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Mathematics, Proofs, and Computations

Helfgott’s proof of the ternary Goldbach conjecture

Every odd number greater than 5 is the sum of three primes.

(250+ pages of proofs, 1000+ hours of computations)

Long-term goal: get mathematicians to do formal proofs

Intermediate steps:

get them to use a proof assistant,
let them perform computations inside a proof assistant,

let them write their programs inside a proof assistant.

What about non-termination?

If an evaluation actually terminates,
why do we still need to prove that it terminates?
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Example: Factorial

Factorial over N = 1 + N
Fixpoint fact (n: nat): nat :=

match n with
| O => 1
| S n’ => n * fact n’
end.

Termination

Reason: recursive calls on a structurally decreasing argument.

Computations

Goal fact 15 = 1307674368000.
Proof. reflexivity. Qed.

Does not terminate in practice!
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Factorial, Faster

Factorial over Z = 1 + 2P, P = 1 + 2P
Fixpoint factZ (n: Z): Z :=

if Z.eqb n 0 then 1%Z
else Z.mul n (factZ (Z.pred n)).

No longer structurally decreasing. (Not even terminating in general.)

But factZ 15 would terminate!

Usual solution: provide some structurally decreasing fuel

Variant 1: prove beforehand that there is enough fuel,
e.g., provide a well-founded relation and an accessibility proof.

Variant 2: deal with a possibly stuck computation,
e.g., use the option monad.
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Factorial, the Hard Way

Lemma fact2_aux1 n: (0 <= n)%Z -> Z.eqb n 0 = false ->
(0 <= Z.pred n)%Z.

Proof. case Z.eqb_spec ; [easy|lia]. Qed.
Lemma fact2_aux2 n: (0 <= n)%Z -> Zwf 0 (Z.pred n) n.
Proof. unfold Zwf. lia. Qed.

Fixpoint factZ_aux (n: Z) (H: Z.le 0 n)
(W: Acc (Zwf 0) n): Z :=

( if Z.eqb n 0 as b return Z.eqb n 0 = b -> Z
then fun _ => 1%Z
else fun Hn =>

match W with
| Acc_intro _ W’ =>

Z.mul n (factZ_aux (Z.pred n)
(fact2_aux1 n H Hn) (W’ _ (fact2_aux2 n H)))

end
) eq_refl.

Definition factZ n (H: Z.le 0 n) :=
factZ_aux n H (Acc_intro_generator 20 (

Zwf_well_founded 0) n).

Eval compute in factZ 15 _.

Mahboubi, Melquiond Manifest Termination 5 / 11



Open Recursion and Computations

Open factorial over Z = 1 + 2P, P = 1 + 2P
Definition factZ (k: Z -> Z) (n: Z): Z :=

if Z.eqb n 0 then 1%Z
else Z.mul n (k (Z.pred n)).

factZ has type (Z → Z) → (Z → Z).
(More generally, F : (T → U) → (T → U).)

We want to compute “F ∗ x”, i.e., “(F ◦ · · · ◦ F ◦ . . . ) x”.

Bounded computations

Goal forall k, iter 100 factZ k 15 = 1307674368000%Z.
Proof. reflexivity. Qed.
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Next Step: Proving Something Interesting

Knowing “∀k , F n k x = y”, can we prove anything about y?

Example: (0 ≤ x ⇒ y = x!) for factZ.

Lemma nat_spec {T U} (F:(T->U)->T->U) (P:T->U->Prop):
(∃ f, ∀ x, P x (f x)) -> (*1*)
(∀ k x, (∀ y, P y (k y)) -> P x (F k x)) -> (*2*)
∀ n x y, (∀ h, Nat.iter n F h x = y) -> (*3*)
P x y.

Requirements

1 Some function satisfies the specification P.

2 P is an invariant of F .

3 The computation F ∗ x terminates.
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Manifest Termination

Back to factorial
Definition factZ (k: Z -> Z) (n: Z): Z :=

if Z.eqb n 0 then 1%Z
else Z.mul n (k (Z.pred n)).

Goal Z.of_nat (fact 15) = 1307674368000%Z.
Proof.
apply nat_spec with (F := factZ) (n := 20)

(P x y := Z.le 0 x -> Z.of_nat(fact(Z.to_nat x))=y).
- eexists; reflexivity.
- ... (* Z.of_nat is a morphism *)
- reflexivity.
Qed. (* axiom -free *)

It works just fine

But can we do without the hypothesis “∃f , ∀x , P x (f x)”?
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Going Further

A Constructive Fixed Point Combinator (Charguéraud 09)

Definition fixacc {T U} (dummy: U) (F: (T->U)->T->U)
(R: T->T->bool) (x: T) (W: Acc R x) :=

Acc_rect _ (fun u _ k =>
let k’ v := if R v u then k v _ else dummy in
F k’ u) W.

Just a fancy way of writing “F ∗ x”

“R v u” describes the call graph. It holds when

either F u was never called during the evaluation of F ∗ x ,
or F u performed a direct call to F v .

W proves that the graph rooted at x is finite, acyclic.
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Axioms! Lots of Axioms!

Assume the existence of a symbol

fixrel: ((T -> U) -> (T -> U)) -> T -> U -> Prop

such that (fixrel F x y) holds when F ∗ x ≡ y .

Axiom fixrel_spec: ∀ {T U} (F:(T->U)->T->U) x y,
fixrel F x y ->
∃ R,
(∀ u f1 f2, (∀ v, R v u -> f1 v = f2 v) ->

F f1 u = F f2 u) /\
∃ W: Acc R x,
∀ d, y = fixacc d F R x W.

Consistency

Does it need decidable equality on T?
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Conclusion

Using (non) terminating computations inside proofs

1 Prove “∀k, F n k x = y” by computation.

2 Compute then assume an accessibility witness.

Questions?

Can we get rid of the hypothesis “∃f , ∀x , P x (f x)”
in the generic lemma for the iterative version?

Is the axiomatic version more useful in practice?

It currently requires an ad-hoc proof for each F .
Can we find a generic lemma as with the iterative version?
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