
Assisted verification of elementary functions using Gappa

Florent de Dinechin
LIP, projet Arénaire

ÉNS-Lyon
46 allée d’Italie,

69364 Lyon Cedex 07, France

Florent.de.Dinechin@ens-lyon.fr

Christoph Quirin Lauter
LIP, projet Arénaire

ÉNS-Lyon
46 allée d’Italie,

69364 Lyon Cedex 07, France

Christoph.Lauter@ens-lyon.fr

Guillaume Melquiond
LIP, projet Arénaire

ÉNS-Lyon
46 allée d’Italie,

69364 Lyon Cedex 07, France

Guillaume.Melquiond@ens-lyon.fr

ABSTRACT
The implementation of a correctly rounded or interval ele-
mentary function needs to be proven carefully in the very
last details. The proof requires a tight bound on the overall
error of the implementation with respect to the mathemat-
ical function. Such work is function specific, concerns tens
of lines of code for each function, and will usually be broken
by the smallest change to the code (e.g. for maintenance
or optimization purpose). Therefore, it is very tedious and
error-prone if done by hand. This article discusses the use
of the Gappa proof assistant in this context. Gappa has
two main advantages over previous approaches: Its input
format is very close to the actual C code to validate, and it
automates error evaluation and propagation using interval
arithmetic. Besides, it can be used to incrementally prove
complex mathematical properties pertaining to the C code.
Yet it does not require any specific knowledge about auto-
matic theorem proving, and thus is accessible to a wider
community. Moreover, Gappa may generate a formal proof
of the results that can be checked independently by a lower-
level proof assistant like Coq, hence providing an even higher
confidence in the certification of the numerical code.

1. INTRODUCTION
Computing floating-point elementary functions with cor-

rect rounding [12, 2] requires to be able to prove a bound on
the overall evaluation error. Moreover, this bound should be
tight, as a loose bound will have a negative impact on per-
formance [4]. Similarly, proving the containment property
for an interval elementary functions requires computing an
error bound on the evaluation [7]. This bound should also
be tight, as a looser bound means returning a larger interval
result, and hence useless interval bloat.

This article describes an approach to machine-checkable
proofs of such tight error bounds that is both interactive
and easy to manage, yet much safer than a hand-written
proof. The novelty here is the use of a tool that transforms a
high-level description of the proof into a machine-checkable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

version, in contrast to previous work by Harrison [6] who
directly described the proof of the implementation of an ex-
ponential function in all the low-level details. The Gappa
approach is more concise and more flexible in the case of
a subsequent change to the code. More importantly, it is
accessible to people outside the formal proof community.

An extended version of this article is available as LIP re-
search report 2005-43 [3]. Next section describes the chal-
lenges posed by automatic computation of tight error bounds.
Section 3 describes the Gappa tool. Sections 4 and 5 give
an overview on the techniques for proving an elementary
function using Gappa and give an extensive example of the
interactive construction of the proof.

2. COMPUTING A TIGHT ERROR BOUND
The evaluation of an elementary function is classically per-

formed by a polynomial approximation valid on a small in-
terval only. A range reduction step brings the input number
x into this small interval, and a reconstruction step builds
the final result out of the results of both previous steps. For
example, the logarithm may use as a range reduction the er-
rorless decomposition of x into its mantissa m and exponent
E: x = m · 2E . It may then evaluate the logarithm of the
mantissa as a polynomial, and the reconstruction consists in
evaluating log(x) ≈ log(m) + E · log(2).

When an intermediate precision larger than the native one
is needed, implementations use double-extended arithmetic
on processors that support it, or double-double arithmetic,
where a number is held as the unevaluated sum of two dou-
bles [5, 8].

The evaluation of an elementary function using such al-
gorithms entails two main sources of errors.

• Approximation errors (also called methodical errors),
such as the error of approximating a function with a
polynomial. One may have a mathematical bound for
them (given by a Taylor formula for instance), or one
may have to compute such a bound using numerics (for
minimax polynomials for instance).

• Rounding errors, produced by most floating-point op-
erations of the code.

Many floating-point operations are exact, and the expe-
rienced author of floating-point code will try to use them.
Examples include multiplication by a power of two, subtrac-
tion of numbers of similar magnitude thanks to Sterbenz’
Lemma, exact addition and exact multiplication algorithms

(returning a double-double), multiplication of a small inte-
ger by a floating-point number whose mantissa ends with
enough zeroes (used in Cody-Waite range reduction [11]),
etc.

However, an optimized elementary function implementa-
tion will stack approximation over approximation to avoid
computing more accurately than strictly needed. It then
takes considerable discipline to define properly what is the
error of what with respect to what.

Thus, the difficulty of evaluating a tight bound on an el-
ementary function implementation is to combine all these
errors without forgetting any of them, and without using
overly pessimistic bounds when combining several sources
of errors. The typical trade-off here will be that a tight
bound requires considerable more work than a loose bound
(and its proof might inspire considerably less confidence).

As an illustration, proofs written for version of the crlibm
project1 up to version 0.8 are typically composed of several
pages of paper proof and several pages of supporting Maple
for a few lines of code. This provides an excellent docu-
mentation and helps maintaining the code, but experience
has consistently shown that such proofs are extremely error-
prone. Implementing the error computation in Maple was
a first step towards the automation of this process, but if
it helps avoiding computation mistakes, it does not prevent
methodological mistakes. Gappa was designed in order to
fill this void.

3. THE GAPPA TOOL
Gappa2 is a tool that extends the interval arithmetic para-

digm to the field of numerical code certification [1]. Basi-
cally, Gappa’s purpose can be summarized with the example
of this logical property: “x+1 ∈ [2, 3] ⇒ x ∈ [?, ?]”. The in-
terrogation marks mean that the interval is not defined and
it will be up to the tool to find a range for the expression x
such that the property holds. Gappa works on mathemati-
cal expressions on real numbers and will find [1, 2]. By using
interval arithmetic to evaluate this range, Gappa can easily
transform its computations in a formal proof of the whole
property. This proof is completely independent from Gappa
and its validity does not depend on Gappa’s own validity.

Gappa was initially designed to compute the range of
floating-point variables in a program and the rounding error
they suffer from. Unfortunately this approach was exces-
sively limiting and prevented certifying more complex nu-
merical codes. Gappa was then modified so that it could
try to bound any mathematical expressions on real numbers
and formally prove them [10]. Since the original purpose was
to certify floating-point applications, the system of round-
ing operators was introduced so that these mathematical
expressions can precisely express the floating-point values
of variables.

Gappa uses a base of theorems on real arithmetic and of
theorems on rounding operators, e.g. absolute and relative
errors of floating-point computations. It also uses a base of
theorems in order to rewrite mathematical expressions so as
to obtain tight intervals for logical properties that commonly
appear when certifying numerical code. This way of comput-
ing intervals was then fine for writing robust floating-point
geometric predicates, but still not good enough for certify-

1http://lipforge.ens-lyon.fr/www/crlibm/
2http://lipforge.ens-lyon.fr/www/gappa/

ing the optimized code of a correctly-rounded floating-point
elementary function.

Consequently, Gappa was modified so that the user could
provide additional rewriting rules to Gappa’s engine. This
was necessary because the tool is unable to guess the op-
timizations the developer did: truncated series, neglected
terms, multi-precision arithmetic, and so on. Section 5 will
show on the example of the logarithm that this enhancement
of Gappa’s engine was enough for it to handle the complexity
of elementary functions.

4. PROVING ELEMENTARY FUNCTIONS
USING GAPPA

As in every proof work, style is important when working
with Gappa: in a machine-checked proof, bad style will not
in principle endanger the validity of the proof, but it may
prevent its author to get to the end. In the crlibm frame-
work, it may hinder acceptance of machine-checked proofs
among new developers.

This section is an attempt to describe the approach used
in crlibm. It may be inadequate for applications other than
elementary functions, and even for elementary functions it
might be improved further. It consists in three steps, which
correspond to the three sections of a Gappa input file.

• First, the C code is translated into Gappa equations,
in a systematic way that ensures that the Gappa proof
will indeed prove some property of this program (and
not of some other similar program). Then equations
are added describing what the program is supposed to
implement. Usually, these equations are also in corre-
spondence with the code.

• Then, the property to prove is added. It is usually in
the form hypotheses -> properties, where the hy-
potheses are known bounds on the inputs, or contri-
bution to the error determined outside Gappa, like the
approximation errors.

• Finally, one has to add hints which indicate to the
Gappa engine how to unroll the proof, or make explicit
the implicit knowledge one has about the code. This
last part is built incrementally.

The following details these three steps.

4.1 Notation conventions
Before starting, one has to remember that for Gappa there

is only one type of variables, which may hold arbitrary inter-
vals. In the proof of an elementary function, we use the fol-
lowing conventions: Gappa variables behaving exactly like
the C variables have exactly the same name, which should
begin with a lower case letter. Variables for mathematically
ideal terms begin with a capital “M”. All the other interme-
diate variables will begin with capital letters. In addition,
related variables should have related and, wherever possible,
explicit names.

These conventions are best explained with an example:
Consider the following code bit, extracted from the proof of
Section 5.

Mul12 (&zhSquareh , &zhSquarel , zh, zh);
zhCube = zh * zhSquareh;

It inputs a variable zh, computes exactly its square as a
double-double zhSquareh+ zhSquarel using Dekker’s algo-
rithm (here implemented as a call to the Mul12 function),
then computes an approximation to its cube. To analyse this
code, we will need at least one variable MZCube, which is the
mathematical value that zhCube intends to approximate in
this code, and one variable MZSquare.

Now the notion of “mathematically ideal” may be quite
subtle. In our example, zh is itself an approximation to
an ideally reduced argument, noted of course MZ. There-
fore, it should be clear that the equation defining MZSquare

is MZSquare = MZ * MZ and not MZSquare = zh * zh: Al-
though the squaring was exact in the code, it did not com-
pute the square of the exact reduced value.

Again, these are conventions and are part of our proof
style, not part of Gappa syntax: the capitalization will give
no information to the tool, and neither will the fact that
variables have related names.

Another useful convention will be to define variables for
absolute and relative errors beginning respectively with delta

and epsilon, as in the following example:

deltaZh = zh - MZ;
epsilonZhCube = (zhCube - MZCube) / MZCube;

This last convention makes the proofs much more readable
and eases the task of writing hints, especially when dealing
with relative errors.

4.2 Translating a FP program
If the C code is itself sufficiently simple and clean, this

step only consists in making explicit the rounding opera-
tions that are implicit in the C source code. The syntax
float<ieee 64,ne>(Expr) corresponds to a rounding to the
nearest double of Expr . For instance, if a and b are floating-
point variables, float<ieee 64,ne>(a+b) is the IEEE-754-
compliant addition with correct rounding. For the sake of
clarity, this rounding operator will now be written as the
shorter identifier float64ne.

Adding by hand all the rounding operators, however, would
be tedious and error-prone, and would make the Gappa syn-
tax so different from the C syntax that it would degrade
confidence and maintainability. Besides, one would have
to apply without error the rules (well specified by the C99
standard) governing implicit parentheses in a C expression.
For these reasons, Gappa has a syntax that instructs it to
perform this task automatically, illustrated by the following
example: The C line

q = c3 + zh * (c4 + zh * (c5 + zh * (c6 + zh *
c7)));

and the Gappa line

q float64ne= c3 + zh * (c4 + zh * (c5 + zh * (
c6 + zh * c7)));

define the same mathematical relation between their right-
hand side and left-hand side, under the conditions that all
the C variables are double-precision variables, that the Gappa
variables on the right-hand side imitate them (see the low-
ercase convention), and also, of course, that the compil-
er/OS/processor combination used to process the C code
respects the C99 and IEEE-754 standards and computes in
double-precision arithmetic.

All this means that for straight-line program segments
with mostly double-precision variables, a set of correspond-

ing Gappa definitions can be obtained straightforwardly by
just replacing the C = with Gappa float64ne=, a very safe
operation.

There are other syntaxes [3]. For example one may express
properties of double-double operators, for which a bound on
the relative error is known since Dekker [5, 9], but proven
outside Gappa.

4.3 Defining ideal values
The next operation to carry out is to define in Gappa

what the C code is supposed to implement. For instance,
using our previous conventions, the line for q was probably
evaluating the value of the same polynomial of the ideal MZ:

MQ = c3 + MZ * (c4 + MZ * (c5 + MZ * (c6 + MZ *
c7)));

We have kept the polynomial coefficients in lower case: The
polynomial thus defined nevertheless belongs to the set of
polynomial with real coefficients, and we know how to com-
pute in Maple a bound of its relative error with respect to
the function it approximates.

Another question is, how do we define the mathematical
function? Gappa has no builtin sine or logarithm. The
current approach can be described in English as: “log(1+Z)
is a value which, if Z is smaller 2−8, is within a relative
distance of 2−63 of our ideal polynomial”. In Gappa, this
translates to hypotheses in the property to prove (with the
Gappa syntax 1b-8 for 2−8):

Z in [-1b-8,1b-8] /\
(MP - MLog1pZ) / MLog1pZ in [-1b-63, 1b-63]

Here the interval of Z is defined by the range reduction,
and the 2−63 bound has to be computed outside Gappa (for
instance thanks to an infinite norm evaluated in Maple).
This is in principle a weakness of the proof, however we
take some safety margins, and on the considered intervals,
elementary functions are regular enough to trust Maple’s
infinite norm.

Then we may use the reconstruction associated with the
argument reduction used to define the mathematical func-
tion on the whole interval, as for the logarithm:

MLogx = MLog1pZ + E * MLog2;

4.4 Defining the property to prove
The theorem to prove is expressed as implications using

classical first-order logic, with some restrictions. In practice
we usually list a conjunction of hypotheses, the -> opera-
tor, and a conjunction of conclusions to prove. For a full
example, see next section.

4.5 Hints
The hint part reflects the work humans still must do in

order to prove the numerical properties of the code.
The hints have the following form:

Expr1 -> Expr2;

which is used to give the following information to Gappa:
“I believe for some reason that, should you need to compute
an interval for Expr1, you might get a tighter interval by
trying the mathematically equivalent Expr2”. This fuzzy
formulation is better explained by considering the following
examples.

1. The “some reason” in question will typically be that the
programmer knows that variables xh, MX and X are differ-
ent approximations of the same quantity, and furthermore
that xh is an approximation to X which is an approximation
to MX . Suppose that at some point Gappa has to compute
xh−MX , and even that it already has a good interval for xh

and a good interval for MX (the values will be quite similar
since xh approximates MX). In this case, standard interval
arithmetic will lead to a very coarse interval for xh −MX .

The adequate hint to give in this case is

xh - MX -> (xh - X) + (X - MX);

It will instruct Gappa to first compute intervals for xh −X
and X −MX (both of which will be small) and sum them
to get an interval for xh −MX (which will thus be tight as
well).

Note that if one defines delta* intermediate variables for
absolute errors, this hint will be equivalently written:

delta -> delta1 + delta2;

2. Relative errors can be manipulated similarly. Given
ε = x−MX

MX
, ε1 = x−X

X
, and ε2 = X−MX

MX
, the next hint may

be used. In particular it is needed for the integration of poly-
nomial approximation errors into the final error estimate.

epsilon -> epsilon1 + epsilon2
+ epsilon1 * epsilon2;

This is still a mathematical identity as one may check
easily by developing the definitions.

3. When x is an approximation of MX and a relative
error ε = x−MX

MX
is known by the tool, x can be rewritten

MX · (1+ ε). This kind of hint is useful in combination with
the following one.

4. When manipulating fractional terms such as Expr1
Expr2

where Expr1 and Expr2 are correlated (for example one ap-
proximating the other), the interval division fails to give
useful results if the interval for Expr2 comes close to 0.
In this case, one will try to write Expr1 = A · Expr3 and
Expr2 = A · Expr4, so that the interval on Expr4 does not
come close to 0 anymore. The following hint is then appro-
priate:

Expr1 / Expr2 -> Expr3 / Expr4;

This rewriting rule is only valid if A is not zero, so the case
A = 0 has to be handled separately.

All these hints are correct if both sides are mathemati-
cally equivalent. Gappa therefore checks this automatically.
If the test fails - which is rare - it emits a warning to the
user that he or she must review the hint by hand. Therefore,
writing even complex hints is very safe: one may not intro-
duce an error in the proof by writing a false hint without
getting a warning.

However, finding the right hint that Gappa needs could
be quite complex without completely mastering its theorem
database and the algorithms used by its engine. Fortunately,
a much simpler way is to build the proof incrementally and
question the tool by adding and removing intermediate goals
to prove, as the example in the following section shows.

5. EXTENDED EXAMPLE: A LOGARITHM
This section computes a relative error bound on the eval-

uation to a double-double of a polynomial approximating

log(1 + Z) where Z is a reduced argument. This computa-
tion is the core of the first step in crlibm’s current portable
implementation of the natural logarithm [4]. The argument
reduction used is errorless, but the reduced argument needs
to be stored on a double-double, so Z = zh + zl. The proof
that the argument reduction is exact is done by hand, and
the reconstruction introduces no new difficulty (it merely
consists in two successive double-double additions), so we
do not show it here for the sake of brevity. For a full de-
scription of this implementation, including the second step,
see [4].

5.1 Algorithm and C code
This polynomial evaluation inputs the double-double Z =

zh +zl, and should return a double-double approximation to
p(Z). Evaluating the whole polynomial using double-double
arithmetic would not be efficient: instead, the polynomial
approximating log(1 + Z) is written as follows:

p (Z) = Z − 1

2
· Z2 + Z3 · q (Z) (1)

and the respective terms are evaluated as follows: 1
2
· Z2 =

1
2
· (zh + zl)

2 is approximated by 1
2
· z2

h + zhzl, where z2
h is

computed exactly as a double-double. Z3 is approximated
by z3

h computed in double precision, q (Z) is a polynomial
with double-precision coefficients, and is approximated by
q(zh) so that it can be evaluated entirely in double.

The corresponding C code is given below.

1 q = c3 + zh * (c4 + zh * (c5 + zh * (c6 + zh *
c7)));

2 Mul12 (&zhSquareh , &zhSquarel , zh, zh);
3 zhCube = zh * zhSquareh;
4 polyUpper = zhCube * q;
5 zhSquareHalfh = zhSquareh * -0.5;
6 zhSquareHalfl = zhSquarel * -0.5;
7 zhzl = -1 * (zh * zl);
8 Add12(t1h , t1l , polyUpper , zhzl);
9 Add22 (&t2h , &t2l , zh , zl , zhSquareHalfh ,

zhSquareHalfl);
10 Add22 (&ph, &pl , t2h , t2l , t1h , t1l);

Here Add12 (also known as Fast2Sum) is a sequence com-
puting the exact sum of two doubles as a double-double.
Similarly, Mul12 computes the exact product of two dou-
bles as a double-double. Finally, the procedure called Add22

computes as a double-double the sum of two double-double
numbers with a relative error less than 2−103 [5, 9].

The code is a typical example of floating-point code writ-
ten for a target accuracy of about 2−62 (neglecting the lower
significant argument zl in all terms where it is not strictly
needed, for instance). It also expresses some parallelism
(line 1 and lines 2-3 can be evaluated concurrently). We
have established the proof of the error of this code step by
step as previously described [3].

5.2 Gappa error computation
Following the guidelines of Section 4, the C code can be

translated into Gappa syntax as follows:

1 zh = float64ne(Z);
2 zl = Z - zh;
3 q float64ne= c3 + zh * (c4 + zh * (c5 + zh * (

c6 + zh * c7)));
4 ZhSquarehl = zh * zh;
5 zhSquareh = float64ne(ZhSquarehl);
6 zhCube float64ne= zh * zhSquareh;
7 polyUpper float64ne= zhCube * q ;
8 ZhSquareHalfhl = -0.5 * ZhSquarehl;

9 zhzl = -1 * float64ne(zh * zl);
10 T1hl = polyUpper + zhzl;
11 T2hl = add_rel <103>(Z, ZhSquareHalfhl);
12 Phl = add_rel <103>(T2hl , T1hl);

Note that there is no rounding operator at line 8: we
know that a multiplication by −0.5 is exact in IEEE-754-
compliant arithmetic for the range of values we consider.
The same holds for the multiplication by −1, line 9.

The next step is to express in Gappa what this code is
intended to compute.

14 MQ = c3 + Z * (c4 + Z * (c5 + Z * (c6+Z*c7)));
15 MZSquare = Z * Z;
16 MZCube = Z * MZSquare;
17 MP = Z - 0.5* MZSquare + MZCube*MQ;
18 epsilon = (Phl - MLog1pZ) / MLog1pZ;
19 epsilonApproxPoly = (MP - MLog1pZ) / MLog1pZ;

Then we express the theorem to prove.

30 { (Z in [-1b-8,-1b -200] \/ Z in [1b-200,1b-8])
31 /\ |zl| in [1b-300 ,1]
32 /\ epsilonApproxPoly in [-1b-63,1b-63]
33 -> epsilon in [-1b-62,1b-62] }

Finally, some hints need to be written. This is the hardest
part of the proof work, as they express all the optimizations
and approximations the programmer has done when design-
ing this numerical code. Unfortunately, space prevents us
from showing in detail how they may be derived by inter-
acting with Gappa (see [3]). Merely four more hints were
needed for the given code.

The Gappa proof obtained is very concise: for our 10-line
C code sequence that consists of 13 native double operations
and 4 higher precision procedures, a Gappa file of about
100 lines is needed. Writing the Gappa file for the whole
logarithm function was a matter of a few hours.

The tool computes the bounds in a few seconds on a recent
machine and generates a formal proof for Coq of more than
4800 lines. If the proof had to be written in Coq by hand,
it would probably require weeks of tedious work. Besides,
most of this work would be lost if a part of the algorithm
had to be rewritten. A Gappa description does not suffer
from such a shortcoming: it can easily be adapted to a new
implementation of the algorithm.

6. CONCLUSION AND PERSPECTIVES
Validating tight error bounds on the low-level, optimized

floating-point code typical of elementary functions has al-
ways been a challenge, as many sources of errors cumulate
their effect. Gappa is a high-level proof assistant that is well
suited to this kind of proofs.

Using Gappa, it is easy to translate a part of a C program
into a mathematical description of the operations involved
with fair confidence that this translation is faithful. Express-
ing implicit mathematical knowledge one may have about
the code and its context is also easy. Gappa uses interval
arithmetic to manage the ranges and errors involved in nu-
merical code. It handles most of the decorrelation problems
automatically thanks to its built-in rewriting rules, and an
engine which explores the possible rewriting of expressions
to minimize the size of the intervals. If decorrelation re-
mains, Gappa allows one to provide new rewriting rules, but
checks them. All this is well founded on a library of theo-
rems which allow the obtained computation to be translated
to a proof checkable by a lower-level proof assistant such as

Coq. Finally, the tool can be questioned during the process
of building the proof so that this process may be conducted
interactively.

Therefore, it is possible to get quickly a fully validated
proof with good confidence that this proof indeed proves
properties of the initial code. Gappa is by no means auto-
matic: to apply it on a given piece of code requires exactly
the same knowledge and cleverness a paper proof would.
However, it requires much less work.

Gappa, at several stages of its development, has already
been used to prove error bounds for parts of the logarithm,
exponential, sine and tangent functions of the current crlibm
distribution (0.11beta). Although its development is not
over, the current version (0.5.4) is very stable and we may
safely consider generalizing the use of this tool in the future
developments of crlibm.

7. REFERENCES
[1] M. Daumas and G. Melquiond. Generating formally

certified bounds on values and round-off errors. In 6th
Conference on Real Numbers and Computers, pages
55–70, 2004.

[2] F. de Dinechin, A. Ershov, and N. Gast. Towards the
post-ultimate libm. In 17th Symposium on Computer
Arithmetic. IEEE Computer Society Press, June 2005.

[3] F. de Dinechin, Ch. Q. Lauter, and G. Melquiond.
Assisted verification of elementary functions.
Technical Report RR2005-43, LIP, September 2005.

[4] F. de Dinechin, Ch. Q. Lauter, and J.-M. Muller. Fast
and correctly rounded logarithms in double-precision.
Technical Report RR2005-37, LIP, September 2005. To
appear in Theoretical Informatics and Applications.

[5] T. J. Dekker. A floating point technique for extending
the available precision. Numerische Mathematik,
18(3):224–242, 1971.

[6] J. Harrison. Floating point verification in HOL light:
the exponential function. Technical Report 428,
University of Cambridge Computer Laboratory, 1997.

[7] W. Hofschuster and W. Krämer. FI LIB, eine schnelle
und portable Funktionsbibliothek für reelle Argumente
und reelle Intervalle im IEEE-double-Format.
Technical Report Nr. 98/7, Institut für
Wissenschaftliches Rechnen und Mathematische
Modellbildung, Universität Karlsruhe, 1998.

[8] D. Knuth. The Art of Computer Programming,
volume 2. Addison Wesley, 1973.

[9] Ch. Q. Lauter. Basic building blocks for a
triple-double intermediate format. Technical Report
RR2005-38, LIP, September 2005.

[10] G. Melquiond and S. Pion. Formal certification of
arithmetic filters for geometric predicates. In
Proceedings of the 15th IMACS World Congress on
Computational and Applied Mathematics, 2005.

[11] J.-M. Muller. Elementary Functions, Algorithms and
Implementation. Birkhauser, Boston, 1997.

[12] A. Ziv. Fast evaluation of elementary mathematical
functions with correctly rounded last bit. ACM
Transactions on Mathematical Software,
17(3):410–423, September 1991.

