
Synchronization of Periodic Clocks ∗

Albert Cohen1 Marc Duranton2 Christine Eisenbeis 1

Claire Pagetti1 Florence Plateau3 Marc Pouzet3

1 ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud University, France
2 Philips Research Laboratories, Eindhoven, The Netherlands 3 LRI, Paris-Sud University, France

Abstract
We propose a programming model dedicated to real-time video-

streaming applications for embedded media devices, including high-
definition TVs. This model is built on the synchronous programming
model extended with domain-specific knowledge — periodic evolu-
tion of streams — to allow correct-by-construction properties of the
application to be proven by the compiler. These properties include
buffer requirements and delays between input and output streams.

Such properties are tedious to analyze by hand, due to the combina-
torics of video filters, multiple data rates and formats. We show how
to extend a core synchronous data-flow language with a notion of pe-
riodic clocks, and to design a relaxed clock calculus (a type system
for clocks) to allow non strictly synchronous processes to be com-
posed. This relaxation is associated with a subtyping rule in the clock
calculus. Delay, buffer insertion and control code for these buffers
are automatically inferred from the clock types through a systematic
program transformation.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time

and embedded systems; D.3.2 [Language classifications]: Data-flow
languages

General Terms
Performance, Reliability, Languages, Theory

Keywords
High-performance video streaming. Synchronous language. Cor-

rectness by construction. Type inference and sub-typing.

1 Introduction
The rapid evolution of embedded system technology, favored by

Moore’s law and standards, is increasingly blurring the barriers be-
tween the design of safety-critical, real-time and high-performance
systems. A good example is the domain of high-end video appli-
cations, where tera-operations per second (on pixel components) in
hard real-time will be common in consumer devices in the midterm.
In this signal-processing domain, compute-intensive kernels used to
be mapped to specific fixed hardware (ASIC) for performance, cost,

∗This work is partially funded by the French “ACI Sécurité”
Alidecs and by an INRIA postdoctoral fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00

power and predictability reasons (real-time). Yet the combined in-
crease in mask costs and in the variability of supported algorithms
leads to a strong pressure towards programmable, domain-specific de-
signs, balancing the software and hardware shares.

General-purpose architectures and compilers are not suitable for the
design of real-time and high-performance (massively parallel) pro-
grammable system-on-chip [4]. Achieving a higher compute density
and still preserving programmability is a challenge for the choice of
an appropriate architecture, programming language and compiler.

Interestingly, the synchronous execution paradigm [1] allows for
the generation of custom, parallel hardware and software systems with
correct-by-construction structural properties, including real-time and
resource constraints. This model met industrial success for safety-
critical, reactive systems, through languages like SIGNAL, LUSTRE
(SCADE), ESTEREL. It is thus natural to investigate the applicabil-
ity of such languages for the design of warrantable high-performance
systems like high-end video applications.

Due to lack of space, technical details have been omitted. They can
be found in the associated research report [5].

2 Motivation
Our main motivating applications are video stream processing for

high-definition TV [9]. These algorithms deal with picture scal-
ing, picture composition (picture-in-picture), and quality enhance-
ment (including picture rate up-conversions; converting the frame rate
of the displayed video, de-interlacing for progressive screen such as
flat panel displays, sharpness improvement, color enhancement, etc.).
Processing requires considerable resources, and involves a variety of
pipelined algorithms on multidimensional streams.

stripe

frame

hf

HD input

vf

SD output

vf working sethf working set

reorder

Figure 1. The downscaler

These applications involve a set of scalers resize images in real-
time. Our running example is a classical downscaler [4], depicted in
Figure 1. It converts a high definition (HD) video signal, 1920×1080
pixels per frame, into a standard definition (SD) output for TV screen,
that is 720×480:1 A horizontal filter — hf — reduces the number of
pixels from 1920 down to 720 per line by interpolating packets of 6
pixels. A reordering module — reorder — stores 6 lines of 720 pixels.
A vertical filter — vf — reduces the number of lines in a frame from
1080 downto 480 by interpolating packets of 6 pixels.

The processing of a given frame involves a constant number of op-
erations on this frame only. The embedded system designer is looking
for a programming language which statically guarantees

1Here we only consider the active pixels for the ATSC or BS-
Digital High Definition standards.



1. a proof that, according to worst-case execution time hypotheses,
the frame and pixel rate will be sustained;

2. an evaluation of the delay introduced by the downscaler before
the downstream video processing chain starts receiving pixels;

3. a proof that the system has bounded memory requirements;
4. an evaluation of all memory requirements, including data within

all processes and communication buffers.
We will show that, although they do satisfy the four preceding re-

quirements, existing synchronous languages make the implementa-
tion of the downscaler tedious and error-prone.

2.1 The Need to Capture Periodic Execution
Technically, the scaling algorithm produces its t-th output (ot ) by

interpolating 6 consecutive pixels (p j) weighted by coefficients given
in a predetermined matrix (example of a 64 phases 6-taps polyphase
filter [4]): ot = ∑5

k=0 pt×1920/720+k × coef(k,t mod 64).
Such filtering functions can easilly be programmed in a syn-

chronous data-flow language. Here is the LUCID SYNCHRONE code.
let clock c = ok where

rec cnt = 1 fby (if (cnt = 8) then 1 else cnt + 1)
and ok = (cnt = 1) or (cnt = 3) or (cnt = 6)

let node hf p = o where
rec o2 = 0 fby p and o3 = 0 fby o2 and o4 = 0 fby o3
and o5 = 0 fby o4 and o6 = 0 fby o5
and o = f(p,o2,o3,o4,o5,o6) when c

val hf : int => int
val hf :: ’a -> ’a on c

At every clock tick, the hf function computes the interpolation of
six consecutive pixels of the input p (0 fby p stands the previous
value of p initialised with value 0). The implementation of f is out
of the scope of this paper; we will assume it sums its 6 arguments.
The horizontal filter must match the production of 3 pixels for 8 input
pixels. Moreover, the signal processing algorithm defines precisely
the time when every pixel is emitted: the t-th output appears at the
t × 1920/720-th input. It can be factored in a periodic behavior of
size 8. A solution is to introduce an auxiliary boolean stream c used
as a clock to sample the output of the horizontal filter. The let/clock
construction identifies syntactically these particular boolean streams.
Here is a possible execution diagram.

c true f alse true f alse f alse true f alse
p 3 4 7 5 6 10 12
o2 0 3 4 7 5 6 10
o 3 14 38

In the synchronous data-flow model, each variable/expression is char-
acterized both by its stream of values and by its clock, relative to the
global clock, called base. The clock of any expression e is an infi-
nite boolean stream where f alse stands for the absence and true for
the presence. A synchronous process transforms an input clock into
an output clock. This transformation is encoded in the process clock
signature or clock type. Clocks signatures are often relative to some
clock variables. E.g., the clock signature of hf is ∀α.α → α on c
(printed ’a -> ’a on c) meaning that for any clock α, if input p has
clock α, then the output is on a subclock α on c defined by the instant
where the boolean condition c is true.

In synchronous languages, clock conditions such as c can be ar-
bitrarily complex boolean expressions, meaning that compilers make
no hypothesis on them. Yet the video applications we consider have a
periodic behavior; thus a first simplification consists in enhancing the
syntax and semantics with the notion of periodic clocks.

2.2 The Need for a Relaxed Approach
Real-time constraints on the filters are deduced from the frame rate:

the input and output processes enforce that frames are sent and re-
ceived at 30Hz. This means that HD pixels arrive at 30 × 1920 ×
1080 = 62,208,000Hz — called the HD pixel clock — and SD pixels
at 30× 720× 480 = 10,368,000Hz — called the SD pixel clock —
i.e., 6 times slower. The designer would like to know that the delay
before seeing the first output pixel is actually 12000 cycles of the HD

pixel clock, i.e., 192.915µs, and that the minimal size of the buffer
between the vertical filter and output process is 880 pixels.

Synchronous languages typically offer such guarantees and static
evaluations by forcing the programmer to explicit the synchronous ex-
ecution of the application. Nevertheless, the use of any synchronous
language requires the designer to explicitly implement a synchronous
code to buffer the outgoing pixels at the proper output rate and noth-
ing helps him to compute automatically the values 12000 and 880.
Unfortunately, pixels are produced by the downscaler following a pe-
riodic but complex event clock. Forcing the programmer to provide
the synchronous buffer code is thus tedious and breaks modular com-
position. This scheme is even more complex if we include the real
pixel rate, including blanking periods [9].

This paper shows that the principles of synchronous data-flow lan-
guages can be relaxed in order to make the computation of process la-
tencies and buffer sizes automatic, using explicit periodic clocks. We
introduce the n-synchronous model allowing to compose non stricly
synchronous stream as soon as they can be implemented in the ordi-
nary 0-synchronous model with FIFO buffers of size at most n.

3 N-Synchronous Streams
We introduce the formal framework to reason about periodic clocks,

then apply this framework to the automatic resynchronization of n-
synchronous streams.

3.1 Ultimately Periodic Clocks
We consider infinite binary words, i.e., words of (0 + 1)ω, 0 stand-

ing for the boolean value false and 1 for the boolean value true. We
are mostly interested in a subset of the binary words, called infinite
ultimately periodic binary words or simply infinite periodic binary
words, defined by the following grammar:

w ::= u(v) u ::= ε | 0 | 1 | 0.u | 1.u v ::= 0 | 1 | 0.v | 1.v
where (v) = limn vn is the infinite repetition of period v, and u is a
prefix of w. We denote by Q2 the set of infinite periodic binary words;
this set coincide with the rational 2-adic numbers [13].

Let |w| denote the length of w. Let |w|1 denote the number of 1s in
w and |w|0 the number of 0s in w. Let w[n] denote the n-th letter of w
for n ∈ N and w[1..n] the prefix of length n of w. In the following we
will consider infinite periodic binary words with an infinite number of
1’s, i.e., with period (v) containing at least one 1.

There is an infinite number of representations for an infinite peri-
odic binary word: (0101) is equal to (01) and to 01(01). Fortunately,
there is a unique, shortest representation of the form u(v): the repre-
sentation with the shortest prefix and period.

Let [w]p denote the position of the p-th 1 in w. We have [1.w]1 = 1,
[1.w]p = [w]p−1 + 1 if p > 1, and [0.w]p = [w]p + 1. Finally, let us
define the precedence relation � defined by

w1 � w2 ⇐⇒ ∀p ≥ 1, [w1]p ≤ [w2]p.
E.g., (10) � (01) � 0(01) � (001). This relation is a partial order
on infinite binary words. It abstracts the causality relation on stream
computations, e.g., to check that outputs are produced before con-
sumers request them as inputs.

We can also define the upper bound wtw′ and lower bound wuw′

of two infinite periodic binary words with, for all p ≥ 1,
[wtw′]p = max([w]p, [w

′]p) and [wuw′]p = min([w]p, [w
′]p).

E.g., 1(10) t (01) = (01) and 1(10) u (01) = 1(10); (1001) u
(0110) = (10) and (1001)t (0110) = (01).

Finally, if w1 and w2 are two infinite periodic binary words, the
equality can be decided in quadratic time. Moreover, the pointwise
application of boolean operations (e.g., or, not, &) to infinite periodic
binary words leads to an infinite periodic binary word. See [5] for
further results and details.

Using infinite periodic binary words, we now introduce periodic
clocks. A periodic clock is defined by the following grammar:

ck ::= base | α | ck on w where w ∈ Q2
base denotes the base clock and is a shortcut for the infinite periodic
binary word (1), α denotes a variable, ck on w denotes a sub-sampled



clock of ck, where w is itself set on clock ck. E.g., (01) on (101) =
(010101) on (101) = (010001).

ck 0 1 0 1 0 1 0 1 0 1 ... (01)
w 1 0 1 1 0 ... (101)
ck on w 0 1 0 0 0 1 0 1 0 0 ... (010001)

Formally, on is inductively defined as follows: 0.w on w′ =
0. (w on w′), 1.w on 0.w′ = 0. (w on w′) and finally 1.w on 1.w′ =
1. (w on w′)
PROPOSITION 1. Given w and w′ two infinite periodic binary words,
w on w′ is also an infinite periodic binary word, satisfying the equa-
tion [w on w′]p = [w′][w]p

for all p ≥ 1.
PROPOSITION 2 (ON-ASSOCIATIVITY). Let w1, w2 and w3 be
three infinite periodic binary words.

Then (w1 on w2) on w3 = w1 on (w2 on w3).

3.2 A Synchronous Data-Flow Kernel
We introduce a core data-flow language on infinite streams. Its syn-

tax derives from [6]. Expressions (e) are made of constant streams (i),
variables (x), pairs (e,e), local definitions of functions or stream vari-
ables (e where x = e), applications (e(e)), initialized delays (e fby e)
and the following sampling functions: e when pe is the sampled
stream of e on the periodic clock given by the value of pe, and merge
is the combination operator of complementary streams (with opposite
periodic clocks) in order to form a longer stream; fst and snd are the
classical access functions. e1 at e2 is used to constraint the clock of
e1 to be on the clock of e2.

A program is made of a sequence of declarations of stream func-
tions (let node x(x) = e). Periodic clocks can be combined with
boolean operators. Note that pe expression are static expressions
which can be simplified at compile time into the normal form u(v)
of infinite periodic binary words.

e ::= x | i | (e,e) | e where x = e | e(e) | e fby e
| e when pe | merge pe e e | fst e | snd e | e at e

d ::= let node x(x) = e | d;d
pe ::= w | pe on pe | not pe | pe or pe | pe & pe

We can easily program the downscaler in this language kernel. The
main function consists in composing the various filtering function.
The notation o at (i when (100000)) given by the programmer is
a constraint stating that the output pixel o must be produced at some
clock α on (100000), thus 6 times slower that the input clock α.
let node hf p = o where

rec (...)
and o = f(p,o2,o3,o4,o5,o6) when (10100100)

let node main i = o at (i when (100000)) where rec t = hf i
and (i1,i2,i3,i4,i5,i6) = reorder t
and o = vf(i1,i2,i3,i4,i5,i6)

The denotational and synchronous (operational) semantics of our
core data-flow language as well as its clock calculus are built on clas-
sical theory of synchronous languages. The clock calculus can be
expressed as a typing problem by asserting judgements of the form
H ` e : ct, meaning that “expression e has clock type ct in the clock
environment H”. This predicate is defined precisely in [5]. Let us
illustrate how it works on the downscaler.

1. Suppose that the input i has some clock type α1.
2. The horizontal filter has the following signature, correspond-

ing to the effective synchronous implementation of the process:
α2 → α2 on (10100100).

3. Between the horizontal filter and the vertical filter, the reorder
process stores the 5 previous lines in a sliding window of size 5,
but has no impact on the clock besides delaying the output until
it receives 5 full lines, i.e., 5×720 = 3600 cycles. We shall give
to the buffer operator the clock signature α3 → α3 on 03600(1).

4. The vertical filter produces 4 pixels from 9 pixels repeatedly
across the 720 pixels of a stripe (6 lines). Its signature (corre-
sponding to the synchronous implementation of the process) is:
α4 → α4 on (172007201720072007201720072007201720) To sim-

plify the presentation, we will assume in manual computations
that the unit of computation of the vertical filter is a line and
not a pixel, hence replace 720 by 1 in the previous signature,
yielding: α4 → α4 on (101001001).

5. Finally, the designer has required (with the at construction) that
if the input i is on clock α1, then the clock of o should be
α1 on (100000) — the 6 times sub-sampled input clock — tol-
erating an additional delay that must automatically be deduced
from the clock calculus.

The composition yield the following type constraints: α1 = α2,
α3 = α2 on (10100100) and α4 = α3 on 03600(1).

Resolution of these equations takes the form of a unification pro-
cedure. Unification in classical clock calculi is syntactical [7]: two
clock types ck on c and ck′ on c′ can be unified when c = c′ and
ck and ck′ can be unified. In doing this, the sampling construction
on is not interpreted (property 2 in the general case if nothing is
know about c). In our case, a syntactic unification of clock types
would unnecessarily reject many synchronous programs with peri-
odic clocks. We propose a semi-interpreted unification that takes into
account the semantics of periodic clocks. More precisely, the uni-
fication of two clock types ck and ck′ has to be aware of the prop-
erties of the sampling operator on between infinite periodic binary
words. Details and correctness proofs can be found in [5]. Back
to the downscaler, the unification procedure boils down to a simple
composition: ((α1 on (10100100)) on 03600(1)) on (101001001) =
α1 on (100001000000010000000100) . Yet the result is not equal to
the clock constraint (100000). The downscaler is thus rejected in a
pure periodic synchronous calculus. This is the reason why we in-
troduce the relaxed notion of synchronizability and this is the second
contribution of this paper.

The downscaler example highlights a fundamental limitation of the
synchronous model for programming video streaming applications.
The designer often has good reasons to apply a synchronous opera-
tor (e.g., the addition) on two channels with different clocks, or to
compose two synchronous processes whose signatures do not match,
or to impose a particular clock which does not match any solution
of the constraints equations. Indeed, in many cases, the conflicting
clocks may be “almost identical”, i.e., they have the same asymptotic
production rate. This advocates for a more relaxed interpretation of
synchrony. Our main contribution is a clock calculus to accept the
composition of clocks which are “almost equal”.
DEFINITION 1. Consider two infinite periodic binary words w =
u(v) and w′ = u′(v′). w and w′ are synchronizable — denoted by
w ./ w′ — if and only if |v|1/|v′|1 = |v|/|v′|.
In other words, w ./ w′ means w and w′ have the same number of 1s
in (v) and (v′), hence the same asymptotic production rate. It also
means the n-th 1 of w is at a bounded distance from the n-th 1 of w′.
It entails that a process clocked at w can communicate with a process
clocked at w′ using a bounded synchronous buffer, possibly up to a
bounded delay, and conversely. E.g, 1(10) and (01) are synchroniz-
able, as well as (1001) and (0110). However, (010) and (10) are not
synchronizable. Technically, the relaxed clock calculus is defined by
extending a basic clock calculus defined as a type system relying on
clock unification [7] and extended with:

1. a sub-typing rule (SUB) to permit the automatic insertion of a
finite buffer in order to synchronize clocks;

2. a constraint rule (CTR) rule to enforce clock constraints up to the
automatic insertion of a bounded delay.

Let us define the sub-type relation <: such that:
w1 <: w2 ⇐⇒ w1 ./ w2 ∧w1 � w2.

This is a partial order. Relation <: defines a sub-typing rule (SUB) on
clock stream types:

H ` e : ck on w1 w1 <: w2(SUB)

H ` e : ck on w2

This is a standard subsumption rule, and all classical results on sub-
typing apply [12] because of the lattice structure of <:.



The clock calculus defined in the previous section rejects expres-
sions such as x+y when the clocks of x and y cannot be unified. With
rule (SUB), we can relax this calculus to allow an expression e with
clock ck to be used “as if it had” clock ck′ as soon as ck and ck′ are
synchronizable.

Considering the downscaler example, this sub-typing rule (alone)
does not solve the clock conflict: the imposed clock first needs to be
delayed to avoid starvation of the output process. This is the purpose
of the following rule. Clock constraints may be imposed of certain
expressions with the following syb-typing rule:

H ` e1 : a on w1 H ` e2 : a on w2 w1 <: 0dw2(CTR)

H ` e1 at e2 : a on 0dw2

Each time the (CTR) rule is applied, the resolution algorithm consists
in computing a possible value of the delay d. This algorithm is syntax
directed, and always chooses to minimize delay insertion. If no delay
is needed, d = 0 is the chosen solution. In general, the algorithm
chooses the minimal value for d.
PROPOSITION 3. Consider two infinite periodic binary words w and
w′. The delay to synchronize w with an imposed infinite periodic bi-
nary word w′ can be automatically computed by the formula
delay(w,w′) = max(maxp([w]p − [w′]p),0)
For the simplified downscaler, the minimal delay to resynchronize the
vertical filter with the output process is 09603, since 9603 (clock cy-
cles) is the minimal value of d such that
09600(100001000000010000000100) � 0d(100000). For the real
downscaler (with fully developed vertical filter signature), we auto-
matically computed that the minimal delay was 12000 to permit com-
munication with the SD output.

4 Code Generation and Buffer Insertion
Each time the (SUB) rule is applied, the resolution algorithm com-

putes the minimal synchronizable clock (according to partial order
�). Given infinite periodic binary words w and w′, the minimal syn-
chronizable infinite periodic binary word is wtw′.
PROPOSITION 4. Consider two synchronizable infinite periodic bi-
nary words w and w′. The minimal buffer to allow communication
from w to wtw′ is of size

size(w,wtw′) = max(max
p,q

({q− p | [wtw′]p ≥ [w]q}),0).

Communication from w to wtw′ is called n-synchronous.
This is a lower bound on the minimal size, since n is the maximal
number of pending writes which appear before their matching reads.
It is also an actual minimal size, since it is possible to implement a
size n buffer with n registers.

For the simplified downscaler, buffer size n is equal to 1, since clock
09600(100001000000010000000100) may at most take one advanced
tick with respect to clock 09603(100000). For the real downscaler, we
automatically computed n = 880.

Rule (SUB) tells where a buffer is necessary, to synchronize a pro-
ducer and a consumer. The size of this buffer can be computed
statically, thanks to the � relation. Such a buffer being itself a
synchronous program (yet accepted by the original clock calculus),
this means that the whole program can be transformed into a 0-
synchronous program.

5 Related Works
There are a number of approaches for the specification and design

of hardware/software systems. Most of them are graphical tools based
on process networks. Kahn process networks (KPN) [10] is a fun-
damental one, but it models only functional properties, as opposed
to structural properties. KPN are used in a number of tools such as
Yapi [8] or the Cosy project [2]; such tools still requires expertise in
different domains and there is no universal language that combines
functional and structural features in a single framework.

Ptolemy [3] is a rich platform with simulation and analysis tools
for the design of embedded streaming systems: it provides the syn-
chronous data-flow (SDF) model of computation. Unlike synchronous

languages, SDF graphs are not explicitly clocked: synchrony is a con-
sequence of local balance equations on periodic execution schemes.
The SDF model is convenient for the automatic derivation of timing
properties [11] but the lack of clocks weakens its amenability for for-
mal reasoning and correct-by-construction generation of synchronous
code, with respect to synchronous languages [1].

6 Conclusion and Perspectives
We proposed an extension of the classical synchronous model to

implement correct-by-construction, high-performance streaming ap-
plications. Our model addresses the automatic synthesis of communi-
cations between processes that are not strictly synchronous. In this
model, we show that latencies and buffer requirements can be in-
ferred automatically. For this purpose, we identified a class of pe-
riodic clocks which proved useful in the context of video processing
algorithms. We extend a core data-flow model with this notion of peri-
odic clocks and with a relaxed clock calculus to compose synchronous
processes. An implementation is under way and was applied to a clas-
sical video downscaler example.

We are working on extending the synchronous data-flow language
LUCID SYNCHRONE with these concepts and proving completeness
of the type inference. This work paves the way for numerous ex-
tensions. In particular, we would like to define an algebraic frame-
work for n-synchronous programs based on 2-adic numbers, in part to
benefit from efficient algorithms on rational numbers. We also wish
to study the connection between retiming and delay insertion, as a
means to express architecture-aware optimizations. Finally, a number
of applications deal with “jittering” or “bursty” streams that are not
strictly periodic; an extension towards more expressive clocks would
be beneficial.

7 References
[1] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and

R. de Simone. The Synchronous Languages Twelve Years Later. Pro-
ceedings of the IEEE, 91(1):64–83, 2003.

[2] J.-Y. Brunel, W. M. Kruijtzer, H. J. H. N. Kenter, F. Pétrot, L. Pasquier,
E. A. de Kock, and W. J. M. Smits. Cosy communication IP’s. In 37th
Design Automation Conference (DAC2000), pages 406–409, Los Ange-
les, CA, June 2000.

[3] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A frame-
work for simulating and prototyping heterogenous systems. Int. Journal
in Computer Simulation, 4(2):155–182, 1994.

[4] Z.S. Chamski, M. Duranton, A. Cohen, C. Eisenbeis, P. Feautrier, and
D. Genius. Application-domain-driven system design for pervasive video
processing. Ambient intelligence: impact on embedded system design,
pages 251–270, 2003.

[5] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, and M. Pouzet. Syn-
chronizing periodic clocks in kahn networks. Technical Report 5603,
INRIA, June 2005. http://www.inria.fr/rrrt/rr-5603.html.

[6] J.-L. Colaço, A. Girault, G. Hamon, and M. Pouzet. Towards a Higher-
order Synchronous Data-flow Language. In EMSOFT’04, Pisa, Italy,
september 2004.

[7] J.-L. Colaço and M. Pouzet. Clocks as first class abstract types. In Rajeev
Alur and Insup Lee, editors, EMSOFT’03, volume 2855 of Lecture Notes
in Computer Science, pages 134–155. Springer, 2003.

[8] E. A. de Kock, G. Essink, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel,
W. M. Kruijtzer, P. Lieverse, and K. A. Vissers. Yapi: Application mod-
eling for signal processing systems. In 37th Design Automation Confer-
ence, Los Angeles, CA, june 2000. ACM Press.

[9] K. Goossens, G. Prakash, J. Röver, and A. P. Niranjan. Interconnect and
memory organization in SOCs for advanced set-top boxes and TV —
evolution, analysis, and trends. In Jari Nurmi, Hannu Tenhunen, Jouni
Isoaho, and Axel Jantsch, editors, Interconnect-Centric Design for Ad-
vanced SoC and NoC, chapter 15, pages 399–423. Kluwer, April 2004.

[10] G. Kahn. The semantics of a simple language for parallel program-
ming. In J. L. Rosenfeld, editor, Information processing, pages 471–475,
Stockholm, Sweden, Aug 1974. North Holland, Amsterdam.

[11] A.J.M. Moonen, M. Bekooij, and J. van Meerbergen. Timing analy-
sis model for network based multiprocessor systems. In proceedings of
ProRISC, 15th annual Workshop of Circuits, System and Signal Process-
ing, pages pages 91 – 99, Veldhoven, The Netherlands, November 2004.
ISBN: 90-73461-43-X.

[12] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[13] J. E. Vuillemin. On circuits and numbers. IEEE Trans. Comput.,

43(8):868–879, 1994.


