulae and any specification has an ex-
haustive test data set whose successful submission means correctness,
provided that the software under verification can be modeled as a first-
order structure over the same signature. As it has already been done for
positive conditional equational specifications, we derive test cases from
selection criteria based on axiom coverage. Our selection criteria allows
us to select test cases by iteratively unfolding an initial target test pur-
pose, given as a formula. The initial reference test set is iteratively split
into successive subsets. Each subset of test cases is defined by constraints
which are increasingly introduced by the unfolding procedure to ensure
an appropriate matching between the current test purpose under unfold-
ing and specification axioms. Our unfolding procedure is sound (no test
is added) and complete (no test is lost) with respect to the starting test
purpose. It is exemplified on a simple example.

Keywords: Specification-based testing, quantifier-free first-order speci-
fications, selection criteria, test purpose, axiom coverage, unfolding, proof
tree normalization.

Introduction

Specification-based testing is a particular case of black-box testing which con-
sists in performing the system under test with some input data in order to state
whether its behaviour is conformant to a rigorous specification (i.e. given as a
formal text provided with a clear semantic). Formal specifications make possible
the automation of both test case generation from selection criteria and evaluation
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of test executions as successful or not. Selection criteria for specification-based
testing generally allow to cover specification requirements (e.g. axioms, transi-
tions or states). The computation of the success/failure verdict of test execution
tools follows from the comparison between the outputs given by the system un-
der test and the expected ones defined by the formal specification. Besides the
possibility of computing verdicts for a test case execution, using formal specifica-
tions allows one to properly define the conformance relation, which states what it
means for a system to conform to its specification. Such a conformance relation
depends on both test hypotheses on the system, which allow to consider it as a
formal model, and observability restrictions on the system. These observability
restrictions are used to select test cases which can be interpreted as successful
or not when performed by the system under test. For instance, in the framework
of testing from algebraic specifications, “observable” test cases are any ground
equations provided with an equality predicate within the programming language
used to implement the system under test. When such conditions (test hypotheses
on systems and observability restrictions) are precisely stated, it becomes possi-
ble to formally define the testing activity [1,2]. In particular, correctness can be
defined up to these conditions by characterizing an exhaustive test set, whose
success is equivalent to system correctness. Moreover, a testing process can be
qualified as sound if selected test cases cannot discard correct systems, and as
complete if any non-correct system can be detected by at least one test case.
In fact, these notions of soundness and completeness may be slightly adapted
depending on whether they are applied to an exhaustive test set, to a selection
criterion, or to a subset of tests targeted by a test purpose [3].

Testing from algebraic specifications has already been extensively studied
[1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Correctness issues have been investigated in
presence of non-observable types whose equality can only be observed through
observable contexts, i.e. by applying some composition of functions yielding an
observable result. Selection issues have also been investigated. They consist in
either directly covering axioms by instantiating variables with some chosen data
or unfolding axioms in order to make a case analysis of function definition. In this
last case, test cases for a functionality under test are extracted from the spec-
ification by building input data which match the different cases defined by the
specification. For example, when functions are recursively specified, the analysis
can be refined as many times as the tester chooses to do it. The main drawback
of such a selection strategy is that the specification under consideration has to
be under a restrictive form, namely positive conditional formulae [4, 5, 6].

In this paper, we propose a family of selection criteria based on axiom un-
folding for a larger class of axiomatic specifications: quantifier-free first-order
formulae. The enlargement is twofold. First, we do not reduce atomic formulae
to equations and consider any kind of predicates. Secondly, formulae are not re-
stricted to Horn clauses (called conditional positive formulae when dealing with
equational logic). Our primary goal was to consider the whole classical first-order
language. However, we immediately eliminate the existential quantifier. Indeed,
testing a formula of the form ∃X, ϕ(X) would amount to exhibit a witness value
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a such that ϕ(X) is interpreted as true by the system when substituting X by
a. Of course, there is no general way to exhibit such a pertinent value, but no-
tice that astonishly, exhibiting such a value would amount to simply prove the
system with respect to the initial property. Thus, existential properties are not
testable. Some works on specification-based testing [7,8] have already considered
a similar class of formulae. They propose a mixed approach combining black-box
and white-box testing to deal with the problem of non-observable data types.
From the selection point of view, they do not propose any particular strategy, but
only the substitution of axiom variables for some arbitrarily chosen data. On the
contrary, following the specification-based testing framework proposed in [1], we
characterize an exhaustive test set for such specifications. Moreover, by extend-
ing the unfolding-based selection criteria family defined for conditional positive
equational specifications, we define a sound and complete unfolding procedure
devoted to the coverage of quantifier-free first-order axioms.

The paper is organized as follows. In Section 1, we recall standard notations
about quantifier-free first-order specifications. Section 2 gives relevant definitions
of [1] concerning our framework of testing. In Section 3, an exhaustive test set
for quantifier-free first-order specifications is characterized. Section 4 proposes
an unfolding procedure allowing us to define a family of selection criteria for the
considered class of specifications. Finally, in Section 4.3, the selection criteria
based on the unfolding procedure is proved to be both sound and complete.

1 Preliminaries

1.1 Quantifier-Free First-Order Specifications

A (first-order) signature Σ = (S, F, P, V ) consists of a set S of sorts, a set F of
operation names each one equipped with an arity in S∗ ×S, a set P of predicate
names each one equipped with an arity in S+ and an S-indexed set of variables
V . In the sequel, an operation name f of arity (s1 . . . sn, s) will be denoted by
f : s1 × . . . × sn → s, and a predicate name p of arity (s1 . . . sn) will be denoted
by p : s1 × . . . × sn. Given a signature Σ = (S, F, P, V ), TΣ(V ) and TΣ are
both S-sets of terms with variables in V and ground terms, respectively, freely
generated from variables and operations in Σ and preserving arity of operations.
A substitution is any mapping σ : V → TΣ(V ) that preserves sorts. Substitutions
are naturally extended to terms with variables. Σ-atomic formulae are formulae
of the form p(t1, . . . , tn) with p : s1 × . . . × sn and ti ∈ TΣ(V )si for each i,
1 ≤ i ≤ n. A Σ-formula is a quantifier-free first-order formula built from atomic
formulae and Boolean connectives ¬, ∧, ∨ and ⇒. As usual, free variables of
quantifier-free formulae are implicitly universally quantified. A Σ-formula is said
ground if it does not contain variables. Let us denote For(Σ) the set of all Σ-
formulae. A specification Sp = (Σ, Ax) consists of a signature Σ and a set Ax of
quantifier-free formulae built over Σ. Formulae in Ax are often called axioms.

A Σ-model M is an S-indexed set M equipped for each f : s1 × . . . × sn →
s ∈ F with a mapping fM : Ms1 × . . . × Msn → Ms and for each predicate
p : s1 × . . . × sn with an n-ary relation pM ⊆ Ms1 × . . . × Msn . Mod(Σ) is
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the category objects of which are all Σ-models. Given a Σ-model M, a Σ-
interpretation in M is any mapping ν : V → M . Interpretations are naturally
extended to terms with variables. A Σ-model M satisfies for an interpretation
ν a Σ-atomic formula p(t1, . . . , tn) if and only if (ν(t1), . . . , ν(tn)) ∈ pM. The
satisfaction of a Σ-formula ϕ for an interpretation ν by M, denoted M |=ν ϕ,
is inductively defined on the structure of ϕ from the satisfaction for ν of atomic
formulae of ϕ and using classic semantic interpretations of Boolean connectives.
M validates a formula ϕ, denoted M |= ϕ, if and only if for every interpretation
ν : V → M , M |=ν ϕ. Given Ψ ⊆ For(Σ) and two Σ-models M and M′, M is
Ψ -equivalent to M′, denoted M ≡Ψ M′, if and only if we have: ∀ϕ ∈ Ψ, M |=
ϕ ⇐⇒ M′ |= ϕ. Given a specification Sp = (Σ, Ax), a Σ-model M is an Sp-
model if for every ϕ ∈ Ax, M |= ϕ. Mod(Sp) is the full subcategory of Mod(Σ),
objects of which are all Sp-models. A Σ-formula ϕ is a semantic consequence of
a specification Sp = (Σ, Ax), denoted Sp |= ϕ, if and only if for every Sp-model
M, we have M |= ϕ. Sp• is the set of all semantic consequences.

Given a set of quantifier-free formulae Ψ ⊆ For(Σ), let us denote HTΣ the
Σ-model, classically called the Herbrand model of Ψ ,

– defined by the Σ-algebra, whose carrier is TΣ and whose operation meaning
is defined for every operation f : s1 × . . . × sn → s ∈ F by the mapping
fHTΣ : (t1, . . . , tn) → f(t1, . . . , tn), and

– determined by the set of ground atomic formulae p(t1, . . . , tn) such that
Ψ |= p(t1, . . . , tn).

It is easy to show that Ψ |= ϕ ⇔ HTΣ |= ϕ for every ground formula ϕ, and then
HTΣ ∈ Mod((Σ, Ψ)).

A calculus for quantifier-free first-order specifications is defined by the follow-
ing inference rules, where Γ |∼ Δ is a sequent such that Γ and Δ are two sets
of quantifier-free first-order formulae:

Γ,ϕ |∼ Δ,ϕ
Ax

Γ |∼ Δ,ϕ

Γ,¬ϕ |∼ Δ
Left-¬

Γ,ϕ |∼ Δ

Γ |∼ Δ,¬ϕ
Right-¬

Γ,ϕ,ψ |∼ Δ

Γ,ϕ∧ψ |∼ Δ
Left-∧

Γ |∼ Δ,ϕ Γ |∼ Δ,ψ

Γ |∼ Δ,ϕ∧ψ
Right-∧

Γ,ϕ |∼ Δ Γ,ψ |∼ Δ

Γ,ϕ∨ψ |∼ Δ
Left-∨

Γ |∼ Δ,ϕ,ψ

Γ |∼ Δ,ϕ∨ψ
Right-∨

Γ |∼ Δ,ϕ Γ,ψ |∼ Δ

Γ,ϕ⇒ψ |∼ Δ
Left-⇒

Γ,ϕ |∼ Δ,ψ

Γ |∼ Δ,ϕ⇒ψ
Right-⇒

Γ |∼ Δ

σ(Γ ) |∼ σ(Δ)
Subs

Γ |∼ Δ,ϕ Γ ′,ϕ |∼ Δ′

Γ,Γ ′ |∼ Δ,Δ′
Cut

Observe that the inference rules associated to Boolean connectives obviously
define an automatic process that allows to transform any sequent |∼ ϕ, where
ϕ is a quantifier-free formula, into a set of sequents Γ |∼ Δ where every formula
in Γ and Δ is atomic. Let us call such sequents normalized sequents.
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Moreover, we can show that every proof tree can be transformed into a proof
tree of same conclusion and such that both Cut and Subs rules never occur under
rule instances associated to Boolean connectives. This transformation is obtained
from basic transformations, for example:

Γ |∼ Δ,ψ,ϕ

Γ,¬ϕ |∼ Δ,ψ
Left-¬

Γ ′,ψ |∼ Δ′

Γ,Γ ′,¬ϕ |∼ Δ,Δ′
Cut �

Γ |∼ Δ,ψ,ϕ Γ ′,ψ |∼ Δ′

Γ,Γ ′ |∼ Δ,Δ′,ϕ
Cut

Γ,Γ ′,¬ϕ |∼ Δ,Δ′
Left-¬

The other basic transformations are defined in the same way. Therefore, us-
ing proof terms for proofs, with a recursive path ordering >rpo to order proofs
induced by the well-founded relation (precedence) > on rule instances

Cut, Subs > Left-@, Right-@, where @ ∈ {¬, ∧, ∨, ⇒}

we show that the transitive closure of �is contained in the relation >rpo, and
thus that � is terminating.

This last result states that every sequent is equivalent to a normalized sequent,
which allows to only deal with normalized sequents. Therefore, in the following,
we will suppose that specification axioms are normalized sequents.

1.2 Running Example

By way of illustration, we give a specification of sorted lists of positive rationals.
We first give a specification of naturals, built from constructors 0 and successor

s. Addition add and multiplication mult on naturals are specified as usual, as
well as the predicate “less than” ltn. The constructor operation / then builds
rationals from couples of naturals. Two rationals x/y and u/v are equal (eqr
predicate) if mult(x, v) and mult(u, y) are equal. Since we consider only positive
rationals, x/y is less than u/v (ltr predicate) if mult(x, v) is less than mult(u, y).

Lists of rationals are then built from constructors [ ] and :: as usual. The
insertion insert of a rational in a sorted list needs to consider four cases: the
list is empty; the first element of the list is equal to the rational to insert, and
then the element is not repeated; the first element of the list is greater than the
rational to insert, and then it is inserted at the head; the first element of the list
is less than the rational to insert, then the insertion is tried in the rest of the
list. The membership predicate isin is specified saying that there is no element
in the empty list, and that searching for an element in a non-empty list comes
to find it at the head of the list or to search it in the rest of the list.

The behaviour of operations add , mult and insert is classically specified by
equations. When dealing with first-order logic, this requires to introduce three
equality predicates =Nat : Nat × Nat , =Rat : Rat × Rat and =List : List × List ,
each one equipped with the following axioms:

x =@ x
x =@ y ⇒ y =@ x
x =@ y ∧ y =@ z ⇒ x =@ z
x1 =@1 y1 ∧ . . . ∧ xn =@n yn ⇒ f(x1, . . . , xn) =@ f(y1, . . . , yn)
x1 =@1 y1 ∧ . . . ∧ xn =@n yn ∧ p(x1, . . . , xn) ⇒ p(y1, . . . , yn)
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where @, @i ∈ {Nat ,Rat ,List}, f : @1 × . . . × @n → @ and p : @1 × . . . × @n.
In order not to make heavy specifications, another approach is to transform any
operation f : s1 × . . . × sn → s into a predicate f : s1 × . . . × sn × s and
then to make the equality implicit. This is the approach we will follow in the
specification below. Another consequence of such an approach is to make the use
of our algorithm of selection criteria, based on axiom unfolding, easier because
less axioms are considered.

spec RatList =
sorts Nat, Rat, List
ops 0 : Nat ;

s : Nat → Nat ;
/ : Nat × Nat → Rat ;

[ ] : List ;
:: : Rat × List → List

preds add : Nat × Nat × Nat ;
mult : Nat × Nat × Nat ;
ltn : Nat × Nat ;
eqr : Rat × Rat ;
ltr : Rat × Rat ;
insert : Rat × List × List ;
isin : Rat × List

vars x, y, z, u, v, n, m: Nat ; e: Rat ; l, l′: List
• add(x, 0, x)
• add(x, s(y), s(z)) ⇔ add(x, y, z)
• mult(x, 0, 0)
• add(x, u, z) ∧ mult(x, y, u) ⇒ mult(x, s(y), z)
• ltn(0, s(x))
• ¬ ltn(x, 0)
• ltn(s(x), s(y)) ⇔ ltn(x, y)
• mult(x, s(v), n) ∧ mult(u, s(y), n) ⇒ eqr(x/s(y), u/s(v))
• ltn(m, n) ∧ mult(x, s(v), m) ∧ mult(u, s(y), n) ⇒ ltr(x/s(y), u/s(v))
• insert(x/s(y), [ ], x/s(y) :: [ ])
• eqr(x/s(y), e) ⇒ insert(x/s(y), e :: l, e :: l)
• ltr(x/s(y), e) ⇒ insert(x/s(y), e :: l, x/s(y) :: (e :: l))
• ltr(e, x/s(y)) ∧ insert(x/s(y), l, l′) ⇒ insert(x/s(y), e :: l, e :: l′)
• ¬ isin(x/s(y), [ ])
• isin(x/s(y), e :: l) ⇔ eqr(x/s(y), e) ∨ isin(x/s(y), l)

end

Axioms are then transformed into normalized sequents, as explained above.
For example, the normalization of the right-to-left implication of the axiom
isin(x/s(y), e :: l) ⇔ eqr(x/s(y), e) ∨ isin(x/s(y), l) leads to two normalized
sequents as follows:

eqr(x/s(y),e) |∼ isin(x/s(y),e::l) isin(x/s(y),l) |∼ isin(x/s(y),e::l)

eqr(x/s(y),e) ∨ isin(x/s(y),l) |∼ isin(x/s(y),e::l)
Left-∨

|∼ eqr(x/s(y),e) ∨ isin(x/s(y),l) ⇒ isin(x/s(y),e::l)
Right-⇒
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1. |∼ add(x, 0, x)
2. add(x, s(y), s(z)) |∼ add(x, y, z)
3. add(x, y, z) |∼ add(x, s(y), s(z))
4. |∼ mult(x, 0, 0)
5. add(x, u, z),mult(x, y, u) |∼ mult(x, s(y), z)
6. |∼ ltn(0, s(x))
7. ltn(x, 0) |∼
8. ltn(s(x), s(y)) |∼ ltn(x, y)
9. ltn(x, y) |∼ ltn(s(x), s(y))

10. mult(x, s(v), n),mult(u, s(y), n) |∼ eqr(x/s(y), u/s(v))
11. ltn(m, n),mult(x, s(v),m),mult(u, s(y), n) |∼ ltr(x/s(y), u/s(v))
12. |∼ insert(x/s(y), [ ], x/s(y) :: [ ])
13. eqr(x/s(y), e) |∼ insert(x/s(y), e :: l, e :: l)
14. ltr(x/s(y), e) |∼ insert(x/s(y), e :: l, x/s(y) :: e :: l)
15. ltr(e, x/s(y)), insert(x/s(y), l, l′) |∼ insert(x/s(y), e :: l, e :: l′)
16. isin(x/s(y), [ ]) |∼
17. isin(x/s(y), e :: l) |∼ eqr(x/s(y), e), isin(x/s(y), l)
18. eqr(x/s(y), e) |∼ isin(x/s(y), e :: l)
19. isin(x/s(y), l) |∼ isin(x/s(y), e :: l)

2 A General Framework of Testing from Formal
Specifications

The work presented in Section 4 comes within the general framework of test-
ing from formal specifications defined in [1]. Here, we succinctly introduce this
framework, then we instantiate it to the formalism we have just defined in Sec-
tion 1.

The interpretation of test cases submission as a success or failure is related
to the notion of program correctness. Following previous works [1, 4, 9, 10, 11],
test cases are formulae and programs are Σ-models. Therefore, test cases inter-
pretation is defined by formula satisfaction. When a test case is submitted to a
program, it has to yield a verdict (success or failure). Hence, test cases have to
be directly interpreted as “true” or “false” by a “computation” of the program.
These “executable” formulae are called observable.

Let Sp = (Σ, Ax) be a specification and Obs ⊆ For(Σ) any set of observable
formulae. Let P be a program which is denoted by a Σ-model of Mod(Σ). Then
test cases are observable formulae, which are successful for P if and only if P
validates them (i.e. performs them and interprets them as “true”). A test set
T is then a set of test cases. T is said to be successful for P if and only if
∀ϕ ∈ T, P |= ϕ.

Following an observational approach [14], to be qualified as correct with re-
spect to a specification Sp, a program is required to be observationally equivalent
to a model of Mod(Sp), up to the observable formulae of Obs.

Definition 1 (Correctness). P is correct for Sp via Obs, denoted by
CorrectObs(P,Sp), if and only if there exists a model M in Mod(Sp) such that
M ≡Obs P .
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Definition 2 (Exhaustiveness). Let K ⊆ Mod(Σ). A test set T is exhaustive
for K with respect to Sp and Obs if and only if

∀P ∈ K, P |= T ⇐⇒ CorrectObs(P,Sp)

The existence of an exhaustive test set means that Sp is testable via Obs since
correctness can be asymptotically approached by submitting a (possibly infinite)
test set. Hence, an exhaustive test set is appropriate to start the process of se-
lecting a finite test set with a reasonable size. However, depending on the nature
of Sp, Obs and K, an exhaustive test set does not necessarily exist. For instance,
in [12], we have shown that for positive conditional algebraic specifications, when
Obs is restricted to ground equations, Sp• ∩ Obs is only exhaustive for algebras
satisfying a strong condition, called initiality, which, roughly speaking, means
that the program under test behaves like the initial algebra of Mod(Sp) for all
ground instances of equations occurring in premises of axioms of Sp. The prob-
lem is that showing such a property on a program may be as difficult as proving
its correctness, and then restricts its testability.

In Section 3, we will show that in the presence of a specification Sp with
quantifier-free axioms, and when the set of observable formulae Obs is the set of
all ground first-order formulae, the exhaustiveness of Sp• ∩ Obs holds without
conditions on programs, that is K = Mod(Σ).

Test sets can be compared with respect to their ability to reject (or to accept,
from a dual point of view) programs. Two test sets are then said to be equivalent
if and only they accept exactly the same programs.

The challenge of testing then consists in managing (infinite) test sets. In prac-
tice, experts apply some selection criteria on a reference test set in order to ex-
tract a test set of sufficiently reasonable size to be submitted to the program.
The underlying idea is that all test sets satisfying a considered selection crite-
rion reveal the same class of incorrect programs, intuitively those corresponding
to the fault model captured by the criterion. For example, the criterion called
“uniformity hypothesis” over a test set T postulates that any chosen value is
equivalent to another one in T .

A classic way to select test data with a selection criterion C consists in splitting
a given starting test set T into a family of test subsets {Ti}i∈IC(T ) such that
T = ∪i∈IC(T ) Ti holds. A test set satisfying such a selection criterion simply
contains at least one test case for each non-empty subset Ti. Intuitively, all test
cases in Ti are supposed equivalent to reveal incorrect programs with respect to
the fault model captured by Ti. Hence, the selection criterion C is a coverage
criterion according to the way C is splitting the initial test set T into the family
{Ti}i∈IC(T ) . This is the method that we will use in this paper to select test data,
known under the term of partition testing.

For instance, the selection criterion we will define in the sequel of this paper
consists in splitting a test set into subsets according to specification axioms.
If we come back to the RatList specification, the insert predicate is specified
inductively by four axioms. Testing a formula consists in finding input data,
that is, ground substitutions to apply to the formula in order to submit it to the
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program, bringing into play at least once each of these four axioms. Therefore,
the set of test cases associated to insert(r, L, L′), where r, L and L′ are variables,
can be split into four subsets:

1. The set of tests associated to the substitution L → [ ], coming from the
axiom insert(x/s(y), [ ], x/s(y) :: [ ]).

2. The set associated to the case where the rational to insert is equal to the
first element of the list, that is, associated to the substitution r → x/s(y),
L → e :: l with eqr (x/s(y), e), coming from the axiom eqr(x/s(y), e) ⇒
insert(x/s(y), e :: l, e :: l).

3. The set associated to the case where it is less than the first element, that is,
the substitution r → x/s(y), L → e :: l with ltr(x/s(y), e), coming from the
axiom ltr(x/s(y), e) ⇒ insert(x/s(y), e :: l, x/s(y) :: e :: l).

4. The set associated to the case where it is greater than it, that is, the sub-
stitution r → x/s(y), L → e :: l with ltr(x/s(y), e), coming from the axiom
ltr(e, x/s(y)) ∧ insert(x/s(y), l, l′) ⇒ insert(x/s(y), e :: l, e :: l′).

The process can be pursued on each above subset.

Definition 3 (Selection criterion). A selection criterion C is a mapping1

P(Sp• ∩ Obs) → P(P(Sp• ∩ Obs)). For a test set T , we denote |C(T )| =
∪i∈IC(T ) Ti where C(T ) = {Ti}i∈IC(T ) .

T ′ satisfies C applied to T , denoted by T ′ � C(T ), if and only if:

∀i ∈ IC(T ), Ti �= ∅ ⇒ T ′ ∩ Ti �= ∅

A selection criterion consists of a mapping that splits test sets into families of
test sets. The selection criterion is satisfied as soon as the considered test set
contains at least one test case within each (non-empty) set of the resulting family.
To be pertinent, a selection criterion should ensure some properties between the
starting test set and the resulting family of test sets:

Definition 4 (Properties). Let C be a selection criterion and T be a test set.

– C is said sound for T if and only if |C(T )| ⊆ T ;
– C is said complete for T if and only if |C(T )| = T .

The properties of soundness and completeness are essential for an adequate se-
lection criterion: soundness ensures that test cases will be selected within the
starting test set (i.e. no test is added) while completeness ensures that we capture
all test cases up to the notion of equivalent test cases (i.e. no test is lost).

3 An Exhaustive Test Set

Here, we show that for every quantifier-free first-order specification Sp = (Σ, Ax),
Sp• ∩ Obs is an exhaustive test set for Mod(Σ), when Obs is the set of all ground
formulae built over Σ.
1 For a given set X, P(X) denotes the set of all subsets of X.
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Theorem 1. Let Sp = (Σ, Ax) be a specification. Then Sp• ∩Obs is exhaustive
for Mod(Σ).

Proof. Let P be a program, i.e. P ∈ Mod(Σ), such that P |= Sp• ∩ Obs . Let us
show that CorrectObs(P,Sp).

Note Th(P ) = {ϕ ∈ Obs | P |= ϕ}. Let HTΣ ∈ Mod(Σ) be the Herbrand
model of Th(P ). By definition, we have that P ≡Obs HTΣ . Let us then show
that HTΣ ∈ Mod(Sp). Let ϕ be an axiom of Sp. Let ν : V → HTΣ be an
interpretation. By definition, ν(ϕ) is a ground formula. By hypothesis, P |= ν(ϕ)
and then HTΣ |= ν(ϕ). We conclude that HTΣ |=ν ϕ.

Suppose that there exists M ∈ Mod(Sp) such that M ≡Obs P . Let ϕ ∈
Sp• ∩ Obs. By hypothesis, M |= ϕ, then P |= ϕ as well. ��

4 Selection Criteria Based on Axiom Unfolding

In this section, we study the problem of test case selection for quantifier-free
specifications, by adapting a selection criteria based on unfolding of positive
conditional formulae in the algebraic specification setting [6].

4.1 Test Sets for Quantifier-Free Formulae

The selection method that we are going to define takes inspiration from classic
methods that split the initial test set of any formula considered as a test purpose.
Succinctly, for a quantifier-free first-order formula ϕ, our method consists in

1. splitting the initial test set for ϕ into many test subsets, called constrained
test sets for ϕ, and

2. choosing any input in each non-empty subset.

First, let us define what test set and constrained test set for a quantifier-free
formula are.

Definition 5 (Test set). Let ϕ be a quantifier-free formula, called test purpose.
The test set for ϕ, denoted by Tϕ, is the set defined as follows:

Tϕ = {ρ(ϕ) | ρ : V → TΣ, ρ(ϕ) ∈ Sp• ∩ Obs}

Note that ϕ may be any formula, not necessarily in Sp•.

Example 1. Here are some test purposes for the signature of specification
RatList, with examples of associated test cases.

add(x, 0, x). Since add(x, 0, x) is an axiom, all ground instances of this formula
are test cases: add(0, 0, 0), add(6, 0, 6), etc.

eqr(u, v). This predicate is under-specified, the case where a rational is of the
form x/0 is not taken into account, so there cannot be tests on this case.
Test cases may be: eqr(1/2, 1/2), eqr (3/6, 4/8), etc.
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add(m, n, r) ⇒ mult(m, 2, r). Only cases where add(m, n, r) is not satisfied or
where m = n are semantic consequences of the specification. The interest-
ing test cases are those where m = n such as add(2, 2, 4) ⇒ mult(2, 2, 4),
add(5, 5, 10) ⇒ mult(5, 2, 10), etc.

insert(r, l, [ ]). The formula is never satisfied for any ground instance of r and l,
so there is no possible test case.

Definition 6 (Constrained test set). Let ϕ be a quantifier-free formula, C
be a set of quantifier-free formulae called Σ-constraints, and σ : V → TΣ(V ) be
a substitution. A test set for ϕ with respect to C and σ, denoted by T(C,σ),ϕ, is
the set of ground formulae defined by:

T(C,σ),ϕ ={ρ(σ(ϕ)) | ρ : V → TΣ , ρ(σ(ϕ)) ∈ Sp•∩Obs , ∀ψ ∈ C, ρ(ψ) ∈ Sp•∩Obs}

The couple 〈(C, σ), ϕ〉 is called a constrained test purpose.

Note that the test purpose ϕ of Definition 5 can be seen as the constrained test
purpose 〈({ϕ}, id), ϕ〉.
Example 2. Let us denote a substitution σ : V → TΣ(V ) mapping a set X =
{x1, . . . , xn} to a set Y = {y1, . . . , yn}, such that σ(xi) = yi for all i, 1 ≤ i ≤ n,
by [x1 → y1, . . . , xn → yn].

Examples of constrained test purposes may be the following:

〈(∅, [x → s(u)]), add(x, 0, x)〉

〈({ltn(3, x)}, id), add(x, 0, x)〉

〈({ltn(x, z)}, [u → x/s(y), v → z/s(y)]), ltr(u, v)〉

〈({ltn(m, n),mult(x, s(z), m),mult(w, s(y), n)}, [u → x/s(y), v → w/s(z)]),
ltr(u, v)〉

As another example, to come back to the example of splitting the test set
associated to insert(r, L, L′) into four subsets, we can express each of four test
subsets in terms of constrained test purposes as follows:

〈(∅, σ1), insert(r, L, L′)〉
〈({eqr (x0/s(y0), e0)}, σ2), insert(r, L, L′)〉
〈({ltr(x0/s(y0), e0)}, σ3), insert(r, L, L′)〉
〈({ltr(e0, x0/s(y0)), insert(x0/s(y0), l0, l′0)}, σ4), insert(r, L, L′)〉

where
r L L′

σ1 x0/s(y0) [ ] x0/s(y0) :: [ ]
σ2 x0/s(y0) e0 :: l0 e0 :: l0
σ3 x0/s(y0) e0 :: l0 x0/s(y0) :: (e0 :: l0)
σ4 x0/s(y0) e0 :: l0 e0 :: l′0

Only this kind of constrained test sets, built from a case analysis of the speci-
fication axioms, will be of interest. The aim of the unfolding procedure we will
introduce in the next section is to build such test sets.
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4.2 Unfolding Procedure

In practice, the initial test purpose is unconstrained. The aim is to replace it with
a set of constrained test purposes. This is what the unfolding procedure does,
matching the initial formula with the specification axioms, when it is possible.

Therefore, the unfolding procedure inputs are:

– a quantifier-free specification Sp = (Σ, Ax) where axioms of Ax have been
transformed into normalized sequents;

– a quantifier-free formula ϕ seen as the initial constrained test purpose
〈(∅, id), ϕ〉;

– a family Ψ of couples (C, σ) where C is a set of Σ-constraints in the form of
normalized sequents, and σ is a substitution V → TΣ(V ).

The first set Ψ0 only contains the couple composed of the set of normalized
sequents obtained from the quantifier-free formula ϕ under test and the identity
substitution.

The unfolding procedure is expressed by the following two rules:2

Reduce Ψ ∪ {(C ∪ {Γ |∼ Δ}, σ′)}
Ψ ∪ {(σ(C), σ ◦ σ′)} ∃γ ∈ Γ, ∃δ ∈ Δ s.t. σ(γ) = σ(δ), σ mgu

Unfold
Ψ ∪ {(C ∪ {ψ}, σ′)}

Ψ ∪
⋃

(c,σ)∈Tr(ψ)

{(σ(C) ∪ c, σ ◦ σ′)}

where Tr(ψ) for ψ = γ1, . . . , γm |∼ δ1, . . . , δn is the set defined by:
{(

{(σ(γp+1), . . . , σ(γm), σ(ζi) |∼ σ(δq+1), . . . , σ(δn)}1≤i≤k

∪ {(σ(γp+1), . . . , σ(γm) |∼ σ(ξi), σ(δq+1), . . . , σ(δn)}1≤i≤l
, σ

)∣∣∣∣
ψ1, . . . , ψp, ξ1, . . . , ξl |∼ ζ1, . . . , ζk, ϕ1, . . . , ϕq ∈ Ax,
1 ≤ p ≤ m, ∀1 ≤ i ≤ p, σ(ψi) = σ(γi),
1 ≤ q ≤ n, ∀1 ≤ i ≤ q, σ(ϕi) = σ(δi),
σ unifier, k, l ∈ N

⎫
⎪⎪⎬

⎪⎪⎭

The Red rule eliminates tautologies from constraints sets. Intuitively, the
Unfold rule consists in replacing the formula ψ with a set c of constraints,
which are what remains of the axiom after unification. Then testing σ(ψ) comes
to test the formulae of c. The particular case where no formula has to be cut is
taken into account, since k and l may be equal to zero. Tr(ψ) is then a couple
(∅, σ), and it is the last step of unfolding for this formula.

Each unification with an axiom leads to a couple (c, σ), so the initial formula
ψ is replaced with as much sets of formulae as there are axioms to which it
can be unified. The definition of Tr(ψ) being based on unification, this set is
computable if the specification Sp has a finite set of axioms. Therefore, given an

2 The most general unifier (or mgu) of two terms γ and δ is the most general substi-
tution σ such that σ(γ) = σ(δ).
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atomic formula ψ, we have the selection criterion Cψ that maps any T(C,σ′),ϕ to
(T(σ(C\{ψ})∪c,σ◦σ′),ϕ)(c,σ)∈Tr(ψ) if ψ ∈ C, and to TC,ϕ otherwise.

We write 〈Ψ, ϕ〉 �U 〈Ψ ′, ϕ〉 to mean that Ψ ′ can be derived from Ψ by applying
Reduce or Unfold. An unfolding procedure is then a program, inputs of which
are a quantifier-free first-order specification Sp and a quantifier-free formula ϕ,
and uses the above inference rules to generate the sequence

〈Ψ0, ϕ〉 �U 〈Ψ1, ϕ〉 �U 〈Ψ2, ϕ〉 . . .

Example 3. We want to test the formula isin(r, L) ⇒ insert(r, L, L′).

Ψ0 = { ({isin(r, L) |∼ insert(r, L, L′)}, id) }

Ψ1 = { (∅, σ1), (16)
({eqr(x0/s(y0), e0) |∼ insert(x0/s(y0), e0 :: l0, l

′
0),

isin(x0/s(y0), l0) |∼ insert(x0/s(y0), e0 :: l0, l
′
0)}, σ2), (17)

({isin(x0/s(y0), e0 :: l0) |∼ insert(x0/s(y0), l0, l′0)}, σ3), (19)
(∅, σ4), (12)
({isin(x0/s(y0), e0 :: l0) |∼ eqr(x0/s(y0), e0)}, σ5), (13)
({isin(x0/s(y0), e0 :: l0) |∼ ltr(x0/s(y0), e0)}, σ6), (14)
{isin(x0/s(y0), e0 :: l0) |∼ ltr(e0, x0/s(y0)),
isin(x0/s(y0), e0 :: l0) |∼ insert(x0/s(y0), l0, l′0)}, σ7) (15) }

where
r L L′ x y e l l′

σ1 x0/s(y0) [ ] x0 y0
σ2 x0/s(y0) e0 :: l0 l′0 x0 y0 e0 l0
σ3 x0/s(y0) l0 l′0 x0 y0 l0
σ4 x0/s(y0) [ ] x0/s(y0) :: [ ] x0 y0
σ5 x0/s(y0) e0 :: l0 e0 :: l0 x0 y0 e0 l0
σ6 x0/s(y0) e0 :: l0 x0/s(y0) :: e0 :: l0 x0 y0 e0 l0
σ7 x0/s(y0) e0 :: l0 e0 :: l′0 x0 y0 e0 l0 l′0

Each couple of Ψ1 is labelled by the number of the axiom used for the unfolding
of the initial formula.

The first couple (∅, σ1) comes from the unification of the initial formula with
the axiom isin(x/s(y), [ ]) |∼ . Since isin(r, L) |∼ insert(r, L, L′) with r = x/s(y)
and L = [ ] is a direct consequence of this axiom, no constraint is generated but
the substitution.

If L is not the empty list, the initial formula isin(r, L) |∼ insert(r, L, L′) is
true if and only if L = L′. Its unfolding when L is not empty will then lead
to two kinds of constraints: those where L = L′ that will become test cases
since they are consequences of the specification, and those where L �= L′ that
will not lead to test cases. For example, the fifth couple ({isin(x0/s(y0), e0 ::
l0) |∼ eqr(x0/s(y0), e0)}, σ5) is a potential test case since isin(x0/s(y0), e0 :: l0)
and eqr(x0/s(y0), e0) are true simultaneously for any ground substitution. On
the contrary, the sixth couple, whose constraint formula is isin(x0/s(y0), e0 ::
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l0) |∼ ltr(x0/s(y0), e0), will never lead to a test case. Indeed, when x0/s(y0) is
in the list e0 :: l0, then it cannot be less than e0, for any ground substitution.

The unfolding procedure cannot distinguish between these two kinds of con-
straints, however, before being submitted to the program, a ground substitution
ρ is applied to constrained test purposes. Since by definition, ρ(ψ) has to be a
consequence of the specification, constraints where L �= L′ will not be submitted
as test cases to the program.

A second unfolding of, for example, the formula isin(x0/s(y0), e0 ::
l0) |∼ eqr(x0/s(y0), e0) would lead to the following set:

{ ({eqr(x0/s(y0), e0) |∼ eqr(x0/s(y0), e0)
isin(x0/s(y0), l0) |∼ eqr(x0/s(y0), e0)}, σ′

1), (17)
({isin(x0/s(y0), e1 :: e0 :: l0) |∼ eqr(x0/s(y0), e0)}, σ′

2), (19)
({isin(x0/s(y0), u0/s(v0) :: l0) |∼ mult(x0, s(v0), n0),
isin(x0/s(y0), u0/s(v0) :: l0) |∼ mult(u0, s(y0), n0)}, σ′

3), (10)
({isin(x0/s(y0), l0) |∼ }, σ′

4) (17) }

The tautology eqr(x0/s(y0), e0) |∼ eqr(x0/s(y0), e0) would be naturally deleted
with the Reduce rule.

Here, our unfolding procedure has been defined in order to cover behaviours
of one test purpose, represented by the formula ϕ. When we are interested in
covering more widely the exhaustive set Sp•∩Obs , a strategy consists in ordering
quantifier-free first-order formula with respect to their length, as follows:

Φ0 = { |∼ p(x1, . . . , xn) | p : s1 × . . . × sn ∈ P, ∀i, 1 ≤ i ≤ n, xi ∈ Vsi}

Φn+1 = {p(x1, . . . , xn), Γ |∼ Δ, Γ |∼ Δ, p(x1, . . . , xn) |
Γ |∼ Δ ∈ Φn, p : s1 × . . . × sn ∈ P, ∀i, 1 ≤ i ≤ n, xi ∈ Vsi}

Then, to manage the size (often infinite) of Sp•∩Obs , we start by choosing k ∈ N,
and then we apply for every i, 1 ≤ i ≤ k, the above unfolding procedure to each
p(x1, . . . , xn), Γ |∼ Δ and Γ |∼ Δ, p(x1, . . . , xn) belonging to Φi. Of course, this
requires that signatures are finite so that each set Φi is finite too.

4.3 Soundness and Completeness

Here, we prove the two properties that make the unfolding procedure relevant
for selection of appropriate test cases, i.e. that the selection criterion defined by
the procedure is sound and complete for the initial test set we defined.

Test sets for quantifier-free formulae are naturally extended to sets of couples
Ψ as follows:

TΨ,ϕ =
⋃

(C,σ)∈Ψ

T(C,σ),ϕ

Theorem 2. If 〈Ψ, ϕ〉 �U 〈Ψ ′, ϕ〉, then TΨ,ϕ = TΨ ′,ϕ.

The proof may be found in [15].
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5 Conclusion

In this paper, we have extended a selection criterion, based on unfolding of
positive conditional axioms in the algebraic specification setting, to quantifier-
free first-order specifications. Our unfolding procedure consists in dividing an
initial test set into subsets and then selecting test cases within each subset. We
have then proved that this unfolding is complete. Moreover, we have shown that
given a quantifier-free first-order specification Sp, Sp• ∩Obs is an exhaustive set
whatever the system under test is.

Research on this unfolding procedure is mainly continued on two aspects.
First, we are specializing our unfolding procedure by handling equality (when
it occurs) in a efficient way. Indeed equality often occurs in software specifica-
tions. When dealing with first-order logic, the axiomatization of equality leads
to uniformly tackle this predicate as the others, without taking advantage of
the efficient, natural and concise kind of reasoning which is attached to, namely,
replacement of equal by equal. We are then adapting our unfolding procedure
by defining it from sequent calculus LK= or G= [16]. Finally, our goal is to pro-
pose a framework of functional testing with selection criteria including primitive
structuration, following [8, 13].
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