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Abstract. We prove that the constant δ studied by Masser, Gramain, and Weber, satisfies
1.819776 < δ < 1.819833, and disprove a conjecture of Gramain. This constant is a two-
dimensional analogue of the Euler-Mascheroni constant; it is obtained by computing the
radius rk of the smallest disk of the plane containing k Gaussian integers. While we have
used the original algorithm for smaller values of k, the bounds above come from methods
we developed to obtain guaranteed enclosures for larger values of k.

1. Introduction

The Masser-Gramain constant δ is a two-dimensional generalization of the Euler-Mascheroni
constant:

δ = lim
n→∞

(
n∑
k=2

1

πr2k
− log n

)
,

where rk is the minimum radius of a closed disk containing at least k points with integer
coordinates — we will say in the following “integer points” — where the center of the disk
is not necessarily an integer point. Gramain and Weber showed in [5]:

1.811447299 < δ < 1.897327117,

and Gramain conjectured that δ = 1 + 2 log π − log 2 + 2γ − 2 logL, where γ is Euler-
Mascheroni’s constant and L = 2

∫ 1

0
dx/
√

1− x4 is Gauss’ lemniscate constant, which would
give δ ≈ 1.822825 [4].

Using new theoretical results, new algorithms, and intensive computations, we improve
the result of Gramain and Weber to

1.819776 < δ < 1.819833,

which disproves Gramain’s conjecture. We used an exact computation of rk up to k = 106−1,
using essentially the same algorithm as Gramain and Weber, but using a multi-core cluster
during several weeks. For 106 ≤ k < 109, we used the bisection algorithm described in §4,
which gives for each value of k a tight interval enclosing rk. Finally for k ≥ 109 we used
a new analytic lower bound on rk described in §3, which is an original result by itself. In
§2 we give an improved analytic lower bound on rk, which was used in our computation
only to initialize the bisection method from §4; however the way this lower bound is derived
is original and might also be useful in other contexts. In their work, Gramain and Weber
performed exact computations up to k = 1400 and then used analytic bounds on rk.

The first values of the rk sequence are r2 = 1/2, r3 = r4 =
√

2/2, r5 = 1, r6 =
√

5/2,
r7 = 5/4, r8 = r9 =

√
2. Notice that, for those small values of k, the squared radius r2k is

rational; this is true for all values of k [5]. The classical way to get an enclosure for δ is
first to get an enclosure for the partial sum sn :=

∑n
k=2 1/(πr2k), and then to use an analytic
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enclosure for the tail from n+1 to∞. To get a tight analytic enclosure, we need tight upper
and lower bounds for rk. Gramain and Weber in [5] used a lower bound of Chaix for the
radius rk (to simplify, we use r instead of rk whenever there is no ambiguity):

Lemma 1 (Chaix [2]). For k > 1.364 · 107, k < πr2 + 30.84274723 r2/3.

We will prove in §3 a tighter result:

Lemma 2. For r ≥ 5, we have k < πr2 + 7.213r2/3 + 1.5r1/2.

For k ≥ 109, which implies r > 17841 from Lemma 1, it follows k < πr2 + 7.507r2/3.

There is a simple upper bound on the radius that is used in most proofs. This is the same
property as Proposition 3 from [5]; the idea of its proof is reproduced here for completeness.
Note that experiments from §4 have shown that this bound is hard to improve on.

Lemma 3. For k ≥ 2, we have r <
√

k−1
π
.

Proof. This is an immediate corollary of a theorem by Pólya and Szegö [8] that states that
any compact domain of area A can be translated so that it contains bAc+ 1 points. �

Once we have a partial sum sn, the following main theorem makes use of the bounds from
Lemmas 2 and 3 to produce an enclosure of δ.

Theorem 1. Assume k < πr2 + αr2/3 holds for k ≥ 109 and some α < 30.85. Then for
n ≥ 109, we have:

sn − log n+
1

2n
< δ < sn − log

(
n+

1

2

)
+

β

n2/3
,

for any β ≥ 1.0242 · α. In particular for α = 7.507 (Lemma 2) we can take β = 7.69.

Proof. From the main theorem in [5]:

δ > (sn − log n) + lim
N→∞

(
log

n

N + 1
+

N∑
k=n

1

k

)
.

Now consider n fixed, and let N tend to infinity. Let ψ be the digamma function, that is, the
logarithmic derivative of the Γ function. Since the sum

∑N
k=n 1/k equals ψ(N + 1)− ψ(n),

and limN→∞ ψ(N + 1)− log(N + 1) = 0, we get δ ≥ sn − ψ(n). Since log n > ψ(n) + 1/(2n)
for n ≥ 1, this proves the lower bound.

From the hypothesis k < πr2 + αr2/3, and r <
√
k/π by Lemma 3, we deduce

1

πr2
<

1

k − α(k/π)1/3
=

1

k

(
1 +

α

k2/3π1/3

(
1− α

k2/3π1/3

)−1)
<

1

k
+

2β

3k5/3
.

It follows for N > n ≥ 109:

δ ≤ sn + lim
N→∞

(
− logN +

N∑
k=n+1

1

k
+

2β

3k5/3

)
< sn − ψ(n+ 1) +

∫ ∞
n

2β

3k5/3
dk

= sn − ψ(n+ 1) +
β

n2/3
< sn − log(n+ 1/2) +

β

n2/3
,

since ψ(n+ 1/2) > log n for n ≥ 1. �

We describe in §3 how the analytic lower bound from Lemma 2 was obtained.
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2. An improved analytic lower bound on rk

2.1. Relating disk radius and number of integer points. Let us consider a disk of area
πr2 containing k integer points. The disk is first split into four quadrants according to the
horizontal and vertical lines going through its center. The four quadrants and the integer
points they contain1 are then moved away. A cross of area 4r + 1 is placed between them.

Figure 1. A disk of area πr2 is first expanded by adding a cross of area 4r+1.
Then k unit squares are attached to the k integer points of the disk. The
bijection between squares and integer points is represented by gray triangles
showing which square corners are attached to which integer points.

Unit squares can now be embedded in the expanded disk and placed at integer coordinates.
There are exactly k such squares. This is shown on Figure 1 by associating to each integer
point a square. A point in the upper right quadrant gets the square whose upper right corner
is at this integer point. The process is symmetric for the other quadrants. The added cross
ensures that points near the horizontal and vertical diameters do not share squares.

Let T ′ be the area of the expanded disk that is not occupied by squares. The equality
πr2 + 4r + 1 = k + T ′ holds. If we consider only the area T of the original disk which does
not contain squares, we get the following relation instead, where 0 ≤ T ′−T < 4 corresponds
to the area of the added cross which is not occupied by squares:

πr2 + 4r + 1 ≥ k + T.

2.2. Bounding the disk border. In Proposition 4 from [5], the authors consider convex
curvilinear right-angled triangles of width 1 to obtain a lower bound on the area T . However,
they use triangles of heights 1 and 2 only. Here, we consider simple right-angled triangles
only, but of any height. The height might not even be an integer, as shown on Figure 2.

Lemma 4. If a disk of radius r contains k ≥ 5 integer points, then k < πr2 + 4r + 1 − T
with

T/4 ≥ −2
√
r − 1 + r/

√
2.

1If an integer point is on the border between several quadrants, an arbitrary one is chosen as its container,
for instance the rightmost and/or topmost one.
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Figure 2. Filling the disk border of the first octant with right triangles of
noninteger heights. In the proof of Lemma 4, the height of the triangles will
not be that optimal.

Proof. Let x + iy be the center of a disk of radius r. Let (ui)0≤i≤n be a finite increasing
sequence of real numbers with u0 ≥ 1. For s ≥ 1, we define αs := r cos arctan(1/s) =
rs/
√
s2 + 1.

Between abscissas dx+ αuie and dx+ αui+1
e, triangles of height ui can be used to fill the

disk border. Indeed, by definition of αs, at the right of x+ αs, the tangent of the disk is of
slope larger than s (in absolute value).

Similarly, between abscissas dx+ αune and bx+ rc, triangles of height un can be placed.2

The cumulated area of all these triangles between dx+αu0e and bx+ rc is a lower bound on
the area of the border of the first octant. Twice this cumulated area is given by

(bx+ rc − dx+ αune)un +
n−1∑
i=0

(
dx+ αui+1

e − dx+ αuie
)
ui.

After distributing the terms, one gets

bx+ rcun − dx+ αu0eu0 −
n∑
i=1

dx+ αuie(ui − ui−1),

which can be minored by

(x+ r − 1)un − (x+ αu0 + 1)u0 −
n∑
i=1

(x+ αui + 1)(ui − ui−1).

Simplifying this lower bound removes the dependency on x. So the bound holds for all the
other octants as well, which leads to the inequality

T/4 ≥ (r − 2)un − αu0u0 −
n∑
i=1

αui(ui − ui−1).

2The last two abscissas may end up inverted: bx + rc < dx + αun
e. Let us take the biggest i such that

dx+αuie = bx+rc. The inversion causes us to count one too many triangle of slope ui, while we are counting
backward a single triangle of slope un. Since un ≥ ui, both miscounted triangles compensate themselves and
do not invalidate the proof.
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An interesting family of (ui) sequences is (i/j + 1)0≤i≤(m−1)j for any j ≥ 1 and for any real
number m ≥ 1, as the inequality then becomes

T/4 ≥ (r − 2)m− r√
2
− 1

j

(m−1)j∑
i=1

αi/j+1.

The rightmost sum is a Riemann sum of the Riemann-integrable function α on the interval
[1,m], so it tends toward the integral when j tends to infinity. Since the inequality holds for
any j, it also holds at the limit:

T/4 ≥ (r − 2)m− r√
2
−
∫ m

1

αs ds = (r − 2)m− r√
2
−
(√

1 +m2 −
√

2
)
r.

The lower bound reaches its maximum for m = r−2
2
√
r−1 . Injecting this special value of m in

the formula gives the lower bound of Lemma 4. �

Corollary 1. The radius of a disk containing k integer points is bigger than the positive
root r of the quadratic equation

πr2 + 2r
(

2−
√

2
)

+
(

1− k + 8
√
ρ− 1

)
= 0 with ρ =

√
k − 1

π
.

Proof. Let r be the minimal radius of a disk containing k integer points. Lemma 4 states
the inequality

πr2 + 2r
(

2−
√

2
)
> k − 1− 8

√
r − 1.

We can substitute for the rightmost r any of its upper bounds without invalidating the
inequality above. In particular, we can use

√
(k − 1)/π, in order to prove the corollary. �

For k = 106, this gives r > 563.949. This new bound is better than Chaix’s bound for
k ≤ 759 267 778, and better than the bound given by Lemma 2 for k ≤ 1439, which again
shows that Lemma 2 is more useful for the computation of δ.

3. A tight analytic lower bound on rk

Lemma 5. For real x ≥ 0 and arbitrary ~c = (c1, c2) ∈ R2, let C(x;~c) denote the compact
circular disc with center ~c and radius x, and A(x;~c) the number of integer points contained
therein. Then it follows that, for x ≥ 5,∣∣A(x;~c)− πx2

∣∣ ≤ 7.213x2/3 + 1.5x1/2 .

Proof. We put ε := b
x1/3

, with a positive constant b at our disposal, and K = (3π)−2/3ε−1.

Further, we write χM for the indicator function of any set M ⊆ R2, and | · | for the Euclidean
norm in R2. The strategy is to approximate χC(x;~c) by a smooth function, obtained by
convolution (denoted by ∗) with δ := (πε2)−1χC(ε;~o), where ~o = (0, 0) ∈ R2.

We first claim that

(1) χC(x−ε;~c) ∗ δ ≤ χC(x;~c) ≤ χC(x+ε;~c) ∗ δ
throughout. A geometric intuition of these inequalities can be seen on Figure 3. Indeed,
(χC(y;~c) ∗χC(ε;~o))(~u) is the area of the intersection between the two disks C(y;~c) and C(ε; ~u).
The constant (πε2)−1 in the definition of δ ensures that the value (χC(y;~c)∗δ)(~u) is normalized
between 0 and 1.
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Figure 3. Intersections between C(x ± ε;~c) and C(ε; ~u). The grayed areas
are proportional to the values of the lower and upper convolutions χC(x±ε;~c) ∗ δ
for the two points of the middle figure, one inside the disk, the other outside.

More formally, the two inequalities of Equation (1) can be verified by distinguishing two
cases.

Case 1: ~u /∈ C(x;~c). Thus |~u − ~c| > x. If δ(~v) 6= 0, then |~v| ≤ ε, hence |~u − ~c + ~v| >
x − ε, therefore χC(x−ε;~c)(~u + ~v) = 0. Thus δ(~v)χC(x−ε;~c)(~u + ~v) = 0 for all ~v ∈ R2, hence
(χC(x−ε;~c) ∗ δ)(~u) = 0. The right-hand part of Equation (1) is trivial since χC(x;~c)(~u) = 0.

Case 2: ~u ∈ C(x;~c). Thus |~u − ~c| ≤ x. If δ(~v) 6= 0, then |~v| ≤ ε, hence |~u − ~c + ~v| ≤
x + ε, therefore χC(x+ε;~c)(~u + ~v) = 1. Thus δ(~v)χR2\C(x+ε;~c)(~u + ~v) = 0 for all ~v ∈ R2,
hence (χR2\C(x+ε;~c) ∗ δ)(~u) = 0, consequently (χC(x+ε;~c) ∗ δ)(~u) = 1. The left-hand part of
Equation (1) is trivial since χC(x;~c)(~u) = 1.

We sum up Equation (1) over all integer points of Z2:∑
~m∈Z2

(χC(x−ε;~c) ∗ δ)(~m) ≤ A(x;~c) ≤
∑
~m∈Z2

(χC(x+ε;~c) ∗ δ)(~m) .

By applying the multidimensional Poisson’s formula (see Bochner [1]) to both sides, we get
the following formula, where ·̂ denotes the Fourier transform:

(2)
∑
~m∈Z2

χ̂C(x−ε;~c)(~m)δ̂(~m) ≤ A(x;~c) ≤
∑
~m∈Z2

χ̂C(x+ε;~c)(~m)δ̂(~m) .

Obviously, δ̂(~o) = 1, and χ̂C(x±ε;~c)(~o) = π(x±ε)2. Writing ~z ·~u for the standard inner product
in R2, and e(w) := e2πiw as usual, we define, for ~z ∈ R2,

I(~z) :=

∫
|~u|≤1

e(~z · ~u)d~u .

Then, for ~o 6= ~m ∈ Z2,

δ̂(~m) =
1

π
I(ε~m) , χ̂C(x±ε;~c)(~m) = e(~c · ~m)(x± ε)2I((x± ε)~m) .

Thus we conclude from Equation (2) that

(3)
∣∣A(x;~c)− πx2

∣∣ ≤ π(2xε+ ε2) + max
R=x±ε

∆(R) ,
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where, for R = x± ε,

∆(R) :=
R2

π

∑
~o 6=~m∈Z2

|I(R~m)| |I(ε~m)| .

Evaluating I(~z), we get

|I(~z)| = 2

∣∣∣∣∣∣
1∫

−1

√
1− v2 e(|~z|v)dv

∣∣∣∣∣∣ =
|J1(2π|~z|)|
|~z|

,

where J1 is a Bessel function of the first kind. Now

(4) max
w>0

∣∣J1(w)
√
w
∣∣ = 0.82503 . . . .

It is clear by inspection of a graph of J1(w)
√
w that the global maximum is attained at the

first relative extremum wmax = 2.16587 . . . ; A rigorous proof can be based on the well-known
asymptotics

J1(w)
√
w =

√
2

π
cos

(
w − 3π

4

)
+O(w−1) ,

where the O-term can be bounded explicitly according to Gradshteyn and Ryzhik [3], formula

8.451. Note that
√

2/π = 0.79788 . . . .
Now Equation (4) implies that

|I(~z)| ≤ 0.83(2π)−1/2|~z|−3/2 < 1

3
|~z|−3/2 ,

hence, for R = x± ε,

|∆(R)| ≤ (x+ ε)1/2

3π

∑
~o 6=~m∈Z2

|~m|−3/2 min

(
1

3
(ε|~m|)−3/2, π

)
,

taking into account also the trivial estimate I(ε|~m|) ≤ π. We split up this sum according to
whether |~m| is less or greater than K = (3π)−2/3ε−1, as defined earlier. Thus,

|∆(R)| ≤ (x+ ε)1/2

3π

π ∑
~m∈Z2: 1≤|~m|≤K

|~m|−3/2 +
1

3ε3/2

∑
~m∈Z2: |~m|>K

|~m|−3


= (x+ ε)1/2

1

3

K+∫
1−

dA∗(w)

w3/2
+

1

9πε3/2

∞∫
K+

dA∗(w)

w3

 ,

where A∗(w) := A(w;~o) − 1, and Stieltjes integrals have been used. Integrating by parts,
and using the inequality (x+ ε)1/2 <

√
x+ ε/(2

√
x), we infer that

(5) |∆(R)| ≤
(√

x+
ε

2
√
x

)1

2

K∫
1

A∗(w)

w5/2
dw +

1

3πε3/2

∞∫
K

A∗(w)

w4
dw

 .
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It is easy to give a crude bound for A∗(w): Observe that, for any w ≥ 0,⋃
~m∈Z2: |~m|≤w

(
~m+

[
−1

2
,
1

2

]2)
⊆ C

(
w +

√
2

2
;~o

)
,

then it is immediate that

A∗(w) ≤ π

(
w +

√
2

2

)2

− 1 .

We use this in Equation (5), evaluate the integrals, recall Equation (3) and the definitions of
K and ε. After carrying out all of these routine calculations, preferably supported by some
symbolic computation software, we obtain a bound for |A(x;~c)− πx2| with leading term(

2πb+
2(3π)2/3

3
√
b

)
x2/3 .

Here the coefficient of x2/3 attains its minimum for b = 1
6
(17496

π2 )1/9 = 0.382656 . . . . With this
choice of b, K > 1 for x ≥ 5. We thus obtain∣∣A(x;~c)− πx2

∣∣ ≤ 7.213x2/3 + 1.5
√
x− 2.9x1/3 +

1.38 . . .

x2/3
+

0.28 . . .

x5/6
− 0.55 . . .

x
.

From this, the assertion of the Lemma is immediate, since the sum of the last four terms is
negative for x ≥ 5. �

Remark. In its essence, this argument based on Fourier analysis and involving Poisson’s
formula is fairly standard; see, e.g., W. Müller [7] and the literature cited there. However,
there are just a very few papers which pay attention to an explicit and very careful estimation
of the constants involved: See, for instance, Krätzel and Nowak [6], where a weaker and less
general version of Lemma 5 has been established.

4. Approximating radii by bisection

We describe here an alternate method, which is useful when k is too large for an exact
computation of rk, but still small enough such that one can outperform the analytic bound
from Lemma 2. This method yields an enclosure ` ≤ rk ≤ h, where the bounds ` and h
can be made arbitrarily tight given sufficient computer power, as it ultimately amounts to
computing the optimal radius for each possible disk center.

For a given k, assume we want to show that rk > r for r fixed. If the center x + iy of
an optimal disk is known, this is easy: it suffices to count the number of integer points in
the disk of center x + iy and radius r. Now if we move slightly the center, the number of
integer points will not change much. Moreover, if the center is in a small rectangle around
x + iy, we can bound the number of integer points in the disk using interval arithmetic.
Since it suffices to consider 0 ≤ x ≤ y ≤ 1/2 using symmetry, we can divide this domain
in smaller subdomains, and hope that interval arithmetic will give a tight bound on the
number of integer points. Consequently, assuming these computations show that all the
disks of radius r have at most k − 1 integer points, we obtain rk > r.

For example for r = 563.873, and with the whole square 0 ≤ x, y ≤ 1/2, we get an upper
bound of 999994 integer points, which gives the lower bound rk > r for k ≥ 999995.
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With 10 recursive subdivisions (5 for each coordinate, thus considering squares of width
2−6) we get 564.169 < rk < 564.190 for k = 106.

In order to obtain an upper bound r on rk, one just has to find one disk of radius r
containing k or more integer points. More precisely, once an arbitrary point has been chosen
as the disk center, a binary search on possible values of r will compute the minimal radius
at this point — to get k or more integer points — and therefore an upper bound on rk. In
practice, corners of the subdivision used for getting a lower bound on rk are chosen as disk
centers.

The pseudo-code in Algorithm 1 sketches the algorithm used for finding a tight enclosure
of rk. Given k and an enclosure R of rk, function improve returns another enclosure,
hopefully tighter.

nb points(X = [x, x], Y = [y, y], r) =
bx+rc∑
j=dx−re

by + hjc − dy − hje with hj = sup
x∈[x,x]

√
r2 − (x− j)2

improve(k,R = [r, r]) =
assert rk ∈ R
let S a set of triples (Xi, Yi, Zi) initially empty
let z = z = r
insert ([0, 0.5], [0, 0.5], R) into S
while S is not empty

extract an element (Xi, Yi, Zi) from S
if yi ≤ xi or z ≤ zi or nb points(Xi, Yi, z) < k, then skip to next iteration
let r = zi and r = zi
increase r while keeping nb points(Xi, Yi, r) < k
decrease r while keeping nb points([xi, xi], [yi, yi], r) ≥ k
if Xi × Yi is small enough, then

z ← min(z, r)
z ← min(z, r)

else
split Xi × Yi into two smaller rectangles X ′ × Y ′ and X ′′ × Y ′′
insert (X ′, Y ′, [r, r]) and (X ′′, Y ′′, [r, r]) into S

return [z, z]
Algorithm 1. The bisection algorithm.

Here are a few remarks about this code. The nb points function is specified to return an
upper bound on the number of integer points contained in any disk of radius r and center
contained in X × Y . In the specific case where X and Y are singleton intervals (this case
occurs when decreasing r), the result is assumed to be exact in the algorithm.

The improve function stores in S all the rectangles that have yet to be handled. The
variable z is an upper bound on rk and it improves whenever a smaller disk containing k
integer points (or more) is encountered. The variable z is a lower bound on the radius of
all the disks containing at least k integer points whose center was in some already visited
“small enough” rectangle. Both of them are initialized to a value sufficiently big (they could
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be set to +∞) and they decrease over the course of the algorithm. The criteria we choose
for stopping recursion is detailed in §5 along our numerical results.

All the triples (Xi, Yi, Zi) stored in the set S satisfy the following invariant: any minimal
disk containing≥ k integer points with a center in the rectangle Xi×Yi has a radius contained
in Zi. For symmetry reasons, any triple with yi < xi is redundant and thus skipped. In
the algorithm, triples with yi = xi are skipped too. Indeed, for the same symmetry reasons,
the only interesting point from such a rectangle is (xi, yi); yet this point is also contained in
several other rectangles, e.g., [xi − ε, xi]× [xi − ε, xi], that will not be skipped.

Triples are also skipped when z ≤ zi or nb points(Xi, Yi, z) < k. These tests detect
whether no disk can decrease the lower bound z further. Potentially, these triples might
have still been able to improve the upper bound; skipping them is just a heuristic: the best
improvement of the upper bound will happen when the lower bound is improved, since they
are ultimately equal.

The performance of the algorithm will depend on the order triples are extracted from S
and how r and r are refined. Our implementation (depth-first extraction, coarse-grained
refinement) is probably not optimal.

5. Computation of δ

To obtain lower and upper bounds for δ, we proceed as follows. We choose an integer
m1 and we compute sm1 =

∑m1

k=2 1/(πr2k). Since r2k is rational, πsm1 is rational too and we
compute it exactly by rational arithmetic. The only rounding error for sm1 happens at the end
of the computation, when we divide it by an approximation of π. We got the following timings
on a 2.83Ghz Intel Core 2: r100000 was computed in 3.5s, r200000 in 12.1s, r500000 in 38.9s,
and r1000000 in 546.3s. As can be seen from these timings, the time complexity of computing
exact values does not make it practical to go much further, so we stop at m1 = 106−1. Using
a variant of Theorem 1 at this point, we get the enclosure 1.8197 < δ < 1.8206, which is
sufficient to disprove Gramain’s conjecture but does not give much more information about
the digits of δ than Gramain and Weber’s result.

So we choose another integer m2 = 109 − 1. For each k in (m1,m2], we compute a lower
bound for rk using Lemma 4, and an upper bound using Lemma 3. We then refine these
bounds with the bisection method described in Section 4. In our implementation, rectangles
Xi×Yi are bisected until their width reaches 2−17 or when the difference r−r is small enough
for the enclosure of 1/(πr2k) to be no wider than 10−5k−1.1 — this bound was experimentally
chosen to minimize the overall computation time. All the refined enclosures are computed
and summed with double-precision interval arithmetic, 1000 at a time for parallelization
purpose. Finally, all these partial sums are combined with enough precision to ensure that
no additional rounding error occurs. So the overall rounding error due to summation is
about 6 · 10−13, hence negligible. In the end, this gives us an interval enclosing sm2 − sm1 ,
and thus sm2 .

We use Theorem 1 to conclude:

1.81977613409613 < δ < 1.81983226978634.

The width of this interval is about 56 · 10−6. The contribution of the bisection algorithm
is 50 · 10−6, while the analytic estimate contributes the remaining 6 · 10−6.
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