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Abstract—We apply automata theory to specifying behavioral inter-
faces of objects and show how to check schedulability and compatibility
of real time asynchronous objects. The behavioral interfaces of real
time objects specify (the order and timings of) the messages an object
may send and receive. Each object is checked against its behavioral
interface; first, to guarantee its correct output behavior, and second to
make sure that every message it may receive is processed within the
designated deadline (schedulability analysis). Next, we propose a new
technique for testing whether every object is used as expected (i.e.,
according to its behavioral interface) when combined with other objects
(compatibility check). Compatibility additionally implies schedulability in
the context of the actual system. The analyses are automated using the
UPPAAL model checker. Our method makes it possible to put a finite
bound on the message queue and still obtain schedulability results that
are correct for any queue length.

1 INTRODUCTION

The aim of object orientation is to divide a big system
to smaller manageable units. To do so, an abstract high
level view of objects is first specified in an interface.
Each object should have the structure and behavior
specified in its structural and behavioral interfaces. The
correctness of the interactions between objects is then
checked using their interfaces. In a real time system,
the behavioral interface can include the expected timings
and deadlines for incoming calls.

We apply automata theory to specifying behavioral
interfaces of objects and show how to check schedu-
lability and compatibility of objects. In the completely
asynchronous setting (cf. the Actor model [1], [2]),
objects can send only asynchronous messages and have
queues for receiving them. Each message is processed
in a method, which is a sequential code that may in
turn send messages. Receiving a message schedules the
corresponding method, i.e., puts it in the queue to be
executed. A message an object sends to itself is called a
self call.

In our framework, the specification of an object con-
sists of its methods and behavioral interface, modeled
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with timed automata [3]. These automata mainly spec-
ify what messages are sent and when. A deadline is
assigned to each message specifying the time before
which the intended job should be accomplished. We
allow each object to define its own scheduling policy
(rather than, for instance, assuming “First Come First
Served (FCFS)” by default) with the condition that a new
message cannot preempt the currently running method.
A scheduling policy determines the order in which the
(methods corresponding to) incoming messages should
be executed.

A behavioral interface is a deterministic timed automa-
ton modeling the timings (and deadlines) of the mes-
sages the implementing objects may send and receive
(to/from other objects). For instance, an object providing
mutual exclusion between two entities must send a
‘permit’ after the first ‘request’, but the second ‘request’
should wait until the resource is ‘released’. A model of
such an object is analyzed as a case study in the paper.

In this paper, we show how we can apply the schedu-
lability analysis of individual objects, as described in our
previous paper [4], to the actual system. This application
involves a new method for testing whether the entire
system of objects behaves according to the behavioral
interfaces. Furthermore, the behavioral interfaces in this
paper include both incoming and outgoing messages,
whereas in [4] only a driver automaton was used includ-
ing the patterns of incoming messages. This amounts to
further correctness check during schedulability analysis,
i.e., output behavior is verified with respect to the input
behavior.

For each object schedulability can be analyzed sepa-
rately. Schedulability analysis, i.e., checking whether re-
ceived messages can be processed within their deadlines,
is reduced to reachability in timed automata and can be
performed in UPPAAL . Although an object is allowed
to have an unbounded queue, we can statically find
an upper bound on the length of schedulable queues;
hence, the behavior of a schedulable object is finite. By
this analysis, on one hand, one can guarantee processing
messages within their deadlines, assuming that mes-
sages arrive as specified in the behavioral interface. On
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the other hand, one can analyze the object with regard to
different scheduling strategies, and find the best strategy.

Once an object is proved schedulable, it can be used
as an off-the-shelf component. One can then use the
objects that are individually schedulable for making big-
ger components or systems. This results in a distributed
system with multiple processors. However, we need to
check whether the real usage of each object follows
the expected usage (the behavioral interface), called the
compatibility check.

To prove compatibility one needs to construct the
complete behavior of all objects together. In order to
avoid the general state-space explosion we introduce
a method for testing compatibility. The product of the
automata for behavioral interfaces (call it B) captures
all allowed interactions between the objects. Intuitively,
compatibility amounts to proving refinement between
the system and B. The product B is a deterministic timed
automaton which abstracts from objects implementation
and task queues. We formally define compatibility as
checking the inclusion of the traces of the system in
the traces of B. While testing, we try to find counter-
examples to compatibility, i.e., a trace in the system not
included in B.

1.1 Related Work
Schedulability analysis in general has been investigated
for different settings, from rate monotonic analysis [5],
to non-uniformly recurring tasks modeled as task au-
tomata [6]. The former covers a smaller range of real
time systems, and the analysis is performed on the whole
system. The latter is only for one processor, and tasks
only consist of internal computation, i.e., cannot generate
other tasks during their execution.

By taking outputs out of behavioral interfaces, they
will look similar to task automata in the sense that they
model the pattern of task generation. However, in our
framework tasks are specified as timed automata (rather
than just execution times) and can therefore trigger other
(internal) tasks during execution. The internal tasks are
not captured in the behavioral interface. Such an internal
task may inherit the (remaining) deadline of the task
generating it. Furthermore, a task automaton analyzes
only one processor, while we allow combining multiple
objects (each having one processor) and test their com-
patibility.

The problem of compatibility has been addressed for
interface automata and timed interfaces by Alfaro et al
in [7]. The main difference is that Alfaro et al consider
two timed interfaces compatible if there is a way to use
them together such that the timing expectations are met.
However, in an object oriented setting, we require the
objects to follow the timing expectations in the interfaces
of each other along all executions. Furthermore, since be-
havioral interfaces provide an over-approximation of the
object behavior, it is not enough to check compatibility
by considering only the interfaces. We test compatibility
to avoid state explosion.

1.2 Paper Structure
In Section 2, we provide the grounds for the approach
by explaining the basic model of communication and
timed automata. The timed object model is explained in
Section 3. The schedulability of one object individually
is investigated in Section 4. Compatibility and schedula-
bility in the context of a system is discussed in Section 5.
Section 6 demonstrates the modular approach by means
of a case study. Section 7 concludes the paper.

2 PRELIMINARIES

2.1 Asynchronous Concurrent Objects
To present our approach, we take an asynchronous sub-
set of Creol [8] that fits the Actor model [2], [1]. Asyn-
chronous objects are units of distribution and concur-
rency, and have encapsulated states and behavior. They
communicate via asynchronous (non-blocking) message
passing, and the arrival of the messages is guaranteed.
Objects have local variables, but no shared variables. An
object has a dedicated processor. Our approach can be
easily adapted to any modeling platform with the above-
mentioned characteristics for concurrent objects. To have
a concrete method, however, we need to consider further
details of the Creol language mentioned next.

In Creol, each object (object) is instantiated from a
class and typed by an interface and has one dedicated
processor. A class defines a method for each message
it can handle. A method is a piece of sequential code,
which, among other statements, may send messages. We
assume that there is at least a method ‘initial’ in each
class, which is responsible for initialization. Every class
can have known objects, which serve as place holders
for the objects that can communicate with instances of
that class. We do not consider other Creol features like
synchronous communication.

2.2 Timed Automata
We give a formal definition of timed automata and timed
traces in this section.

Syntax. Let Act be a finite set of actions. Let C be a
finite set of real-valued variables called clocks. We define
B(C) the set of clock constraints as the set of boolean
formulas built over elementary constraints x ∼ n and
x − y ∼ n where x, y ∈ C, n ∈ N, and ∼ ∈ {<,≤,=},
with boolean operators ∨, ∧ and ¬.

A timed automaton A over Act and C is a tuple
(L, l0, E, I) where L is a finite set of locations; l0 ∈ L
is the initial location; E ⊆ L × B(C) × Act × 2C × L is
a finite set of edges; I : L → B(C) assigns an invariant
to each location. Location invariants are restricted to
conjunctions of constraints of the form x < n or x ≤ n

for x ∈ C and n ∈ N. We write l
g,a,r−−−→ l′ for an edge

from location l to location l′ guarded by clock constraint
g, labeled with action a and resetting the subset r of C.

A location can be marked urgent which is equivalent to
resetting a fresh clock x in all of its incoming edges and



3

adding an invariant x <= 0 to the location. Intuitively,
this means that the automaton cannot spend any time in
that location [9].

Semantics. A timed automaton defines an infinite
labeled transition system whose states are pairs (l, u)
where l ∈ L and u : C → R+ is a clock assignment. We
denote by 0 the assignment mapping every clock in C
to 0. The initial state is s0 = (l0,0). There are two types
of transitions: action transitions (l, u) a→ (l′, u′) where
a ∈ Act, if there exists l

g,a,r−−−→ l′ such that u satisfies the
guard g, u′ is obtained by resetting to zero all clocks in
r and leaving the others unchanged and u′ satisfies the
invariant of location l′; delay transitions (l, u) d→ (l, u′)
where d ∈ R+, if u′ is obtained by delaying every clock
for d time units and for each 0 ≤ d′ ≤ d, u′ satisfies the
invariant of location l.

Deterministic TA. A timed automaton is called deter-
ministic if and only if for each a ∈ Act, if there are two
edges from l labeled by the same action l

g,a,r−−−→ l′ and

l
g′,a,r′

−−−−→ l′′ then the guards g and g′ are disjoint (i.e. g∧g′

doesn’t hold) .
Variables. As accepted in UPPAAL , we allow defining

variables of type boolean and bounded integers for each
automaton. Variables can appear in guards and updates.
The semantics of timed automata changes such that each
state will include the current values of the variables as
well, i.e. (l, u, v) with v a variable assignment. An action
transition (l, u, v) a→ (l′, u′, v′) additionally requires v
and v′ to be considered in the corresponding guard and
update.

Networks of timed automata. In the following, we
assume that the set of actions Act is partitioned into two
disjoints sets: a set ActI of input actions a? and a set ActO
of output actions a!. A non-observable internal actions τ is
also assumed. Let Actτ = Act ∪ {τ}.

A system may be described as a collection of timed
automata Ai (1 ≤ i ≤ n) over sets of actions Actiτ The
behavior of the system is then defined as the parallel
composition of those automata A1 ‖ · · · ‖ An. Seman-
tically, the system can delay if all automata can delay
and can perform an action if one of the automata can
perform an internal action or if two automata can syn-
chronize on complementary actions (inputs and outputs
are complementary).

Timed traces. A timed action is a pair (a, d) ∈ Actτ ×
R+. A timed sequence σ is a possibly infinite sequence of
timed actions: σ ∈ (Actτ ×R+)∗. Given a timed sequence
σ, πobs(σ) denotes the projection of σ on Act, intuitively
deleting τ transitions. The sequence πobs(σ) is called the
observable timed sequence associated to σ.

A run of a timed automaton A from initial state (l0,0)
over a timed sequence σ = (a1, d1)(a2, d2) . . . (an, dn) is
a sequence of transitions

(l0,0) d1→a1→ (l1, u1) → · · · dn→an→ (ln, un)

The set Traces(A) of timed traces of A is the set of timed
sequences σ for which there exists a run of A over σ.

The set Tracesobs(A) of observable timed traces of A is
the set {πobs(σ) | σ ∈ Traces(A)}. In the following we
only consider maximal traces, namely those traces for
which the corresponding run does not end in a location
with an invariant. Intuitively, time may not stop along
maximal traces, which is the case in real systems, too.

3 THE TIMED OBJECT MODEL

In this section, we present our formal model of ob-
jects. The abstract behavior of an object is specified
in its behavioral interface. This interface only consists
of the messages the object may receive and send. An
implementation of the interface, namely a class, is a
set of methods for processing the incoming messages.
A method may in turn send messages. Each of these
methods is represented by a timed automaton. A sched-
uler automaton takes care of buffering the incoming
messages and running the corresponding methods. An
object is then defined as an instance of a class with a
specific scheduler.

We assume a finite global set of method names M.

Definition 1 (Behavioral interface). A behavioral interface
B providing a set of method names MB ∈ M is a determin-
istic timed automaton over alphabet ActB such that:

• ActB is partitioned into two sets
– output actions: ActBO = {m?|m ∈M∧m 6∈ MB}
– input actions: ActBI = {m(d)!|m ∈ MB ∧ d ∈ N}

• the edges labeled with output actions have true as guard

Notice the counter-intuitive notation for inputs and
outputs in this definition, i.e., using m? for outputs and
m(d)! for inputs. It is explained in Section 4 how this sim-
plifies checking if a specific implementation adheres to
the specification in the behavioral interface. The methods
MB (corresponding to the input actions) must exist in
the classes implementing the interface B. Other methods
are sent by the object and should be handled by the
environment.

A behavioral interface can be seen both as the (ac-
ceptable) observable behavior of the object, or as an
abstraction of the environments in which the object can
be used. An action m(d)! represents a message m sent to
the object by the environment. A correct implementation
of the object should be able to finish method m before d
time units.

A behavioral interface abstracts from specific method
implementations, the queue in the object and the
scheduling strategy. One can define a class as a set of
methods implementing a specific behavioral interface.

Definition 2 (Class). A class R implementing the behavioral
interface B is a set {(m1, A1), . . . , (mn, An)} where:

• MR = {m1, . . . ,mn} ⊆ M is a set of method names
such that MB ⊆ MR; and,

• for all i, 1 ≤ i ≤ n, Ai is a timed automaton representing
method mi with the alphabet Acti = {m!|m ∈ MR} ∪
{m(d)! | m ∈M∧ d ∈ N}
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Notice that methods have only output actions. Re-
ceiving messages (and buffering them) is handled by
scheduler automata defined next. Sending a message
m ∈ MR is called a self call. Self calls may or may not
be assigned an explicit deadline. The self calls that are
not statically assigned a deadline are called delegation.
Delegation implies that the internal task (triggered by the
self call) is in fact the continuation of the parent task;
therefore, the delegated task inherits the (remaining)
deadline of the task that triggers it. An example of
delegation is given in the case study in Section 6.

The condition MB ⊆ MR requires that a class should
provide a method for handling all messages it may
receive according to the interface it implements (but may
add more methods). Checking whether it will produce
correct output behavior, and if it can finish all methods
in designated deadlines is explained in Section 4.

3.1 Scheduler Automata

A scheduler automaton for a class R must have the
following characteristics:

1) implements a queue as in Definition 3.
2) is strongly input enabled, i.e., can receive any

message in MR at any time, puts it in the queue,
and assigns a clock to it to keep track of the time
since it is received.

3) whenever a method is finished, selects another
message from the queue (based on its schedul-
ing strategy) and starts the corresponding method
(called context-switch).

4) has an Error location with no outgoing transitions.
This location is reachable whenever queue over-
flow occurs or the deadline of a task in the queue
expires (cf. Definition 3).

We show in Section 4 that we may put a finite bound
on the queue and still derive schedulability results that
hold for any queue length. For each task, a queue needs
to store the method name and its deadline. Furthermore,
it needs a clock to keep track of the time since the task
is triggered. This enables us to check if a deadline is
missed.

Definition 3 (Queue). A queue with an upper bound MAX
is a list of at most MAX tasks together with a set Cq of MAX
clocks. Each task is written as m(d, x) where m is a method
name, d ∈ N is its deadline and x ∈ Cq keeps track of how
long the task has been in the queue. The deadline of m expires
when x > d.

When a task is inserted in the queue, a free clock is
assigned to it and is reset. In case of delegation, how-
ever, the clock of the currently running task is reused.
Examples of scheduler automata are given in Section 6.

4 SCHEDULABILITY ANALYSIS

An object is an instance of a class together with a specific
scheduler automaton. An object cannot be analyzed on

its own, because there are an infinite number of ways
in which the methods could be called. Therefore, we
only consider the method calls specified in its behavioral
interface (i.e., the input actions). The analysis in this
section is based on the schedulability analysis in [4],
which is enhanced to include a local consistency check
as well.

Receiving a message from another object (i.e., an input
action in the behavioral interface) creates a new task
(for handling that message) and adds it to the queue.
The behavioral interface doesn’t capture (internal tasks
triggered by) self calls. In order to analyze the schedula-
bility of an object, one needs to consider both the internal
tasks and the tasks triggered by the (behavioral interface,
which abstractly models the acceptable) environment.

Definition 4 (Schedulable). An object is schedulable if the
deadlines of the tasks in the queue (including the currently
executing task) never expire, i.e., there is no reachable state
such that a clock of one of the tasks in the queue is greater
than the deadline.

Checking schedulability with an unrestricted queue
length might require us to check an infinite system.
Whereas artificially fixing the queue may lead to false
negatives. Luckily, for a given class and its behavioral
interface, we can statically determine an upper bound
on the queue length of schedulable systems.

Lemma 5. If an object is schedulable then it does not put
more than ddmax/bmine tasks into the queue, where dmax is
the longest deadline for any methods called on any transition
of the automata (method automata or the input actions of the
behavioral interface) and bmin is the shortest termination time
of any of the method automata.

Proof: Assume that the queue length reaches
ddmax/bmine+1 . All methods are called with a deadline,
and delegated deadlines are equal to, or less than, the
original deadlines. Therefore, all tasks in the queue must
have a deadline less than or equal to dmax and all
tasks take more than or equal to bmin to accomplish.
Let Q be the set of the tasks in the queue at this
moment. To execute all tasks in Q it takes at least
T = (ddmax/bmine+1)×bmin (new tasks may be inserted
and executed in the meanwhile which may only add to
the time until all tasks in Q finish). It is easy to see that
T > dmax and so there is at least one task in the set Q
that misses its deadline.

We can calculate the best case runtime for timed
automata as shown by Courcoubetis and Yannakakis
[10]. The longest deadline can be found by a simple static
search of all the transitions.

Theorem 6. An object is schedulable if, and only if, the
scheduler cannot reach the Error location with a queue length
of ddmax/bmine.

The proof is straightforward considering the definition
of scheduler automata and lemma 5.

As a result of this theorem, we can check the schedu-
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lability of an object by checking reachability of the Error
location using the UPPAAL model checker. In addition,
we explain how to ensure that the methods in a class
together with a specific scheduler provide the behavior
specified in its behavioral interface (local consistency).
This includes checking that the object produces expected
output given the inputs specified in the interface.

We can generate the possible behaviors of an object
by making a network of timed automata consisting of its
method automata, behavioral interface automaton B and
a concrete scheduler automaton. The inputs of B written
as m! will match with inputs in the scheduler written as
m? and the outputs of B written as m? will match out-
puts of method automata written as m!. If this network
of automata does not deadlock we know that the object
cannot produce a behavior disallowed by the interface.
Note that this also implies that the Error location is not
reachable. One can allow termination by labeling some
locations in the behavioral interface as final. Then we
should check for deadlock in non-final states. Therefore,
absence of deadlock implies schedulability as well as
local consistency with the behavioral interface.

5 COMPATIBILITY CHECKING
The behavioral interface of an object is a high level
abstract view of the object behavior in terms of the mes-
sages it may send and receive. Intuitively, the composi-
tion of the behavioral interfaces of some communicating
objects should also provide an abstract view on the sys-
tem behavior in terms of the messages communicated.

In other words, we need to check that the behavior
of the system (composition of the objects) is a refinement
of the parallel composition of the behavioral interfaces,
when the system behavior is restricted to the commu-
nications between different objects. This ensures that
each object is used correctly, i.e., receives messages as
specified in its behavioral interface. This is called com-
patibility check.

In this section, first we don’t consider deadlines, i.e.,
the actions a(d)! and a(d)? are not distinguishable from
a! and a?, respectively. In the following, B represents the
synchronous product of the behavioral interfaces, and S
represents the system of communicating objects. Each
object consists of the method automata and a scheduler
automaton.

Definition 7 (Compatibility). Consider two timed automata
S and B. S is compatible with B, denoted by S compat B,
if and only if Tracesobs(S) ⊆ Traces(B).

Inclusion of timed languages being in general unde-
cidable, we propose a method for testing it. In particular,
we want to be able to exhibit a counter-example if some
incompatibility is found.

A test case will be built according to a diagnostic trace
given by UPPAAL on the behavioral interfaces. Complet-
ing this trace with allowed and forbidden divergences
will give us the means to detect possible incompatibili-
ties. A step going out of the trace is forbidden if it is not

expected by the behavioral interfaces, allowed otherwise.
The test fails if, along the trace, the system performs a
forbidden action, that is trying to send a message not
expected by the behavioral interfaces. If the test fails, we
are then able to give a counter-example to compatibility.

5.1 Test cases
Trace inclusion is usually used for testing correctness
(or conformance) between a system and its specification
in formal testing frameworks [11]. We use the standard
notions and methods from these frameworks. However,
as we are checking compatibility, the purpose is different,
namely, our main goal is to find a counter-example in the
case of incompatibility.

We build a test case given a trace from the product
of the behavioral interfaces. Such a trace represents
abstractly a desired system behavior in terms of the
messages communicated between objects. A test case
formally is a deterministic timed automaton in the shape
of a tree whose location are labeled with verdicts.

Definition 8 (Test case). A test case is a deterministic acyclic
timed automaton TC = (L, l0, E, I) over Act whose set of
locations is divided into three disjoint sets Pass, Fail and
Inconc. For every non-leaf location l and action a ∈ Act,

• there exists a transition l
g,a,r−−−→ l′; and,

• for all transitions l
gi,a,ri−−−−→ l′i guards are complementary:∨

i gi holds.

A verdict labeling a location allows us to evaluate an
execution of the test case terminating on this location.
Locations labeled by Fail are those which are reachable
with forbidden behaviors of the system (a non-specified
action or an action happening outside its time constraints
in the product of behavioral interfaces, for example). An
execution of a test case ending on a Pass location means
that the system fulfilled the test case requirements. When
an inconclusive location Inconc is reached, it means
that the system behaved correctly but not according to
the behavior aimed by the test case. To find a counter-
example, we need to search for locations marked Fail.

5.2 Generating a test case
In this subsection, we explain how to generate a test
case given a trace obtained from the product of behavior
automata. In the following, we call the product of the
behavior automata B. Assume that this trace consists of
the locations li and the transitions li−1

gi,mi,ri−−−−−→ li such
that 0 < i ≤ n. Such a trace shows (the timings of) some
messages communicated between the objects. We turn
this trace into a test case in three steps.

• Pass: Label ln with the verdict Pass. Reaching this
location implies that the system can perform the
desired behavior denoted by this trace.

• Fail: Add a location f labeled with the verdict Fail.
For every location li, add a transition li

¬g,a,r−−−−→ f

if there exists a transition li
g,a,r−−−→ l′ in B. For every
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other action b (i.e., those not allowed at location li in
B), add a transition li

true,b,∅−−−−−→ f . Furthermore, if the
location corresponding to li in B has an invariant
h, add a transition li

¬h,τ,∅−−−−→ f and replace gi+1 with
h ∧ gi+1 in the transition leading to li+1.

• Inconc: Complete the locations li, namely, add a
transition li

g,a,r−−−→ c per every transition li
g,a,r−−−→ l′

in the product of the behavioral interfaces (except
for the one that already exists in the trace), where c
is a new location labeled Inconc. Finally label every
location li as Inconc.

Intuitively, the test case forces the system to send
messages in the specified order. If that is not possible, the
result will be inconclusive or failure. We need to show
that if the test case fails, the system is not compatible.

Soundness. Assume that running the system in par-
allel with the test case leads to a Fail state, shown as a
sequence of locations and timed actions below. This se-
quence can be projected onto its ‘system’ and ‘test-case’
components. Furthermore, the locations in the test case
can be mapped to their correspondents in the product
of behavioral interfaces (B). This latter step is possible
in exactly one way because B is a deterministic timed
automaton. Below we show this decomposition. The
superscripts B and S distinguish between the locations
of B and the system. The step from the test case to B is
factored out in favor of simpler representation.

(l
S

0 ,0
S

)
d1,a1−−−→ · · · → (l

S

i , u
S

i )
di+1,ai+1−−−−−−→ (l

S

f , u
S

f )
⇑ ⇑ ⇑

(l0,0)
d1,a1−−−→ · · · → (li, ui)

di+1,ai+1−−−−−−→ (lf , uf )
⇓ ⇓ 6⇓

(l
B

0 ,0
B

)
d1,a1−−−→ · · · → (l

B

i , u
B

i ) 6di+1,ai+1−−−−−−→

As shown here, the final step in the trace has no cor-
respondence in B. This is due to the fact that the timed
action (di+1, ai+1) is not possible at location l

B

i , which
in turn results from the way the test case is constructed
(see above). A complete proof should consider different
possibilities of a which is omitted for brevity here.

Non-laxness. Soundness alone is a loose requirement
on a test case, because for instance a test case with no
failure state is trivially sound. The test cases generated as
mentioned above are non-lax, i.e., a test case must reject
any system which can be shown incompatible during
the execution of the test. Suppose S and T show the
system and the test case automata, respectively. Formally
T is non-lax if “S passes T ⇒ S ‖T compat D”. In other
words, any incompatible behavior must be detected: if
the test case contains a wrong behavior with respect to
compatibility, then it must lead to a Fail state.

To prove this, we need to show that any trace in S ‖T
not leading to the Fail state also exists in B. We can
decompose such a trace into its S and T components.
We need to show that at every location l

T

i where T can
do (di, ai), B can also take the timed action (di, ai). This

can be deduced from the construction of the test case.
The proof details are omitted for brevity.

The starting point for test case generation is a trace
in the product of behavioral interfaces B. One can use
UPPAAL to generate such a trace in two ways. First, the
simulation feature can be employed to generate specific
hand-made traces. The second way is to use the UPPAAL
model checker. A first property to check is possibility of
deadlock in B. A trace leading to deadlock in B is a can-
didate of incompatibility which is a good starting point
for testing. Alternatively, one can use certain reachability
properties that cover ‘interesting’ paths in B. Techniques
and tricks to get good traces (based on coverage, etc.) are
studied in literature (e.g., [12]) and not addressed here.

5.3 Executing the test case

A characteristic of our framework is that we test a
model rather than an actual system. The submission of
the test case to the model can then be computed as a
synchronized product, we do not have to consider such
issues as arbitrary short delays between two actions that
may be taken into account when testing a real system.

Our model of a system consists of a set of communicat-
ing objects. Each object, in turn, consists of methods and
a scheduler automata (the scheduler contains a queue).
Therefore, a system is a network of timed automata
(representing methods and schedulers of all objects)
which can run in UPPAAL.

All actions except communication between objects are
considered internal. Submitting a test case is then the
synchronized product of the system automata and the
test case automaton, in which every observable action
in the system must synchronize with the test case.

Notice that a test case is a deterministic automaton
and intuitively represents a specific order of exchanging
messages between the objects. Therefore, requiring the
system to synchronize with the test case resolves part of
the nondeterminism in the system. However, the inter-
nal actions of different objects are nondeterministically
interleaved (more precisely, those internal actions that
can happen at the same time). Thus, we would need to
execute the test case several times to get a verdict. In
UPPAAL we can simulate the model and see for instance
where the system may diverge from the test case (Inconc
results) or fail (we will explain how to use UPPAAL for
submitting a test case).

Since the system behavior is controlled by the test case,
using a model checker would also be practical to check
the reachability of a Fail or a Pass state; whilst model
checking the system alone may not be feasible. The
system under test passes the test, denoted by S passes T ,
if the execution of the test case on the system does not
lead to a Fail state. The UPPAAL model checker can
provide a diagnostic trace in case of failure showing
exactly how and when the system is not compatible.
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5.3.1 Deadlines in Compatibility

So far in the compatibility check, we didn’t distinguish
between different deadline values on actions. Remem-
ber that every input action in a behavioral interface
is assigned a deadline, unlike the output actions. The
schedulability check of individual objects ensures that
the methods corresponding to the inputs are scheduled
and finished before the specified deadline.

When constructing the product of behavioral inter-
faces, for every synchronizing pair of actions, there is
one deadline (from the input action). Therefore, every
timed action in the traces of the product (denoted B) can
be augmented with an integer d showing this deadline.

Similarly, in the system (more precisely in method
automata) every observable output action (i.e., excluding
self calls) has a deadline. The input actions (which
appear in the schedulers) have no specific deadlines.
Therefore, in the observable traces of the system, every
timed action can also be augmented with an integer d′

for the deadline.
To include deadlines in the formal definition of com-

patibility, we need to add the condition d ≤ d′ for
every matching action where d is the deadline in B
and d′ is the deadline in the system. When submitting a
test case, the usual parallel composition is extended to
allow synchronization only on actions with compatible
deadlines: an action a(d′) in the system will be able
to synchronize with an action a(d) in the behavioral
interfaces if and only if d ≤ d′.

5.3.2 Using UPPAAL

When submitting a test case, we require that any com-
munication between two objects should synchronize
with the test case, as well. Practically, this means that the
sender object (in one of its methods), the receiver object
(in its scheduler) and the test case should synchronize.
UPPAAL does not support three-way synchronization.

Since we do not want to change the specification of
the model under test, we solve the problem of three-
way synchronization by splitting every action in the
test case into two steps. At the first step, the sender
object synchronizes with the test case, and immediately
afterwards, the test case synchronizes with the receiver
object. The urgency between these two steps is modeled
by using a ‘committed’ location in the test case between
these two steps. Section 6 shows a small typical test case
in the context of the case study provided, which also
shows how to include deadlines practically in testing.

5.4 Schedulability

Objects can be proved individually schedulable with
respect to their behavioral interfaces. Using such objects
in a system, compatibility implies schedulability of the
whole system. Intuitively, this means that every message
in the system will be finished within the designated
deadline.

To prove this we can assume that the system is
compatible but not schedulable. This means that there
is a run of the system which drives the scheduler of
one of the objects, say oi, to the Error state. Since the
system is compatible, this run also exists in the product
of behavior automata, which can be projected onto the
behavior automaton of oi alone. The projected run in oi

would lead to Error which is in contradiction with the
assumption that oi is schedulable.

6 CASE STUDY

In this section, we describe how we can use the tech-
niques explained throughout the paper for modeling
schedulable objects and using them in the context of
complete systems. We demonstrate the approach by
modeling a ‘mutual exclusion’ handler and proving its
schedulability. We then show how to check compati-
bility in the context of dining philosophers and bridge
controller examples. We use UPPAAL for modeling the
timed automata for behavioral interfaces, methods and
scheduler automata.

Communication. We use the channels invoke and
delegate for sending messages. The channel invoke has
three dimensions (parameters), the message name, the
sender and the receiver, e.g., invoke[release][ self ][ Left ]! in
the behavioral interface of MutEx. By setting both sender
and receiver as self (in method automata), one can
invoke a self call and assign an explicit deadline to it. The
delegate channel is used for delegation. The self call made
using the delegate channel inherits the deadline of the
currently running task (it taken care of by the scheduler
automaton). Since a delegation is used only for self calls,
no sender is specified (it has only two parameters).

Deadlines. We take advantage of the fact that when
two edges synchronize, UPPAAL performs the updates
on the emitter before the receiver. Hence we can use
a global variable deadline. The emitter sets the deadline
value into this variable which is read by the receiver.
Notice that the value of the deadline does not affect
synchronization, i.e., only message name is important.
The receiver, however, cannot use this deadline value in
its guard, as guards are evaluated before updates.

6.1 Modeling the scheduler
Figure 1 shows the general structure of a scheduler
automaton. The only thing not specified in this general
picture is the scheduling strategy. This automaton should
have the characteristics mentioned in Section 3.1.

Queue. The triple m(d, x) for each task in the queue
is modeled using the arrays q, d and x, respectively. The
array ca shows the clock assigned to each message (task),
such that x[ca[ i ]] and d[ca[i ]] keep track of the remaining
deadline of q[i ]. counter[i] holds the number of tasks using
clock x[i ]. A clock is free if its counter is zero. When
delegation is used, the counter becomes greater than one.

Input-enabledness. In this general scheduler automa-
ton, there is an edge (left down in the picture) that allows
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Error

Running

tail == 1
finish [self] ?
shift()

start[q[run]][self] !

i : int[0,MAX-1]
{guard on i}
finish [self] ?
shift(),
run = {based on i}

msg : int[0,MSG]
delegate[msg][self] ?
q[tail] = msg, ca[tail] = ca[run],
counter[ca[tail]] ++, tail ++

tail > MAX
i : int[0,MAX-1]

counter[i] > 0 &&
   x[i] > d[i]

msg : int[0,MSG],
sender : int [0,OBJ-1],
c : int[0,MAX-1]
counter[c] == 0
invoke[msg][self][sender] ?
q[tail] = msg, ca[tail] = c,
x[c] = 0, d[c] = deadline, 
counter[c] = 1, tail++

Fig. 1. A general scheduler automaton

receiving (at any time) a message on the invoke channel
(from any sender). To allow any message and sender, se-
lect expressions are used. The expression msg : int [0, MSG]
nondeterministically selects a value between 0 and MSG
for msg. This is equivalent to adding a transition for each
value of msg. Similarly, any sender (sender : int [0, OBJ−1])
can be selected. This message is put at the tail of the
queue (q[ tail ] = msg), and a free clock (counter[c] == 0) is
assigned to it (ca[ tail ] = c). (d[c] = deadline).

A similar transition accepts messages on the delegate
channel. In this case, the clock already assigned to the
currently running task (parent task) is assigned to the
internal task (ca[ tail ] = ca[run]). In a delegated task, no
sender is specified (it is always self ).

Context-switch is performed in two steps (without
letting time pass). When a method is finished (synchro-
nizing on finish channel), it is taken out of the queue (by
shift ()). If it is not the last in the queue, the next method
to be executed should be chosen based on a specific
scheduling strategy (by assigning the right value to run).
For a concrete scheduler, the guard and update of run
should be well defined. If run is always assigned 0 during
context switch, the automaton serves as a First Come
First Served (FCFS) scheduler. An Earliest Deadline First
(EDF) scheduler can be encoded using a guard like:
i < tail && i != run &&
forall (m : int[0,MAX-1])
( (m == run) ||
(x[ca[i]] - x[ca[m]] >= d[ca[i]] - d[ca[m]])

)

and assigning run = (i < run) ? i : i−1 (because i is selected
before shifting). The guard x[a] − x[m] >= d[a] − d[m]
makes sure that the remaining deadline of a, i.e., x[a]−
d[a], is bigger than or equal to the remaining deadline
of m. The rest ensures that an empty queue cell (i < tail )
or the currently finished method (run) is not selected.

If the currently running method is the last in the
queue, nothing needs to be selected (i.e., if tail == 1 we
only need to shift ). The second step in context-switch is
to start the method selected by run. Having defined start
as an urgent channel, the next method is immediately
scheduled (if queue is not empty).

Behavioral Interface Specification

x1 < MAX_REL

x1 < MAX_REL

invoke[reqR][self][Right]!
deadline=16

invoke[reqL][self][Left]!
deadline=16

invoke[release][self][Right]!
deadline=7

invoke[permitR][Right][self]?
x1=0

invoke[release][self][Left]!
deadline=7

invoke[permitL][Left][self]?
x1=0

invoke[release][self][Left]!
deadline=7 invoke[permitL][Left][self]?

x1=0

invoke[release][self][Right]!
deadline=7

invoke[permitR][Right][self]?
x1=0

invoke[reqR][self][Right]!
deadline=16

invoke[reqL][self][Left]!
deadline=16

invoke[reqL][self][Left]!
deadline=16invoke[reqR][self][Right]!

deadline=16

Method: initial Method: release
x <= 1

finish[self] !
start[initial][self] ?

x = 0

x == 1
taken = false

x <= 1

finish [self] !
start[release][self] ?

x = 0

x == 1
taken = false

Method: reqL

x <= 3x <= 2

x <= 2

x <= 1

start[reqL][self] ?
x = 0

finish[self] !

finish[self] !

x == 3
invoke[permitL][Left][self] !

deadline = 12

x ==2
delegate[reqL][self] !

x == 2
taken = true

x == 1 &&
taken == false

x == 1 &&
taken == true

Method: reqR

x <= 3x <= 2

x <= 2

x <= 1

start[reqR][self] ?
x = 0

finish[self] !

finish[self] !

x == 3
invoke[permitR][Right][self] !

deadline = 12

x ==2
delegate[reqR][self] !

x == 2
taken = true

x == 1 &&
taken == false

x == 1 &&
taken == true

Fig. 2. The timed specification of the MutEx class

Error. The scheduler automaton moves to the Error
state if a queue overflow occurs ( tail > MAX) or a dead-
line is missed (x[i ] > d[i]). The guard counter[i] > 0 checks
whether the corresponding clock is currently in use, i.e.,
assigned to a message in the queue.

6.2 Mutual Exclusion Object

We model the mutual exclusion handler as a class called
MutEx. A MutEx object models a resource shared between
two (sets of) entities, referred to as Left and Right. For the
sake of simplicity, the request messages from Left and
Right are distinguished as reqL and reqR. Respectively, the
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MutEx may reply by permitL or permitR, if it is not already
taken; otherwise, it puts the request back into the queue
(by a self call) until a release message is received.

We specify a class using timed automata templates
(as supported by UPPAAL [9]). We may simply say
automata instead of automata templates. The automata
representing the methods and the behavioral interface of
a class are parameterized in an identifier (written self ),
and the identifiers of the objects communicating with it
(e.g., Left and Right for MutEx). In the context of a complete
system, every object will be assigned a unique identifier.
The MutEx behavioral interface specifies formally what
we explained in the previous paragraph. The automata
representing a MutEx are given in Figure 2.

A method is executed only when selected by the
scheduler. Therefore, the first transition in method au-
tomata is a synchronization on start . When a method
terminates, the scheduler should select another method.
Therefore, the last transition in method automata is a
synchronization on finish . The location before finish is
urgent so that time won’t pass during context switch.

A MutEx is initially, also after being released, set to be
not taken. When MutEx is not taken, an incoming request
is granted by sending back a permit. If the MutEx is
already taken, a self call is made to remember the pending
request. This must be modeled as a delegation so that
to keep the original deadline for the request. Thus the
schedulability of MutEx implies every request is followed
by a timely permit. Notice that the behavioral interface
requires a release message to arrive before MAX_REL if
there is a pending request. This is necessary to ensure
the pending request will be granted in time (i.e., for
schedulability of MutEx). Intuitively, to guarantee timely
response to requests, a resource holder is not allowed to
keep it more than MAX_REL.

6.3 Schedulability Analysis

After the methods and the behavioral interface are spec-
ified and a scheduling strategy is selected, one can
check the schedulability of the object by checking the
reachability of the Error state of the scheduler automaton.
As explained in Section 4, checking for deadlock includes
schedulability analysis plus a local consistency check. By
iterating the schedulability analysis, one can refine the
constraints in the behavioral interface so that to indicate
the minimum requirements, e.g., the smallest deadlines
possible and the loosest location invariants.

With such an automatic analysis process, it is easy
to study the effect of different scheduling strategies on
schedulability. Figure 3 shows a possible scenario in
which ‘First Come First Served (FCFS)’ strategy for a
MutEx may cause starvation, and as a result makes MutEx
non-schedulable. The figure depicts the time line of a
MutEx and its queue. The queue contents are shown only
at context switch, i.e., when a method is finished and
a new method is taken from queue head to start its
execution (shown by a diamond on the time line).

reqR

reqL

release reqRpermitR

reqL

initial reqL release

reqR

reqL

reqR

reqL

Fig. 3. Postponing reqL infinitely when using FCFS

At the end of this scenario, executing release and reqR
would result in a permitR for a second time, ignoring
reqL. This can continue infinitely (and is allowed in the
behavioral interface). New instances of reqL (modeled as
delegation) inherit the remaining deadline of the original
reqL, which shrinks continuously. After postponing reqL
for enough number of times, its deadline is missed,
resulting in nonschedulability of MutEx. Using an Earliest
Deadline First (EDF) strategy would favor old reqL to
new reqR in this scenario. In addition, the EDF scheduler
must give a higher priority to ‘release’ as opposed to
‘request’. With such a scheduler MutEx is schedulable.

6.4 Using the Schedulable MutEx
Individually schedulable objects can be used in making
different actual systems. However, it is necessary to
make sure that each object is used correctly, i.e., accord-
ing to its behavioral interface. This can be tested by the
compatibility check. Once compatibility is ensured, we
can immediately deduce the schedulability of all objects
in the system.

In this section, we use the schedulable MutEx in the
context of dining philosophers and bridge controller
systems. The schedulability of these systems (which is
deduced from compatibility) implies starvation freedom
(because a schedulable MutEx guarantees granting re-
quests in time).

6.4.1 Naive Philosophers
In this case, every philosopher tries to take the right fork
and then the left fork. We use MutEx as fork. The model of
a philosopher is given in appendix. We test compatibility
for a system composed of four philosophers and four
forks. It is well known that this naive binding results in
deadlock and starvation. We can see that this naive bind-
ing is in fact incompatible with respect to the behavioral
interface of MutEx.

We choose the deadlock property as the starting point
for compatibility check. We get a trace and see that the
test case fails.

6.4.2 A Reverse Philosopher
In this case, we let one of the philosophers take the left
fork first (while others pick up the right fork first). This
reverse philosopher has a different behavioral interface
as it sends reqL before reqR. In this case, the product of
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FAIL

PASS deadline < 7

deadline < 10

deadline < 16deadline < 16

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]

! (m == release && r == 5 && s == 0) &&
! (m == permitL && r == 4 && s == 2) &&
s != r invoke[m][r][s]?

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]

! (m == permitR && r == 3 && s == 2) &&
! (m == permitL && r == 4 && s == 2) &&
s != r invoke[m][r][s]?

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]
! (m == reqL      && r == 5 && s == 1) &&
! (m == permitR && r == 5 && s == 0) &&
s != r
invoke[m][r][s]?

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]
! (m == reqR && r == 5 && s == 0) &&
! (m == reqL && r == 5 && s == 1) &&
s != r
invoke[m][r][s]?

deadline >= 10
invoke[permitR][0][5]!

x1 >= MAX_REL

deadline >= 7
invoke[release][2][3]!

x1 < MAX_REL
invoke[release][5][0]?

invoke[permitR][3][2]?
x1 = 0

deadline >= 16
invoke[reqL][2][4]!

invoke[reqL][5][1]?deadline >= 16
invoke[reqR][2][3]!

invoke[reqR][5][0]?

Fig. 4. Test case for bridge controller in UPPAAL

the behavioral interfaces is deadlock free. We select a
trace in which every philosopher can perform a cycle
of getting both forks until it releases them. Interest-
ingly, this test also fails because it takes too long (i.e.,
greater than MAX_REL) to release one of the forks (which
is somehow due to the asymmetry in the model). By
increasing MAX_REL (and accordingly the deadlines) in
the behavioral interface of MutEx (such that it is still
schedulable), this model of philosophers can become
compatible. However, increasing the deadlines implies
waiting longer before a request is granted.

6.4.3 Late Philosophers

Another solution to deadlock in dining philosophers is to
make half of the philosophers start later than the others.
This model passes the compatibility test the previous
model failed (without increasing the deadlines). This
implies the schedulability of all objects in the context
of this system. A consequence is that one can deduce
an upper bound since a philosopher starts a round to
get two forks until releases them. This can be done
because we know that the requests are granted within
the specified deadline.

6.4.4 Bridge Controller

There is a bridge which can allow at most one train to
pass at a time. Therefore, the trains on the other side
must wait until the bridge is free. The trains arriving on
the left side of the bridge send reqL and the trains on
the right send reqR. The model of a train (arriving on
the left side of the bridge) is given in appendix. A train
is different from philosophers as every train needs only
one MutEx. We use a test case in which a train can take
and release the MutEx representing the bridge.

Figure 4 shows the UPPAAL implementation of this
test case. Notice that in this figure, the inconclusive loca-
tion is not explicitly modeled, because we are basically
interested in checking the reachability of FAIL or PASS
state. If neither is reachable, then the test is inconclusive.
To capture the disallowed actions at each location, we
use the select feature of UPPAAL to be able to choose

any action; in the guard, we exempt the allowed com-
munication actions (by specifying the message, sender
and receiver) and self calls (s != r). Notice that in this
example, none of the transitions on behavioral interfaces
are guarded. The system passes this test case.

7 CONCLUSIONS
One of our main contributions is the integration of
the abstract formalism of timed automata into a high-
level object based modeling language. This integration
requires a real-time extension of the object model and
the modeling of asynchronous reception of messages as
(dynamic) task generation. The high level synthetic view
of each real time object is given it its behavioral interface.
Furthermore, application-specific scheduling policies are
specified at the modeling level.

Schedulability of each class is analyzed individually
with respect to its behavioral interface. This is made
feasible by putting a finite bound on the task queue
such that the schedulability results hold for any queue
length. We can then test a system of communicating
objects to make sure objects are used as expected. This
compatibility further implies the schedulability of the
whole system.

We are working on generalizing the analyses to lan-
guages with concurrent objects involving more complex
synchronization schemes.
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APPENDIX

Behavioral Interface Specification

invoke[release][forkR][self]?

invoke[release][forkL][self]?

invoke[permitL][self][forkR] !
deadline=10

invoke[reqL][forkR][self]?

invoke[permitR][self][forkL] !
deadline=10

invoke[reqR][forkL][self]?

Method: initial Method: arrive Method: permitR Method: permitL
x <= 4

start[initial][self] ?
x = 0 finish[self] !

x == 4
invoke[arrive][self][self] !

deadline = 10

x <= 7

finish[self] !
start[arrive][self] ?

x = 0

x == 7
invoke[reqR][forkL][self]!

deadline = 20

x <= 1

finish[self] !start[permitR][self] ?
x = 0

x == 1
invoke[reqL][forkR][self]!

deadline = 20

x <= 1

finish[self] !start[permitL][self] ?
x = 0

x == 1
delegate[eat][self] !

Method: eat Method: leave
x <= 1

finish[self] !start[eat][self] ?
x = 0

x == 1
delegate[leave][self] !

x <= 3x <= 2x <= 1

finish[self] !start[leave][self] ?
x = 0

x == 3
invoke[arrive][self][self] !

deadline = 10

x == 2
invoke[release][forkR][self]!

deadline = 10

x == 1
invoke[release][forkL][self]!

deadline = 10

Fig. 5. The timed specification of the Philosopher class

Method: initial Method: arrive Method: permitR Method: pass
x <= 4

start[initial][self] ?
x = 0 finish[self] !

x == 4
invoke[arrive][self][self] !

deadline = 10

x <= 1

finish[self] !start[arrive][self] ?
x = 0

x == 1
invoke[reqR][bridge][self]!

deadline = 30

x <= 2

finish[self] !
start[permitR][self] ?

x = 0

x == 2
delegate[pass][self] !

x <= 2

finish[self] !start[pass][self] ?
x = 0

x == 2
delegate[leave][self] !

Method: leave Behavioral Interface Specification

x <= 2x <= 1 x == 1
invoke[release][bridge][self]!

finish[self] !start[leave][self] ?
x = 0

x == 2
invoke[arrive][self][self] !

deadline = 10 invoke[release][bridge][self]?

invoke[permitR][self][bridge] !
deadline=10

invoke[reqR][bridge][self]?

Fig. 6. The timed specification of the Train class


