
Introduction Bounds Rounding Errors Conclusion

De l’arithmétique d’intervalles
à la certification de programmes

Guillaume Melquiond

Sous la direction de Marc Daumas
Laboratoire de l’Informatique du Parallélisme
Arénaire, LIP, CNRS–ENSL–INRIA–UCBL

2006-11-21

Guillaume Melquiond De l’arithmétique d’intervalles à la certification de programmes

Introduction Bounds Rounding Errors Conclusion

From interval arithmetic to program certification

Guillaume Melquiond

Advisor: Marc Daumas
Laboratoire de l’Informatique du Parallélisme
Arénaire, LIP, CNRS–ENSL–INRIA–UCBL

2006-11-21

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Motivation

Floating-point and fixed-point datatypes suffer from:

limited range ⇒ underflow, overflow,

limited precision ⇒ inaccurate results.

=⇒ Safety-critical applications require certification.

Unfortunately, certifying a numerical application is
long and tedious,

error-prone.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Motivation

Floating-point and fixed-point datatypes suffer from:

limited range ⇒ underflow, overflow,
Ariane 5 maiden flight: $500M

limited precision ⇒ inaccurate results.
Patriot missile failure: 28 casualties

=⇒ Safety-critical applications require certification.

Unfortunately, certifying a numerical application is
long and tedious,

error-prone.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Motivation

Floating-point and fixed-point datatypes suffer from:

limited range ⇒ underflow, overflow,
Ariane 5 maiden flight: $500M

limited precision ⇒ inaccurate results.
Patriot missile failure: 28 casualties

=⇒ Safety-critical applications require certification.

Unfortunately, certifying a numerical application is
long and tedious,

error-prone.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Motivation

Floating-point and fixed-point datatypes suffer from:

limited range ⇒ underflow, overflow,
Ariane 5 maiden flight: $500M

limited precision ⇒ inaccurate results.
Patriot missile failure: 28 casualties

=⇒ Safety-critical applications require certification.

Unfortunately, certifying a numerical application is
long and tedious,

error-prone.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Motivation

Floating-point and fixed-point datatypes suffer from:

limited range ⇒ underflow, overflow,
Ariane 5 maiden flight: $500M

limited precision ⇒ inaccurate results.
Patriot missile failure: 28 casualties

=⇒ Safety-critical applications require certification.

Unfortunately, certifying a numerical application is
long and tedious,

error-prone.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Motivation

Floating-point and fixed-point datatypes suffer from:

limited range ⇒ underflow, overflow,
Ariane 5 maiden flight: $500M

limited precision ⇒ inaccurate results.
Patriot missile failure: 28 casualties

=⇒ Safety-critical applications require certification.

Unfortunately, certifying a numerical application is
long and tedious, Automated tool

error-prone.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Motivation

Floating-point and fixed-point datatypes suffer from:

limited range ⇒ underflow, overflow,
Ariane 5 maiden flight: $500M

limited precision ⇒ inaccurate results.
Patriot missile failure: 28 casualties

=⇒ Safety-critical applications require certification.

Unfortunately, certifying a numerical application is
long and tedious, Automated tool

error-prone. Formal methods

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Motivation

Floating-point and fixed-point datatypes suffer from:

limited range ⇒ underflow, overflow,
Ariane 5 maiden flight: $500M

limited precision ⇒ inaccurate results.
Patriot missile failure: 28 casualties

=⇒ Safety-critical applications require certification.

Unfortunately, certifying a numerical application is
long and tedious, Automated tool

error-prone. Formal methods

}
Gappa

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Motto of this PhD

1 What most users identify as simple ideas
should be easily usable as formal methods.

2 A computer should not require help from the user
for problems that can be solved with some limited work.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Outline

1 Introduction

2 Bounding expressions

3 Rounded computations

4 Propagating errors

5 Conclusion

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Outline

1 Introduction
Motivation
Example: orientation of three points
The Gappa tool

2 Bounding expressions

3 Rounded computations

4 Propagating errors

5 Conclusion

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Example: orientation of three points

Given three points p, q, and r of the 2D plane, they can be either
aligned or clockwise-oriented or counter-clockwise-oriented.

orient2(p, q, r) = sign
qx − px rx − px

qy − py ry − py

A naive floating-point implementation:

1 float det = (qx - px) * (ry - py)
2 - (qy - py) * (rx - px);
3 if (det > 0) return POSITIVE;
4 if (det < 0) return NEGATIVE;
5 return ZERO;

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Example: orientation of three points

Given three points p, q, and r of the 2D plane, they can be either
aligned or clockwise-oriented or counter-clockwise-oriented.

orient2(p, q, r) = sign
qx − px rx − px

qy − py ry − py

A naive floating-point implementation:

1 float det = (qx - px) * (ry - py)
2 - (qy - py) * (rx - px);
3 if (det > 0) return POSITIVE;
4 if (det < 0) return NEGATIVE;
5 return ZERO;

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Infinitely precise computations

For q = (8.1, 8.1) and r = (12.1, 12.1) and p around (1.5, 1.5), the
sign of the determinant should look like:

q

r

p

aligned

oriented

oriented

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Actual single-precision computations

Due to the limited precision of floating-point numbers,
the computed sign may be wrong. It actually looks like:

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Robust computations

The computed value det and the exact value Det have the same
sign when |det| > ξ, with ξ an upper bound on |det− Det|.
Improvement: flag results that are not guaranteed to be correct.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Introducing Gappa

Computing a bound on |det− Det| with Gappa:

1 # Single precision and round to nearest
2 @rnd = float < ieee_32 , ne >;
3

4 # Input variables (floating-point numbers)
5 px = rnd(px_); py = rnd(py_);
6 qx = rnd (8.1); qy = rnd (8.1);
7 rx = rnd (12.1); ry = rnd (12.1);
8

9 # Computed and exact values of the determinant
10 det rnd= (qx -px)*(ry -py) - (qy -py)*(rx -px);
11 Det = (qx -px)*(ry -py) - (qy -py)*(rx -px);
12

13 # Logical formula
14 { |px - 1.5| <= 32b-23 /\
15 |py - 1.5| <= 32b-23 ->
16 |det - Det| in ? }

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Improved algorithm

Gappa’s answer: the property

‖p − (1.5, 1.5)‖∞ ≤ 32 · 2−23 =⇒ |det− Det| ≤ ξ

is provable for ξ = 1.9 · 10−5.

Gappa also generates a Coq formal proof: 1823 lines, 391 lemmas.

Robust floating-point implementation:

1 float det = (qx - px) * (ry - py)
2 - (qy - py) * (rx - px);
3 if (det > +1.9e-5) return POSITIVE;
4 if (det < -1.9e-5) return NEGATIVE;
5 return UNKNOWN;

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Improved algorithm

Gappa’s answer: the property

‖p − (1.5, 1.5)‖∞ ≤ 32 · 2−23 =⇒ |det− Det| ≤ ξ

is provable for ξ = 1.9 · 10−5.

Gappa also generates a Coq formal proof: 1823 lines, 391 lemmas.

Robust floating-point implementation:

1 float det = (qx - px) * (ry - py)
2 - (qy - py) * (rx - px);
3 if (det > +1.9e-5) return POSITIVE;
4 if (det < -1.9e-5) return NEGATIVE;
5 return UNKNOWN;

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Improved algorithm

Gappa’s answer: the property

‖p − (1.5, 1.5)‖∞ ≤ 32 · 2−23 =⇒ |det− Det| ≤ ξ

is provable for ξ = 1.9 · 10−5.

Gappa also generates a Coq formal proof: 1823 lines, 391 lemmas.

Robust floating-point implementation:

1 float det = (qx - px) * (ry - py)
2 - (qy - py) * (rx - px);
3 if (det > +1.9e-5) return POSITIVE;
4 if (det < -1.9e-5) return NEGATIVE;
5 return UNKNOWN;

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

The Gappa tool

Objective: help users certify/analyze their numerical applications.

Design decisions:

the tool verifies enclosures of mathematical expressions;

these expressions can contain rounding operators
to express limitations and properties of datatypes;

formal proofs are generated to provide confidence
in the development.

How does it work?

Interval arithmetic for propagating enclosures.

Theorems on bounds on rounded values and rounding errors.

Rewriting rules for tightening computed enclosures.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

The Gappa tool

Objective: help users certify/analyze their numerical applications.

Design decisions:

the tool verifies enclosures of mathematical expressions;

these expressions can contain rounding operators
to express limitations and properties of datatypes;

formal proofs are generated to provide confidence
in the development.

How does it work?

Interval arithmetic for propagating enclosures.

Theorems on bounds on rounded values and rounding errors.

Rewriting rules for tightening computed enclosures.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Outline

1 Introduction

2 Bounding expressions
Numeric intervals
Example: square root for proof checkers
Standardizing interval arithmetic
Computing bounds

3 Rounded computations

4 Propagating errors

5 Conclusion

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Model: bounding expressions by numeric intervals

Basic element: an enclosure e ∈ I .

e is an expression on real numbers:
e ::= number | − e | ◦(e) | e + e | e × e |

√
e | . . .

I = [a, b] is an interval with dyadic rational bounds.

These enclosures are appropriate to express questions
that usually arise when certifying numerical applications:

no overflow, no invalid operations, etc

variable domain: x̃ ∈ I ,

accuracy of computed values

absolute error: x̃ − x ∈ I ,
relative error: (x̃ − x)/x ∈ I .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Model: bounding expressions by numeric intervals

Basic element: an enclosure e ∈ I .

e is an expression on real numbers:
e ::= number | − e | ◦(e) | e + e | e × e |

√
e | . . .

I = [a, b] is an interval with dyadic rational bounds.

These enclosures are appropriate to express questions
that usually arise when certifying numerical applications:

no overflow, no invalid operations, etc

variable domain: x̃ ∈ I ,

accuracy of computed values

absolute error: x̃ − x ∈ I ,
relative error: (x̃ − x)/x ∈ I .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Interval arithmetic as proof foundation

Interval evaluations can serve as proofs of bounds,
when they satisfy the containment property:

x ∈ Ix ∧ y ∈ Iy =⇒ x � y ∈ Iz if Ix � Iy ⊆ Iz

for � ∈ {+,−,×,÷}. Also for unary functions:
√
·, sin, . . .

Arithmetic operations on intervals:

[a, b] + [c , d] = [a + c , b + d],

[a, b]− [c , d] = [a− d , b − c],

[a, b]× [c , d] = [min(ac, ad , bc , bd),max(ac, ad , bc , bd)],

[a, b]÷ [c , d] = [a, b]× [c , d]−1

with [c , d]−1 = [1/d , 1/c] if 0 6∈ [c , d].

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Interval arithmetic as proof foundation

Interval evaluations can serve as proofs of bounds,
when they satisfy the containment property:

x ∈ Ix ∧ y ∈ Iy =⇒ x � y ∈ Iz if Ix � Iy ⊆ Iz

for � ∈ {+,−,×,÷}. Also for unary functions:
√
·, sin, . . .

Arithmetic operations on intervals:

[a, b] + [c , d] = [a + c , b + d],

[a, b]− [c , d] = [a− d , b − c],

[a, b]× [c , d] = [min(ac, ad , bc , bd),max(ac, ad , bc , bd)],

[a, b]÷ [c , d] = [a, b]× [c , d]−1

with [c , d]−1 = [1/d , 1/c] if 0 6∈ [c , d].

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Example: square root

Property to prove: x ∈ [3, 5] ⇒
√

x ∈ [1.3, 2.3].

Interval theorem: if e ∈ [a, b], then
√

e ∈ .

Verifying the property: (in Gappa)

[5
√

3,4
√

5] = [1773 · 2−10, 1145 · 2−9] ⊆ [1.3, 2.3].

Checking the certificate: (in Coq)

Simplifying the certificate: (in Gappa)

1.3 ≤ 3
2 ≤ 1773 · 2−10 and 1145 · 2−9 ≤ 9

4 ≤ 2.3.

A certificate using
√

x ∈
[

3
2 , 9

4

]
is checked faster by Coq.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Example: square root

Property to prove: x ∈ [3, 5] ⇒
√

x ∈ [1.3, 2.3].
Interval theorem: if e ∈ [a, b], then

√
e ∈ [

√
a,
√

b].

Verifying the property: (in Gappa)

[5
√

3,4
√

5] = [1773 · 2−10, 1145 · 2−9] ⊆ [1.3, 2.3].

Checking the certificate: (in Coq)

Simplifying the certificate: (in Gappa)

1.3 ≤ 3
2 ≤ 1773 · 2−10 and 1145 · 2−9 ≤ 9

4 ≤ 2.3.

A certificate using
√

x ∈
[

3
2 , 9

4

]
is checked faster by Coq.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Example: square root

Property to prove: x ∈ [3, 5] ⇒
√

x ∈ [1.3, 2.3].
Interval theorem: if e ∈ [a, b], then

√
e ∈ [5

√
a,4

√
b].

Verifying the property: (in Gappa)

[5
√

3,4
√

5] = [1773 · 2−10, 1145 · 2−9] ⊆ [1.3, 2.3].

Checking the certificate: (in Coq)

Simplifying the certificate: (in Gappa)

1.3 ≤ 3
2 ≤ 1773 · 2−10 and 1145 · 2−9 ≤ 9

4 ≤ 2.3.

A certificate using
√

x ∈
[

3
2 , 9

4

]
is checked faster by Coq.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Example: square root

Property to prove: x ∈ [3, 5] ⇒
√

x ∈ [1.3, 2.3].
Interval theorem: if e ∈ [a, b], then

√
e ∈ [5

√
a,4

√
b].

Verifying the property: (in Gappa)

[5
√

3,4
√

5] = [1773 · 2−10, 1145 · 2−9] ⊆ [1.3, 2.3].

Checking the certificate: (in Coq)

Simplifying the certificate: (in Gappa)

1.3 ≤ 3
2 ≤ 1773 · 2−10 and 1145 · 2−9 ≤ 9

4 ≤ 2.3.

A certificate using
√

x ∈
[

3
2 , 9

4

]
is checked faster by Coq.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Example: square root

Property to prove: x ∈ [3, 5] ⇒
√

x ∈ [1.3, 2.3].
Interval theorem: if e ∈ [a, b], then

√
e ∈ [5

√
a,4

√
b].

Verifying the property: (in Gappa)

[5
√

3,4
√

5] = [1773 · 2−10, 1145 · 2−9] ⊆ [1.3, 2.3].

Checking the certificate: (in Coq)

1
√

x ∈ [1773 · 2−10, . . .] holds
because (1773 · 2−10)2 = 3143529 · 2−20 ≤ 3 ≤ x .

2 1.3 ≤ 1773 · 2−10 holds.

Simplifying the certificate: (in Gappa)

1.3 ≤ 3
2 ≤ 1773 · 2−10 and 1145 · 2−9 ≤ 9

4 ≤ 2.3.

A certificate using
√

x ∈
[

3
2 , 9

4

]
is checked faster by Coq.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Example: square root

Property to prove: x ∈ [3, 5] ⇒
√

x ∈ [1.3, 2.3].
Interval theorem: if e ∈ [a, b], then

√
e ∈ [5

√
a,4

√
b].

Verifying the property: (in Gappa)

[5
√

3,4
√

5] = [1773 · 2−10, 1145 · 2−9] ⊆ [1.3, 2.3].

Checking the certificate: (in Coq)

1
√

x ∈ [1773 · 2−10, . . .] holds
because (1773 · 2−10)2 = 3143529 · 2−20 ≤ 3 ≤ x .

2 1.3 ≤ 1773 · 2−10 holds.

Simplifying the certificate: (in Gappa)

1.3 ≤ 3
2 ≤ 1773 · 2−10 and 1145 · 2−9 ≤ 9

4 ≤ 2.3.

A certificate using
√

x ∈
[

3
2 , 9

4

]
is checked faster by Coq.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Example: square root

Property to prove: x ∈ [3, 5] ⇒
√

x ∈ [1.3, 2.3].
Interval theorem: if e ∈ [a, b], then

√
e ∈ [5

√
a,4

√
b].

Verifying the property: (in Gappa)

[5
√

3,4
√

5] = [1773 · 2−10, 1145 · 2−9] ⊆ [1.3, 2.3].

Checking the certificate: (in Coq)

1
√

x ∈ [32 , . . .] holds because (3
2)2 = 9 · 2−2 ≤ 3 ≤ x .

2 1.3 ≤ 3
2 holds.

Simplifying the certificate: (in Gappa)

1.3 ≤ 3
2 ≤ 1773 · 2−10 and 1145 · 2−9 ≤ 9

4 ≤ 2.3.

A certificate using
√

x ∈
[

3
2 , 9

4

]
is checked faster by Coq.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Digression: the Boost C++ library

Gappa relies on the Boost C++ interval arithmetic library.

Generic library in the spirit of the STL:

instantiated with double and GMP rationals
for PVS proofs on approximation errors,

instantiated with MPFR for Gappa’s dyadic bounds.

Boost: sandbox for developing new features of the C++ language.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Digression: the Boost C++ library

Gappa relies on the Boost C++ interval arithmetic library.

Generic library in the spirit of the STL:

instantiated with double and GMP rationals
for PVS proofs on approximation errors,

instantiated with MPFR for Gappa’s dyadic bounds.

Boost: sandbox for developing new features of the C++ language.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Digression: the Boost C++ library

Gappa relies on the Boost C++ interval arithmetic library.

Generic library in the spirit of the STL:

instantiated with double and GMP rationals
for PVS proofs on approximation errors,

instantiated with MPFR for Gappa’s dyadic bounds.

Boost: sandbox for developing new features of the C++ language.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Digression: standardizing interval arithmetic

Proposing interval arithmetic for the ISO C++ Standard.

Motivation: giving more exposure to reliable computing to the
general C++ programming community.

Form: a pure library, no core language change.

Target: Technical Report 2 (∼ 2010).

Usage:

1 std::interval <double >
2 I(1,2), J("[3.1 ,4.7]"), K;
3 K = exp(I) - J;
4 std::cout << K << std::endl;

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Digression: standardizing interval arithmetic

Proposing interval arithmetic for the ISO C++ Standard.

Motivation: giving more exposure to reliable computing to the
general C++ programming community.

Form: a pure library, no core language change.

Target: Technical Report 2 (∼ 2010).

Usage:

1 std::interval <double >
2 I(1,2), J("[3.1 ,4.7]"), K;
3 K = exp(I) - J;
4 std::cout << K << std::endl;

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Gappa’s process

1 Extract a logical formula

e1 ∈ I1 ∧ · · · ∧ en ∈ In =⇒ en+1 ∈ In+1.

2 Select expressions and theorems potentially useful
as intermediate steps for bounding e1, · · · , en+1.

3 Assuming e1 ∈ I1, · · · , en ∈ In,
compute and recompute the ranges of all the intermediate
expressions until the enclosure en+1 ∈ In+1 is proved.

Keep track of the theorems as they are applied.

4 Simplify the resulting proof graph.

5 Generate a formal certificate.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Gappa’s process

1 Extract a logical formula

e1 ∈ I1 ∧ · · · ∧ en ∈ In =⇒ en+1 ∈ In+1.

2 Select expressions and theorems potentially useful
as intermediate steps for bounding e1, · · · , en+1.

3 Assuming e1 ∈ I1, · · · , en ∈ In,
compute and recompute the ranges of all the intermediate
expressions until the enclosure en+1 ∈ In+1 is proved.

Keep track of the theorems as they are applied.

4 Simplify the resulting proof graph.

5 Generate a formal certificate.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Gappa’s process

1 Extract a logical formula

e1 ∈ I1 ∧ · · · ∧ en ∈ In =⇒ en+1 ∈ In+1.

2 Select expressions and theorems potentially useful
as intermediate steps for bounding e1, · · · , en+1.

3 Assuming e1 ∈ I1, · · · , en ∈ In,
compute and recompute the ranges of all the intermediate
expressions until the enclosure en+1 ∈ In+1 is proved.

Keep track of the theorems as they are applied.

4 Simplify the resulting proof graph.

5 Generate a formal certificate.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Gappa’s process

1 Extract a logical formula

e1 ∈ I1 ∧ · · · ∧ en ∈ In =⇒ en+1 ∈ In+1.

2 Select expressions and theorems potentially useful
as intermediate steps for bounding e1, · · · , en+1.

3 Assuming e1 ∈ I1, · · · , en ∈ In,
compute and recompute the ranges of all the intermediate
expressions until the enclosure en+1 ∈ In+1 is proved.

Keep track of the theorems as they are applied.

4 Simplify the resulting proof graph.

5 Generate a formal certificate.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Gappa’s process

1 Extract a logical formula

e1 ∈ I1 ∧ · · · ∧ en ∈ In =⇒ en+1 ∈ In+1.

2 Select expressions and theorems potentially useful
as intermediate steps for bounding e1, · · · , en+1.

3 Assuming e1 ∈ I1, · · · , en ∈ In,
compute and recompute the ranges of all the intermediate
expressions until the enclosure en+1 ∈ In+1 is proved.

Keep track of the theorems as they are applied.

4 Simplify the resulting proof graph.

5 Generate a formal certificate.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Intersection and union

Intervals are sets. We can

Improve ranges by intersection: e ∈ I1 ∧ e ∈ I2 ⇒ e ∈ I1 ∩ I2.

Empty intersection implies contradiction: proof by absurd.

Perform case studies:
(x ∈ I1 ⇒ e ∈ I)∧(x ∈ I2 ⇒ e ∈ I) =⇒ (x ∈ I1∪I2 ⇒ e ∈ I).

Example: let x and y be two integers. Full

4 { |x| <= 100 /\ |y| <= 100 /\ x * y <= 0
5 -> |x + y| <= 100 }

Doable by studying cases on the signs of x and y ,
and detecting contradictions with x · y ≤ 0.

(Coq proof: 395 lines, 71 lemmas)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Intersection and union

Intervals are sets. We can

Improve ranges by intersection: e ∈ I1 ∧ e ∈ I2 ⇒ e ∈ I1 ∩ I2.

Empty intersection implies contradiction: proof by absurd.

Perform case studies:
(x ∈ I1 ⇒ e ∈ I)∧(x ∈ I2 ⇒ e ∈ I) =⇒ (x ∈ I1∪I2 ⇒ e ∈ I).

Example: let x and y be two integers. Full

4 { |x| <= 100 /\ |y| <= 100 /\ x * y <= 0
5 -> |x + y| <= 100 }

Doable by studying cases on the signs of x and y ,
and detecting contradictions with x · y ≤ 0.

(Coq proof: 395 lines, 71 lemmas)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Intersection and union

Intervals are sets. We can

Improve ranges by intersection: e ∈ I1 ∧ e ∈ I2 ⇒ e ∈ I1 ∩ I2.

Empty intersection implies contradiction: proof by absurd.

Perform case studies:
(x ∈ I1 ⇒ e ∈ I)∧(x ∈ I2 ⇒ e ∈ I) =⇒ (x ∈ I1∪I2 ⇒ e ∈ I).

Example: let x and y be two integers. Full

4 { |x| <= 100 /\ |y| <= 100 /\ x * y <= 0
5 -> |x + y| <= 100 }

Doable by studying cases on the signs of x and y ,
and detecting contradictions with x · y ≤ 0.

(Coq proof: 395 lines, 71 lemmas)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Intervals Square root Standardization Process

Intersection and union

Intervals are sets. We can

Improve ranges by intersection: e ∈ I1 ∧ e ∈ I2 ⇒ e ∈ I1 ∩ I2.

Empty intersection implies contradiction: proof by absurd.

Perform case studies:
(x ∈ I1 ⇒ e ∈ I)∧(x ∈ I2 ⇒ e ∈ I) =⇒ (x ∈ I1∪I2 ⇒ e ∈ I).

Example: let x and y be two integers. Full

4 { |x| <= 100 /\ |y| <= 100 /\ x * y <= 0
5 -> |x + y| <= 100 }

Doable by studying cases on the signs of x and y ,
and detecting contradictions with x · y ≤ 0.

(Coq proof: 395 lines, 71 lemmas)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Outline

1 Introduction

2 Bounding expressions

3 Rounded computations
Rounding operators
Floating-point arithmetic
Fixed-point arithmetic
Predicates and exact computations

4 Propagating errors

5 Conclusion

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Rounding operators

How to express approximate computations?

1 double f(double a, double b, double c)
2 { return a / b + c; }

IEEE-754 says: a floating-point operator shall behave as if it was
first computing the infinitely precise value and then rounding it so
that it fits in the destination floating-point format.

Approach: for a given numeric environment,
define one single operator ◦(·) on real numbers.

a / b + c −→ ◦(◦(a÷ b︸ ︷︷ ︸
real division

) + c)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Rounding operators

How to express approximate computations?

1 double f(double a, double b, double c)
2 { return a / b + c; }

IEEE-754 says: a floating-point operator shall behave as if it was
first computing the infinitely precise value and then rounding it so
that it fits in the destination floating-point format.

Approach: for a given numeric environment,
define one single operator ◦(·) on real numbers.

a / b + c −→ ◦(◦(a÷ b︸ ︷︷ ︸
real division

) + c)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Rounding operators

How to express approximate computations?

1 double f(double a, double b, double c)
2 { return a / b + c; }

IEEE-754 says: a floating-point operator shall behave as if it was
first computing the infinitely precise value and then rounding it so
that it fits in the destination floating-point format.

Approach: for a given numeric environment,
define one single operator ◦(·) on real numbers.

a / b + c −→ ◦(◦(a÷ b︸ ︷︷ ︸
real division

) + c)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Rounded values and rounding errors

For a given rounding operator, the following theorems are provided.

An interval extension: e ∈ I ⇒ ◦(e) ∈ ◦(I).
Rounding monotony: ◦([a, b]) = [◦(a), ◦(b)].

An interval restriction: ◦(e) ∈ I ⇒ ◦(e) ∈ J.

Example: bec ∈ [1.5, 2.5] implies bec = 2.

Bounds on rounding errors.

Given either e ∈ I , |e| ∈ I , ◦(e) ∈ I , or |◦(e)| ∈ I ,
they compute the ranges of

the absolute error ◦(e)− e,

the relative error ◦(e)−e
e .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Rounded values and rounding errors

For a given rounding operator, the following theorems are provided.

An interval extension: e ∈ I ⇒ ◦(e) ∈ ◦(I).
Rounding monotony: ◦([a, b]) = [◦(a), ◦(b)].

An interval restriction: ◦(e) ∈ I ⇒ ◦(e) ∈ J.

Example: bec ∈ [1.5, 2.5] implies bec = 2.

Bounds on rounding errors.

Given either e ∈ I , |e| ∈ I , ◦(e) ∈ I , or |◦(e)| ∈ I ,
they compute the ranges of

the absolute error ◦(e)− e,

the relative error ◦(e)−e
e .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Rounded values and rounding errors

For a given rounding operator, the following theorems are provided.

An interval extension: e ∈ I ⇒ ◦(e) ∈ ◦(I).
Rounding monotony: ◦([a, b]) = [◦(a), ◦(b)].

An interval restriction: ◦(e) ∈ I ⇒ ◦(e) ∈ J.

Example: bec ∈ [1.5, 2.5] implies bec = 2.

Bounds on rounding errors.

Given either e ∈ I , |e| ∈ I , ◦(e) ∈ I , or |◦(e)| ∈ I ,
they compute the ranges of

the absolute error ◦(e)− e,

the relative error ◦(e)−e
e .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Rounded values and rounding errors

For a given rounding operator, the following theorems are provided.

An interval extension: e ∈ I ⇒ ◦(e) ∈ ◦(I).
Rounding monotony: ◦([a, b]) = [◦(a), ◦(b)].

An interval restriction: ◦(e) ∈ I ⇒ ◦(e) ∈ J.

Example: bec ∈ [1.5, 2.5] implies bec = 2.

Bounds on rounding errors.

Given either e ∈ I , |e| ∈ I , ◦(e) ∈ I , or |◦(e)| ∈ I ,
they compute the ranges of

the absolute error ◦(e)− e,

the relative error ◦(e)−e
e .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Rounded values and rounding errors

For a given rounding operator, the following theorems are provided.

An interval extension: e ∈ I ⇒ ◦(e) ∈ ◦(I).
Rounding monotony: ◦([a, b]) = [◦(a), ◦(b)].

An interval restriction: ◦(e) ∈ I ⇒ ◦(e) ∈ J.

Example: bec ∈ [1.5, 2.5] implies bec = 2.

Bounds on rounding errors.

Given either e ∈ I , |e| ∈ I , ◦(e) ∈ I , or |◦(e)| ∈ I ,
they compute the ranges of

the absolute error ◦(e)− e,

the relative error ◦(e)−e
e .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Floating-point arithmetic

A binary floating-point value can be written m · 2e with m, e ∈ Z.

An IEEE-754 format imposes

a precision p: |m| < 2p,

a minimal exponent Emin: e ≥ Emin,

a maximal exponent Emax: e ≤ Emax.

When a real number is not representable as a floating-point
number, it is rounded in a specific direction.

Example: results are rounded to the nearest floating-point number
(tie-breaking to even mantissas).

Rounding operator: float<p,Emin,dir>.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Floating-point arithmetic

A binary floating-point value can be written m · 2e with m, e ∈ Z.

An IEEE-754 format imposes

a precision p: |m| < 2p,

a minimal exponent Emin: e ≥ Emin,

a maximal exponent Emax: e ≤ Emax.

When a real number is not representable as a floating-point
number, it is rounded in a specific direction.

Example: results are rounded to the nearest floating-point number
(tie-breaking to even mantissas).

Rounding operator: float<p,Emin,dir>.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Floating-point arithmetic

A binary floating-point value can be written m · 2e with m, e ∈ Z.

An IEEE-754 format imposes

a precision p: |m| < 2p,

a minimal exponent Emin: e ≥ Emin,

a maximal exponent Emax: e ≤ Emax.

When a real number is not representable as a floating-point
number, it is rounded in a specific direction.

Example: results are rounded to the nearest floating-point number
(tie-breaking to even mantissas).

Rounding operator: float<p,Emin,dir>.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Floating-point arithmetic

A binary floating-point value can be written m · 2e with m, e ∈ Z.

An IEEE-754 format imposes

a precision p: |m| < 2p,

a minimal exponent Emin: e ≥ Emin,

a maximal exponent Emax: e ≤ Emax.

When a real number is not representable as a floating-point
number, it is rounded in a specific direction.

Example: results are rounded to the nearest floating-point number
(tie-breaking to even mantissas).

Rounding operator: float<p,Emin,dir>.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Floating-point arithmetic

A binary floating-point value can be written m · 2e with m, e ∈ Z.

An IEEE-754 format imposes

a precision p: |m| < 2p,

a minimal exponent Emin: e ≥ Emin,

a maximal exponent Emax: e ≤ Emax.

When a real number is not representable as a floating-point
number, it is rounded in a specific direction.

Example: results are rounded to the nearest floating-point number
(tie-breaking to even mantissas).

Rounding operator: float<p,Emin,dir>.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Exceptional behaviors

In Gappa’s formalism, every data is a real number:

no signed zeros,

no Not-a-Numbers,

no infinities.

Yet, correct behavior of a program can be proved:

subnormal numbers are handled;

the absence of overflow can be expressed and checked:

1 z = float <ieee_32 ,ne >(x + y);
2 { ... -> |z| <= 0x1.FFFFFEp127 }

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Exceptional behaviors

In Gappa’s formalism, every data is a real number:

no signed zeros,

no Not-a-Numbers,

no infinities.

Yet, correct behavior of a program can be proved:

subnormal numbers are handled;

the absence of overflow can be expressed and checked:

1 z = float <ieee_32 ,ne >(x + y);
2 { ... -> |z| <= 0x1.FFFFFEp127 }

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Exceptional behaviors

In Gappa’s formalism, every data is a real number:

no signed zeros,

no Not-a-Numbers,

no infinities.

Yet, correct behavior of a program can be proved:

subnormal numbers are handled;

the absence of overflow can be expressed and checked:

1 z = float <ieee_32 ,ne >(x + y);
2 { ... -> |z| <= 0x1.FFFFFEp127 }

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Fixed-point arithmetic

The value of a fixed-point number is m · 2E with m ∈ Z.
Rounding operator: fixed<E,dir>.

Theorem on rounding error: (dir = dn: rounding toward −∞)

∀x ∈ R, fixed<E,dn>(x)− x ∈ [−2E , 0].

Example 1:

1 x = fixed <-4,dn >(x_);
2 y = fixed <-5,dn >(y_);
3 { fixed <-6,dn >(x * y) - x * y in ? }

Gappa answers [−2−6, 0]. Optimal is [−0.875 · 2−6, 0].

Example 2:

3 { fixed <-6,dn >(x + y) - (x + y) in ? }

Naive answer is [−2−6, 0]. Optimal is [0, 0].

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Fixed-point arithmetic

The value of a fixed-point number is m · 2E with m ∈ Z.
Rounding operator: fixed<E,dir>.

Theorem on rounding error: (dir = dn: rounding toward −∞)

∀x ∈ R, fixed<E,dn>(x)− x ∈ [−2E , 0].

Example 1:

1 x = fixed <-4,dn >(x_);
2 y = fixed <-5,dn >(y_);
3 { fixed <-6,dn >(x * y) - x * y in ? }

Gappa answers [−2−6, 0]. Optimal is [−0.875 · 2−6, 0].

Example 2:

3 { fixed <-6,dn >(x + y) - (x + y) in ? }

Naive answer is [−2−6, 0]. Optimal is [0, 0].

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Fixed-point arithmetic

Theorem on rounding error: (dir = dn: rounding toward −∞)

∀x ∈ R, fixed<E,dn>(x)− x ∈ [−2E , 0].

Example 1:

1 x = fixed <-4,dn >(x_);
2 y = fixed <-5,dn >(y_);
3 { fixed <-6,dn >(x * y) - x * y in ? }

Gappa answers [−2−6, 0]. Optimal is [−0.875 · 2−6, 0].

Example 2:

3 { fixed <-6,dn >(x + y) - (x + y) in ? }

Naive answer is [−2−6, 0]. Optimal is [0, 0].

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Fixed-point arithmetic

Theorem on rounding error: (dir = dn: rounding toward −∞)

∀x ∈ R, fixed<E,dn>(x)− x ∈ [−2E , 0].

Example 1:

1 x = fixed <-4,dn >(x_);
2 y = fixed <-5,dn >(y_);
3 { fixed <-6,dn >(x * y) - x * y in ? }

Gappa answers [−2−6, 0]. Optimal is [−0.875 · 2−6, 0].

Example 2:

3 { fixed <-6,dn >(x + y) - (x + y) in ? }

Naive answer is [−2−6, 0]. Optimal is [0, 0].

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Fixed-point arithmetic

Theorem on rounding error: (dir = dn: rounding toward −∞)

∀x ∈ R, fixed<E,dn>(x)− x ∈ [−2E , 0].

Example 1:

1 x = fixed <-4,dn >(x_);
2 y = fixed <-5,dn >(y_);
3 { fixed <-6,dn >(x * y) - x * y in ? }

Gappa answers [−2−6, 0]. Optimal is [−0.875 · 2−6, 0].

Example 2:

3 { fixed <-6,dn >(x + y) - (x + y) in ? }

Naive answer is [−2−6, 0]. Optimal is [0, 0].

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Predicate for fixed-point predicate

3 x = fixed <-4,dn >(x_);
4 y = fixed <-5,dn >(y_);
5 { fixed <-6,dn >(x + y) - (x + y) in ? }

Optimal interval is [0, 0] because
x + y = mx · 2−4 + my · 2−5 is representable as a multiple of 2−6.

Solution: Gappa internally relies on the predicate

FIX(x , e) ≡ ∃m ∈ Z, x = m · 2e

and computes with it:

FIX(x , ex) ∧ FIX(y , ey) =⇒ FIX(x + y ,min(ex , ey)),

FIX(x , ex) ∧ FIX(y , ey) =⇒ FIX(x · y , ex + ey).

Alternate theorem on the rounding error:

∀x ∈ R, FIX(x ,E) =⇒ fixed<E,dn>(x)− x = 0.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Predicate for fixed-point predicate

3 x = fixed <-4,dn >(x_);
4 y = fixed <-5,dn >(y_);
5 { fixed <-6,dn >(x + y) - (x + y) in ? }

Optimal interval is [0, 0] because
x + y = mx · 2−4 + my · 2−5 is representable as a multiple of 2−6.

Solution: Gappa internally relies on the predicate

FIX(x , e) ≡ ∃m ∈ Z, x = m · 2e

and computes with it:

FIX(x , ex) ∧ FIX(y , ey) =⇒ FIX(x + y ,min(ex , ey)),

FIX(x , ex) ∧ FIX(y , ey) =⇒ FIX(x · y , ex + ey).

Alternate theorem on the rounding error:

∀x ∈ R, FIX(x ,E) =⇒ fixed<E,dn>(x)− x = 0.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Predicate for fixed-point predicate

3 x = fixed <-4,dn >(x_);
4 y = fixed <-5,dn >(y_);
5 { fixed <-6,dn >(x + y) - (x + y) in ? }

Optimal interval is [0, 0] because
x + y = mx · 2−4 + my · 2−5 is representable as a multiple of 2−6.

Solution: Gappa internally relies on the predicate

FIX(x , e) ≡ ∃m ∈ Z, x = m · 2e

and computes with it:

FIX(x , ex) ∧ FIX(y , ey) =⇒ FIX(x + y ,min(ex , ey)),

FIX(x , ex) ∧ FIX(y , ey) =⇒ FIX(x · y , ex + ey).

Alternate theorem on the rounding error:

∀x ∈ R, FIX(x ,E) =⇒ fixed<E,dn>(x)− x = 0.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Predicate for floating-point arithmetic

Quantifying the precision required to represent a value:

FLT(x , p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p

Example: exact floating-point subtraction.

1 @rnd = float < ieee_32 , zr >;
2 a = rnd(a_); b = rnd(b_);
3 { a in [3.2 ,3.3] /\ b in [1.4 ,1.8] ->
4 rnd(a - b) - (a - b) in [0,0] }

Note: Sterbenz’s lemma does not apply because 3.3
1.4 ' 2.4.

Gappa automatically proves:

1 FIX(a,−22) and FIX(b,−23), hence FIX(a− b,−23);

2 |a− b| ≤ 1.9, hence FLT(a− b, 24).

Hence a− b = ◦(a− b). (Coq proof: 281 lines, 53 proofs)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Predicate for floating-point arithmetic

Quantifying the precision required to represent a value:

FLT(x , p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p

Example: exact floating-point subtraction.

1 @rnd = float < ieee_32 , zr >;
2 a = rnd(a_); b = rnd(b_);
3 { a in [3.2 ,3.3] /\ b in [1.4 ,1.8] ->
4 rnd(a - b) - (a - b) in [0,0] }

Note: Sterbenz’s lemma does not apply because 3.3
1.4 ' 2.4.

Gappa automatically proves:

1 FIX(a,−22) and FIX(b,−23), hence FIX(a− b,−23);

2 |a− b| ≤ 1.9, hence FLT(a− b, 24).

Hence a− b = ◦(a− b). (Coq proof: 281 lines, 53 proofs)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Operators Floating-point Fixed-point Predicates

Predicate for floating-point arithmetic

Quantifying the precision required to represent a value:

FLT(x , p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p

Example: exact floating-point subtraction.

1 @rnd = float < ieee_32 , zr >;
2 a = rnd(a_); b = rnd(b_);
3 { a in [3.2 ,3.3] /\ b in [1.4 ,1.8] ->
4 rnd(a - b) - (a - b) in [0,0] }

Note: Sterbenz’s lemma does not apply because 3.3
1.4 ' 2.4.

Gappa automatically proves:

1 FIX(a,−22) and FIX(b,−23), hence FIX(a− b,−23);

2 |a− b| ≤ 1.9, hence FLT(a− b, 24).

Hence a− b = ◦(a− b). (Coq proof: 281 lines, 53 proofs)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

Outline

1 Introduction

2 Bounding expressions

3 Rounded computations

4 Propagating errors
Correlated expressions and interval evaluation
Rewriting expressions
User-defined rewriting rules

5 Conclusion

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

Correlated expressions and interval evaluation

Example: compute the range of ũ·ṽ−u·v
u·v knowing that:

domains of u, v , ũ, and ṽ are [1, 100];

values are correlated:
∣∣ ũ−u

u

∣∣ ≤ 0.1 and
∣∣ ṽ−v

v

∣∣ ≤ 0.2.

Interval evaluation:

ũ · ṽ − u · v
u · v

∈ [1, 100] · [1, 100]− [1, 100] · [1, 100]

[1, 100] · [1, 100]

∈ [1, 10000]− [1, 10000]

[1, 10000]

∈ [−9999, 9999] Bad!

Naive interval arithmetic does not track correlation between values.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

Correlated expressions and interval evaluation

Example: compute the range of ũ·ṽ−u·v
u·v knowing that:

domains of u, v , ũ, and ṽ are [1, 100];

values are correlated:
∣∣ ũ−u

u

∣∣ ≤ 0.1 and
∣∣ ṽ−v

v

∣∣ ≤ 0.2.

Interval evaluation:

ũ · ṽ − u · v
u · v

∈ [1, 100] · [1, 100]− [1, 100] · [1, 100]

[1, 100] · [1, 100]

∈ [1, 10000]− [1, 10000]

[1, 10000]

∈ [−9999, 9999]

Bad!

Naive interval arithmetic does not track correlation between values.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

Correlated expressions and interval evaluation

Example: compute the range of ũ·ṽ−u·v
u·v knowing that:

domains of u, v , ũ, and ṽ are [1, 100];

values are correlated:
∣∣ ũ−u

u

∣∣ ≤ 0.1 and
∣∣ ṽ−v

v

∣∣ ≤ 0.2.

Interval evaluation:

ũ · ṽ − u · v
u · v

∈ [1, 100] · [1, 100]− [1, 100] · [1, 100]

[1, 100] · [1, 100]

∈ [1, 10000]− [1, 10000]

[1, 10000]

∈ [−9999, 9999] Bad!

Naive interval arithmetic does not track correlation between values.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

Rewriting expressions to reduce decorrelation

Example: compute the range of ũ·ṽ−u·v
u·v knowing that

values are correlated:
∣∣ ũ−u

u

∣∣ ≤ 0.1 and
∣∣ ṽ−v

v

∣∣ ≤ 0.2.

Solution: make correlations explicit.

ũ · ṽ − u · v
u · v

=
ũ − u

u
+

ṽ − v

v
+

ũ − u

u
· ṽ − v

v

Interval evaluation:

ũ · ṽ − u · v
u · v

∈ [−0.1, 0.1] + [−0.2, 0.2] + [−0.1, 0.1] · [−0.2, 0.2]

∈ [−0.32, 0.32]

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

Rewriting expressions to reduce decorrelation

Example: compute the range of ũ·ṽ−u·v
u·v knowing that

values are correlated:
∣∣ ũ−u

u

∣∣ ≤ 0.1 and
∣∣ ṽ−v

v

∣∣ ≤ 0.2.

Solution: make correlations explicit.

ũ · ṽ − u · v
u · v

=
ũ − u

u
+

ṽ − v

v
+

ũ − u

u
· ṽ − v

v

Interval evaluation:

ũ · ṽ − u · v
u · v

∈ [−0.1, 0.1] + [−0.2, 0.2] + [−0.1, 0.1] · [−0.2, 0.2]

∈ [−0.32, 0.32]

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

Rewriting expressions using similarities

The expression ũ·ṽ−u·v
u·v can be seen as the relative error

between two similar sub-expressions: ũ · ṽ and u · v .

Rewriting as ũ−u
u + ṽ−v

v + ũ−u
u · ṽ−v

v is useful,

if tight ranges of ũ−u
u and ṽ−v

v can be computed.

If ũ and u are similar expressions, then ũ−u
u can also be rewritten.

And so on, until Gappa gets to an atomic error,

e.g. ◦(e)−e
e that is bounded thanks to a theorem on operator ◦.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

Rewriting expressions using intermediate terms

Rounding operators prevent these rewritings. E.g. ◦(ũ·ṽ)−u·v
u·v .

More generally, how to bound p̃−q
q when

p̃ is known to be close to p,

p is potentially similar to q?

Gappa automatically rewrites the expression so that p̃−p
p appears:

p̃ − q

q
=

p̃ − p

p
+

p − q

q
+

p̃ − p

p
· p − q

q

Note:
p̃−p
p = ◦(ũ·ṽ)−ũ·ṽ

ũ·ṽ is an atomic error;

p−q
q = ũ·ṽ−u·v

u·v has similar sub-expressions.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

Rewriting expressions using intermediate terms

Rounding operators prevent these rewritings. E.g. ◦(ũ·ṽ)−u·v
u·v .

More generally, how to bound p̃−q
q when

p̃ is known to be close to p,

p is potentially similar to q?

Gappa automatically rewrites the expression so that p̃−p
p appears:

p̃ − q

q
=

p̃ − p

p
+

p − q

q
+

p̃ − p

p
· p − q

q

Note:
p̃−p
p = ◦(ũ·ṽ)−ũ·ṽ

ũ·ṽ is an atomic error;

p−q
q = ũ·ṽ−u·v

u·v has similar sub-expressions.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

Rewriting expressions using intermediate terms

Rounding operators prevent these rewritings. E.g. ◦(ũ·ṽ)−u·v
u·v .

More generally, how to bound p̃−q
q when

p̃ is known to be close to p,

p is potentially similar to q?

Gappa automatically rewrites the expression so that p̃−p
p appears:

p̃ − q

q
=

p̃ − p

p
+

p − q

q
+

p̃ − p

p
· p − q

q

Note:
p̃−p
p = ◦(ũ·ṽ)−ũ·ṽ

ũ·ṽ is an atomic error;

p−q
q = ũ·ṽ−u·v

u·v has similar sub-expressions.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

User-defined rewriting rules

When the user is certifying clever code,
automatic rewriting is no longer enough to deal with correlation.

Example: given a fixed-point number d ∈ [0.5, 1], compute an
approximate reciprocal r2 using two Newton iterations. Full

4 r1 fixed <-14,dn >=
5 r0 * (2 - fixed <-16,dn >(d) * r0);
6 r2 fixed <-30,dn >= r1 * (2 - d * r1);
7

8 { |r0 - 1/d| <= 1b-8 /\ d in [0.5 ,1]
9 -> r2 - 1/d in ? }

Gappa’s answer: r2 − 1
d ∈ [−5.04, 5.05].

The tool does not see the correlation between r2 and 1
d .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

User-defined rewriting rules

When the user is certifying clever code,
automatic rewriting is no longer enough to deal with correlation.

Example: given a fixed-point number d ∈ [0.5, 1], compute an
approximate reciprocal r2 using two Newton iterations. Full

4 r1 fixed <-14,dn >=
5 r0 * (2 - fixed <-16,dn >(d) * r0);
6 r2 fixed <-30,dn >= r1 * (2 - d * r1);
7

8 { |r0 - 1/d| <= 1b-8 /\ d in [0.5 ,1]
9 -> r2 - 1/d in ? }

Gappa’s answer: r2 − 1
d ∈ [−5.04, 5.05].

The tool does not see the correlation between r2 and 1
d .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

User-defined rewriting rules

When the user is certifying clever code,
automatic rewriting is no longer enough to deal with correlation.

Example: given a fixed-point number d ∈ [0.5, 1], compute an
approximate reciprocal r2 using two Newton iterations. Full

4 r1 fixed <-14,dn >=
5 r0 * (2 - fixed <-16,dn >(d) * r0);
6 r2 fixed <-30,dn >= r1 * (2 - d * r1);
7

8 { |r0 - 1/d| <= 1b-8 /\ d in [0.5 ,1]
9 -> r2 - 1/d in ? }

Gappa’s answer: r2 − 1
d ∈ [−5.04, 5.05].

The tool does not see the correlation between r2 and 1
d .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

User-defined rewriting rules

Example: Full

4 r1 fixed <-14,dn >=
5 r0 * (2 - fixed <-16,dn >(d) * r0);
6 r2 fixed <-30,dn >= r1 * (2 - d * r1);
7

8 { |r0 - 1/d| <= 1b-8 /\ d in [0.5 ,1]
9 -> r2 - 1/d in ? }

Newton iteration is used for its quadratic convergence.

So the user just has to tell Gappa about it:

11 r1 ~ r0 * (2 - d * r0);
12 r0 * (2 - d * r0) - 1/d ->
13 (r0 - 1/d) * (r0 - 1/d) * -d;

Answer: r2 − 1
d ∈ [−2−24.7, 2−28.4]. (Coq proof: 774 lines, 138 lemmas)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

User-defined rewriting rules

Example: Full

4 r1 fixed <-14,dn >=
5 r0 * (2 - fixed <-16,dn >(d) * r0);
6 r2 fixed <-30,dn >= r1 * (2 - d * r1);
7

8 { |r0 - 1/d| <= 1b-8 /\ d in [0.5 ,1]
9 -> r2 - 1/d in ? }

Newton iteration is used for its quadratic convergence.

So the user just has to tell Gappa about it:

11 r1 ~ r0 * (2 - d * r0);
12 r0 * (2 - d * r0) - 1/d ->
13 (r0 - 1/d) * (r0 - 1/d) * -d;

Answer: r2 − 1
d ∈ [−2−24.7, 2−28.4]. (Coq proof: 774 lines, 138 lemmas)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Correlation Rewriting User-defined

User-defined rewriting rules

Example: Full

4 r1 fixed <-14,dn >=
5 r0 * (2 - fixed <-16,dn >(d) * r0);
6 r2 fixed <-30,dn >= r1 * (2 - d * r1);
7

8 { |r0 - 1/d| <= 1b-8 /\ d in [0.5 ,1]
9 -> r2 - 1/d in ? }

Newton iteration is used for its quadratic convergence.

So the user just has to tell Gappa about it:

11 r1 ~ r0 * (2 - d * r0);
12 r0 * (2 - d * r0) - 1/d ->
13 (r0 - 1/d) * (r0 - 1/d) * -d;

Answer: r2 − 1
d ∈ [−2−24.7, 2−28.4]. (Coq proof: 774 lines, 138 lemmas)

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Realizations Perspectives

Outline

1 Introduction

2 Bounding expressions

3 Rounded computations

4 Propagating errors

5 Conclusion
Realizations
Perspectives

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Realizations Perspectives

Realizations

First public version of Gappa: early 2005.
Since then, around 30 new versions.
Latest version is Gappa 0.7.3.

Two separate parts:

1 Gappa tool: 6500 lines of C++;

2 Support library: 8000 lines of Coq proofs.

Perspective: adapt Gappa and write support libraries
for other proof checkers: HOL light, PVS, . . .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Realizations Perspectives

Realizations

First public version of Gappa: early 2005.
Since then, around 30 new versions.
Latest version is Gappa 0.7.3.

Two separate parts:

1 Gappa tool: 6500 lines of C++;

2 Support library: 8000 lines of Coq proofs.

Perspective: adapt Gappa and write support libraries
for other proof checkers: HOL light, PVS, . . .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Realizations Perspectives

Realizations

First public version of Gappa: early 2005.
Since then, around 30 new versions.
Latest version is Gappa 0.7.3.

Two separate parts:

1 Gappa tool: 6500 lines of C++;

2 Support library: 8000 lines of Coq proofs.

Perspective: adapt Gappa and write support libraries
for other proof checkers: HOL light, PVS, . . .

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Realizations Perspectives

Realizations

It has been successfully used for implementing

robust floating-point filters in CGAL,

correctly-rounded elementary functions in CRlibm,

efficient hardware arithmetic operators,

etc.

What users say about Gappa:

Higher confidence. Faster development.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Realizations Perspectives

Realizations

It has been successfully used for implementing

robust floating-point filters in CGAL,

correctly-rounded elementary functions in CRlibm,

efficient hardware arithmetic operators,

etc.

What users say about Gappa:

Higher confidence. Faster development.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Realizations Perspectives

Limitations and perspectives of Gappa

Gappa focuses on arithmetic properties of real expressions:

no arrays of numbers,

no loops nor conditional execution.

Perspective: interface Gappa with generic certification tools.

Gappa manipulates predicates with numerical parameters:

no generic error computation for fixed<n,dir> roundings,

no symbolic domains of expressions.

Perspective: introduce some symbolic computations in Gappa.

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Realizations Perspectives

Limitations and perspectives of Gappa

Gappa focuses on arithmetic properties of real expressions:

no arrays of numbers,

no loops nor conditional execution.

Perspective: interface Gappa with generic certification tools.

Gappa manipulates predicates with numerical parameters:

no generic error computation for fixed<n,dir> roundings,

no symbolic domains of expressions.

Perspective: introduce some symbolic computations in Gappa.

Guillaume Melquiond From interval arithmetic to program certification

Gappa scripts Rounding to odd New operators Bibliography

Appendix

6 Gappa scripts

7 Rounding to odd

8 Adding operators to improve evaluation

9 Bibliography

Guillaume Melquiond From interval arithmetic to program certification

Intersection and union

1 x = int <dn >(x_);
2 y = int <dn >(y_);
3

4 { |x| <= 100 /\ |y| <= 100 /\ x * y <= 0
5 -> |x + y| <= 100 }
6

7 $ x in (-0.5 ,0.5), y in (-0.5 ,0.5);

Return

User-defined rewriting rules

1 d = fixed <-24,dn >(d_);
2 r0 = fixed <-8,dn >(r0_);
3

4 r1 fixed <-14,dn >=
5 r0 * (2 - fixed <-16,dn >(d) * r0);
6 r2 fixed <-30,dn >= r1 * (2 - d * r1);
7

8 { |r0 - 1/d| <= 1b-8 /\ d in [0.5 ,1]
9 -> r2 - 1/d in ? }

10

11 r1 ~ r0 * (2 - d * r0);
12 r0 * (2 - d * r0) - 1/d ->
13 (r0 - 1/d) * (r0 - 1/d) * -d;
14

15 r2 ~ r1 * (2 - d * r1);
16 r1 * (2 - d * r1) - 1/d ->
17 (r1 - 1/d) * (r1 - 1/d) * -d;

Return

Adding atomic operators to improve interval evaluation

1 { u in [1 ,100] /\ v in [1 ,100] /\
2 |(ut - u) / u| <= 0.1 /\
3 |(vt - v) / v| <= 0.2
4 -> (ut * vt - u * v) / (u * v) in ? }

CGAL floating-point filter (partly certified with Gappa)

1 double pqx = qx - px , pqy = qy - py;
2 double prx = rx - px , pry = ry - py;
3 double det = pqx * pry - pqy * prx;
4

5 double maxx = max(abs(pqx), abs(prx));
6 double maxy = max(abs(pqy), abs(pry));
7 double eps = 8.8872057372592758e-16 * maxx * maxy;
8 if (maxx > maxy) swap(maxx , maxy);
9

10 if (maxx < 1e -146) {
11 if (maxx == 0) return ZERO;
12 } else if (maxy < 1e153) {
13 if (det > eps) return POSITIVE;
14 if (det < -eps) return NEGATIVE;
15 }
16 return UNKNOWN;

Gappa scripts Rounding to odd New operators Bibliography

Rounding to odd and accurate algorithms

Rounding to odd:

�(x) =


x if x is representable by a FP number,
4(x) if the mantissa of 4(x) is odd,
5(x) otherwise.

Less accurate than rounding to nearest, but satisfy the
double-rounding property: ◦p(�p+k(x)) = ◦p(x).

Application: correctly-rounded sum s of 3 FP numbers.

b ca

uh + ul

vh + vl

t = �(vl + ul)

s = ◦(vh + t)

Guillaume Melquiond From interval arithmetic to program certification

Gappa scripts Rounding to odd New operators Bibliography

Rounding to odd and accurate algorithms

Rounding to odd:

�(x) =


x if x is representable by a FP number,
4(x) if the mantissa of 4(x) is odd,
5(x) otherwise.

Less accurate than rounding to nearest, but satisfy the
double-rounding property: ◦p(�p+k(x)) = ◦p(x).

Application: correctly-rounded sum s of 3 FP numbers.

b ca

uh + ul

vh + vl

t = �(vl + ul)

s = ◦(vh + t)

Guillaume Melquiond From interval arithmetic to program certification

Gappa scripts Rounding to odd New operators Bibliography

Rewriting expressions to reduce decorrelation

Example: compute the range of ũ·ṽ−u·v
u·v knowing that

values are correlated:
∣∣ ũ−u

u

∣∣ ≤ 0.1 and
∣∣ ṽ−v

v

∣∣ ≤ 0.2.

Solution: make correlations explicit.

ũ · ṽ − u · v
u · v

=
ũ − u

u
+

ṽ − v

v
+

ũ − u

u
· ṽ − v

v

Interval evaluation:

ũ · ṽ − u · v
u · v

∈ [−0.1, 0.1] + [−0.2, 0.2] + [−0.1, 0.1] · [−0.2, 0.2]

∈ [−0.32, 0.32]

But there is still a correlation:

ũ − u

u
+

ṽ − v

v
+

ũ − u

u
· ṽ − v

v

Guillaume Melquiond From interval arithmetic to program certification

Gappa scripts Rounding to odd New operators Bibliography

Adding atomic operators to improve interval evaluation

Goal: a tight range of p + q + p · q with p ∈ [p, p] and q ∈ [q, q].

Rewriting: p + q + p · q = (1 + p) · (1 + q)− 1.

No correlated expressions anymore, but high precision required.

Symbolic interval evaluation assuming p ≥ −1 and q ≥ −1:

p + q + p · q ∈ [1 + p, 1 + p] · [1 + q, 1 + q]− [1, 1]

∈ [(1 + p) · (1 + q)− 1, (1 + p) · (1 + q)− 1]

∈ [p + q + p · q, p + q + p · q]

Back to the previous example:

ũ · ṽ − u · v
u · v

∈ [−0.28, 0.32]

Guillaume Melquiond From interval arithmetic to program certification

Gappa scripts Rounding to odd New operators Bibliography

Adding atomic operators to improve interval evaluation

Goal: a tight range of p + q + p · q with p ∈ [p, p] and q ∈ [q, q].

Rewriting: p + q + p · q = (1 + p) · (1 + q)− 1.

No correlated expressions anymore, but high precision required.

Symbolic interval evaluation assuming p ≥ −1 and q ≥ −1:

p + q + p · q ∈ [1 + p, 1 + p] · [1 + q, 1 + q]− [1, 1]

∈ [(1 + p) · (1 + q)− 1, (1 + p) · (1 + q)− 1]

∈ [p + q + p · q, p + q + p · q]

Back to the previous example:

ũ · ṽ − u · v
u · v

∈ [−0.28, 0.32]

Guillaume Melquiond From interval arithmetic to program certification

Gappa scripts Rounding to odd New operators Bibliography

Adding atomic operators to improve interval evaluation

Goal: a tight range of p + q + p · q with p ∈ [p, p] and q ∈ [q, q].

Rewriting: p + q + p · q = (1 + p) · (1 + q)− 1.

No correlated expressions anymore, but high precision required.

Symbolic interval evaluation assuming p ≥ −1 and q ≥ −1:

p + q + p · q ∈ [1 + p, 1 + p] · [1 + q, 1 + q]− [1, 1]

∈ [(1 + p) · (1 + q)− 1, (1 + p) · (1 + q)− 1]

∈ [p + q + p · q, p + q + p · q]

Back to the previous example:

ũ · ṽ − u · v
u · v

∈ [−0.28, 0.32]

Guillaume Melquiond From interval arithmetic to program certification

Gappa scripts Rounding to odd New operators Bibliography

Adding atomic operators to improve interval evaluation

Goal: a tight range of p + q + p · q with p ∈ [p, p] and q ∈ [q, q].

Rewriting: p + q + p · q = (1 + p) · (1 + q)− 1.

No correlated expressions anymore, but high precision required.

Symbolic interval evaluation assuming p ≥ −1 and q ≥ −1:

p + q + p · q ∈ [1 + p, 1 + p] · [1 + q, 1 + q]− [1, 1]

∈ [(1 + p) · (1 + q)− 1, (1 + p) · (1 + q)− 1]

∈ [p + q + p · q, p + q + p · q]

Back to the previous example:

ũ · ṽ − u · v
u · v

∈ [−0.28, 0.32]

Guillaume Melquiond From interval arithmetic to program certification

Gappa scripts Rounding to odd New operators Bibliography

Bibliography I

I Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion.

The Boost interval arithmetic library.

In Proceedings of the 5th Conference on Real Numbers and Computers, pages 65–80, Lyon,

France, 2003.

I Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion.

The design of the Boost interval arithmetic library.

Theoretical Computer Science, 351:111–118, 2006.

I Marc Daumas and Guillaume Melquiond.

Generating formally certified bounds on values and round-off errors.

In Vasco Brattka, Christiane Frougny, and Norbert Müller, editors, Proceedings of the 6th

Conference on Real Numbers and Computers, pages 55–70, Schloß Dagstuhl, Germany, 2004.

I Marc Daumas, Guillaume Melquiond, and César Muñoz.

Guaranteed proofs using interval arithmetic.

In Paolo Montuschi and Eric Schwarz, editors, Proceedings of the 17th IEEE Symposium on

Computer Arithmetic, pages 188–195, Cape Cod, MA, USA, 2005.

I Guillaume Melquiond and Sylvain Pion.

Formally certified floating-point filters for homogeneous geometric predicates.

Theoretical Informatics and Applications, to be published.

Guillaume Melquiond From interval arithmetic to program certification

Gappa scripts Rounding to odd New operators Bibliography

Bibliography II

I Sylvie Boldo, Marc Daumas, William Kahan, and Guillaume Melquiond.

Proof and certification for an accurate discriminant.

In Proceedings of the 12th GAMM - IMACS International Symposium on Scientific Computing,

Computer Arithmetic and Validated Numerics, Düsseldorf, Germany, 2006.

I Sylvie Boldo and Guillaume Melquiond.

When double rounding is odd.

In Proceedings of the 17th IMACS World Congress on Computational and Applied

Mathematics, Paris, France, 2005.

I Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion.

Proposing Interval Arithmetic for the C++ Standard.

In Proceedings of the 12th GAMM - IMACS International Symposium on Scientific Computing,

Computer Arithmetic and Validated Numerics, Düsseldorf, Germany, 2006.

I Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond.

Assisted verification of elementary functions using Gappa.

In Proceedings of the 2006 ACM Symposium on Applied Computing, pages 1318–1322, 2006.

I Guillaume Melquiond and Sylvain Pion.

Formal certification of arithmetic filters for geometric predicates.

In Proceedings of the 17th IMACS World Congress on Computational and Applied

Mathematics, Paris, France, 2005.

Guillaume Melquiond From interval arithmetic to program certification

Gappa scripts Rounding to odd New operators Bibliography

Bibliography III

I Sylvie Boldo and Guillaume Melquiond.

Emulation of a FMA and correctly-rounded sums: proved algorithms using rounding to odd.

Research Report HAL inria-00080427, 2006.

Submitted to IEEE Transactions on Computers

I Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion.

A proposal to add interval arithmetic to the C++ standard library.

Technical Report 2137, C++ standardization committee, 2006.

I Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion.

Bool set: multi-valued logic.

Technical Report 2136, C++ standardization committee, 2006.

Guillaume Melquiond From interval arithmetic to program certification

	Introduction
	Motivation
	Example: orientation of three points
	The Gappa tool

	Bounding expressions
	Numeric intervals
	Example: square root for proof checkers
	Standardizing interval arithmetic
	Computing bounds

	Rounded computations
	Rounding operators
	Floating-point arithmetic
	Fixed-point arithmetic
	Predicates and exact computations

	Propagating errors
	Correlated expressions and interval evaluation
	Rewriting expressions
	User-defined rewriting rules

	Conclusion
	Realizations
	Perspectives

	Appendix
	Gappa scripts
	Rounding to odd
	Adding operators to improve evaluation
	Bibliography

