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Abstract
Operation contracts consisting of pre- and postconditions are a
well-known means of specifying operations. In this paper we deal
with the problem of operation contract simulation, i.e., determining
operation results satisfying the postconditions based on input data
supplied by the user; simulating operation contracts is an important
technique for requirements validation and prototyping. Current ap-
proaches to operation contract simulation exhibit poor performance
for large sets of input data or require additional guidance from the
user. We show how these problems can be alleviated and describe
an efficient as well as fully automatic approach. It is implemented
in our tool OCLexec that generates from UML/OCL operation con-
tracts corresponding Java implementations which call a constraint
solver at runtime. The generated code can serve as a prototype. A
case study demonstrates that our approach can handle problem in-
stances of considerable size.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications

General Terms Algorithms, Performance

1. Introduction
Formal specifications are a well-known intermediate step between
the requirements document of a system and its implementation.
They state precisely and unambiguously the requirements that the
system has to meet. At the same time, a declarative specification
can be substantially more concise than an algorithmic description.

Methodologically, it is essential that errors and misunderstand-
ings during requirements analysis are discovered as soon as possi-
ble. It is much easier to correct such errors before they have lead to
a faulty implementation. Being among the first machine-readable
artefacts produced, formal specifications are an interesting target
for automated analysis aiming at requirements validation. A valu-
able approach to checking a specification is to simulate it, i.e.,
to perform computations that comply with the specification based
on user-provided input data. This technique is also called anima-
tion [14].

If support for simulation is available, users can validate require-
ments by simulating the specification on sample sets of input data
(scenarios). This is already possible before implementation of the
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system. For incomplete, faulty or inadequate specifications, simu-
lation will typically lead to strange and alarming results. In contrast
to automatically generated test cases, simulation based on user-
supplied input avoids scenarios that are too artificial. Simulation
can help users gain confidence in the specification by allowing the
execution of scenarios that are common for the application domain.

Simulation is particularly powerful if it is accomplished by
generating a prototype implementation. The generated code can
be linked with components of the system that are already finished.
This allows the system to be tested as a whole, although some of
its parts are not yet available. It may even be possible to entirely
omit the manual implementation of certain operations if they can
be animated efficiently enough.

The contributions of this paper are an improved simulation
method and its implementation in the tool OCLexec1 which an-
imates specifications written in the Object Constraint Language
(OCL [30]). OCL is a textual language complementing UML. Our
simulation method processes operation contracts, which are a ma-
jor constituent of many formal specifications. Operation contracts
consist of pre- and postconditions that express under which cir-
cumstances an operation may be called and what a correct imple-
mentation of it needs to accomplish. Besides OCL, a prominent
language for formal operation contracts is the Java Modeling Lan-
guage (JML [8]), an annotation language for Java programs.

For simulating an operation contract, the user supplies a system
state in which the operation is called and provides any arguments
to the operation. Simulation yields a new state and if necessary a
return value satisfying the postconditions and any other restrictions
stated in the specification such as class invariants. The challenge
of animation is to compute a concrete post-state although postcon-
ditions only express abstractly which states are admissible but not
necessarily how they can be constructed. We think that simulation
support for UML/OCL operation contracts is a useful complement
to existing methods for executing other UML model constituents
like statecharts or action language code.

Analysis methods for operation contracts are often based on
a translation of the specification language to a representation that
can be processed with a constraint solver. We observe that existing
constraint solving approaches for operation contracts have some
significant drawbacks, in particular concerning their suitability for
simulation. One fundamental problem with such approaches is that
they rely on user-supplied bounds on integer values, numbers of
class instances and collection sizes. These bounds are necessary
in order to sufficiently instantiate quantified constraints. This is
clearly a burden and, in particular, a considerable obstacle to the
integration of animated operations with other code. As a solution,
we propose a simplified intermediate representation for constraints
that allows for a unified treatment of the different kinds of bounds.
We observe that some values do not need to be bounded. For the

1 http://www.pst.ifi.lmu.de/Research/
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remaining values we try increasingly larger ranges until animation
results can be obtained.

Efficiency is another aspect of constraint solving that is essen-
tial for simulation. Note that approaches for other types of analysis
have somewhat different performance objectives. Test case genera-
tion, for example, usually only requires system states that are just
large enough to satisfy a certain property. When simulating, how-
ever, users may well want to call an operation in a complex state
with numerous objects. Common constraint solving approaches ex-
hibit poor efficiency for these kinds of problems. We present opti-
mization techniques that enable an animator to cope with system
states of considerable size.

The paper is organized as follows. In Section 2 we present sim-
ulation of UML/OCL operation contracts by means of a case study.
Section 3 describes a preliminary analysis of operation contracts
that narrows down the set of classes for which new instances may
need to be created and the set of constraints that need to be con-
sidered for animation. Section 4 introduces arithmetic formulas
with bounded quantifiers as an intermediate representation of con-
straints. The translation of OCL constraints to arithmetic formu-
las is outlined. In Section 5 we describe our constraint solving ap-
proach for arithmetic formulas with bounded quantifiers and show
how it is made suitable for simulation. Section 6 gives experimen-
tal results for OCLexec. After reviewing related work in Section 7,
we conclude and present some ideas for future work in Section 8.

2. A Case Study
In this section we present an example of a specification that could
benefit from simulation.

2.1 The Task
Figure 1 shows an excerpt from a possible UML model of a com-
pany. Employees are temporarily assigned to customers to carry out
the customers’ orders. Customers specify the skills that they would
like the employee to have for handling their order (association end
requestedSkills). Also, employees may give a list of customers
that they prefer to work for (attribute preferredCustomers).

A task of the system which we are specifying is to perform an
adequate assignment of employees to customers. What is sought
is an assignment that respects the preferences of both the cus-
tomers and the employees. This kind of assignment problem can
be regarded as an instance of the prominent stable marriage prob-
lem [17]. The term stable marriage is inspired by the idea of match-
ing men to women in a consistent manner. It is well-known that if
the numbers of men and women are equal, it is always possible to
find a stable assignment, i.e., an assignment in which no man and
woman leave their assigned partners in order to form a new cou-
ple because they both prefer their new partner to the one that was
assigned to them.

2.2 OCL in a Nutshell
Figure 2 shows an OCL operation contract of an operation
assignNewCustomers for performing a stable assignment of em-
ployees to customers. OCL is a textual language complementing
UML that can be used for specification tasks that are difficult or
impossible to accomplish with UML diagrams alone. OCL has a
variety of applications at different modeling levels. Here we use
OCL for querying and constraining UML system states. The eval-
uation of OCL expressions is free of side effects. OCL provides
convenient means for navigating across associations and retrieving
objects. In addition to user-defined classes and the primitive types
Boolean, Integer, Real and String, OCL offers the collection
types Set, Bag (i.e., multiset), Sequence and OrderedSet. The
OCL standard library provides numerous collection operations, in-

 
company

Skill

  name: String [1]

Employee

  name: String [1]
  preferredCustomers: Customer [*]
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  name: String [1]
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  assignNewCustomers(in Customer[*])
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  [*]
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  [*]

  [1]

Figure 1. Excerpt from a possible UML model of a company

cluding comprehensions (called collect in OCL) and quantifica-
tion over collections. Due to this focus on collection manipulation,
OCL somewhat resembles SQL.

Pre- and postconditions are OCL expressions of type Boolean.
A precondition has to be fulfilled when the operation is called and
a postcondition has to hold when the operation returns. An OCL
operation contract consists of an arbitrary number of pre- and post-
conditions. Another specification instrument are class invariants
that have to always hold for all objects of a certain class.

2.3 Anatomy of the Operation Contract
Since the the operation contract in Figure 2 is nontrivial, we explain
why it expresses the requirements. The precondition of the opera-
tion contract states that there are at least as many available employ-
ees, i.e., employees that are currently not assigned to a customer,
as customers that are supposed to be matched. This condition is ob-
viously necessary for the existence of any assignment of available
employees to all new customers. As mentioned above, this condi-
tion is also sufficient for the existence of a stable assignment. In
the precondition, we use the built-in operation oclIsUndefined
for testing whether the value of the customer attribute of an
Employee object is null or a reference to a Customer object. Us-
ing this test, we can form the set of available employees and apply
the built-in operation size to it.

The first postcondition of the operation contract asserts that
after completion of the operation all customers have in fact been
assigned to available employees. In this postcondition, first the set
of employees that were available in the pre-state but are no longer
available in the post-state is defined. Then we use the collect
comprehension of OCL to obtain the collection of customers that
are assigned to this set of employees. This collection is a bag, since
OCL semantics is based on the general case that several employees
may be assigned to the same customer, although this is excluded by
the multiplicities in the class diagram. We use the built-in operation



context Company::assignNewCustomers(newCustomers: Set(Customer)):

pre enoughEmployees: employees->select(customer.oclIsUndefined())->size() >= newCustomers->size()

post allCustomersAssigned:
employees@pre->select(customer@pre.oclIsUndefined() and not customer.oclIsUndefined())

->collect(customer)->asSet() = newCustomers

post assignmentStable:
employees@pre->select(customer@pre.oclIsUndefined())

->forAll(e | newCustomers->forAll(c |
let

matchedSkills : Set(Skill) = c.requestedSkills@pre->intersection(c.employee.skills@pre),
potentialSkills : Set(Skill) = c.requestedSkills@pre->intersection(e.skills@pre)

in
(potentialSkills->includesAll(matchedSkills) implies potentialSkills = matchedSkills)

or
(e.preferredCustomers@pre->includes(c)

implies e.preferredCustomers@pre->includes(e.customer))))

modifies only: employees->select(customer.oclIsUndefined())::customer, newCustomers::employee

Figure 2. Operation contract for assigning new customers to available employees

asSet to convert the bag to a set, so it can be compared to the set
of new customers.

The second postcondition asserts that the assignment performed
by the operation is stable. We quantify over all pairs e, c of avail-
able employees and new customers and consider the employee
assigned to the customer (c.employee) as well as the customer
assigned to the available employee (e.customer). This postcon-
dition rules out that the pair e-c is a better match than both c-
c.employee and e-e.customer. It does so by stating that the
skills potentially provided by employee e to customer c are not a
proper superset of the skills provided by c.employee to customer
c, or that employee e also prefers e.customer if employee e lists
customer c as preferred.

To complete the operation contract, we still need to specify
which attribute values may be changed by the operation. We do
this by adding a so-called modifies only clause which states that the
operation may only modify the attribute customer for the available
employees and the attribute employee for the new customers. All
other attribute values must be left unchanged by the operation.
Modifies only clauses have not yet been incorporated into the OCL
standard. The kind of modifies only clauses we use here has been
proposed in [24]. In the model, we represent modifies only clauses
within a UML profile in order to achieve a standardized syntax that
is compatible with other OCL tools.

We have now obtained an operation contract that precisely re-
flects the requirements. Note that the contract is underspecified, i.e.,
it does not prescribe a unique result, but allows the operation to
perform any stable assignment. Moreover, the contract does not in-
dicate how such an assignment can be found.

2.4 Simulating the Operation Contract
The tool OCLexec we implemented our approach in generates Java
method bodies. It inserts code that enforces the postconditions of
the operation and all class invariants.2 OCLexec serializes an in-
termediate representation (see Section 4) of the operation contract
to a file that the generated method body can access as a resource.

2 If no valid new system state exists, an exception is thrown. Since we
restrict all integer values and numbers of class instances to 32-bit numbers,
the number of system states is finite and thus the existence of a valid new
state is decidable. However, due to the large number of possible states, the
code will appear to be non-terminating for difficult constraints.

The method body only reads the serialized file and calls a library
routine responsible for simulating the operation. Note that insert-
ing code in method bodies should not interfere with other code that
may have been generated for the model. Thus, the developer can
use her favorite tool for the overall code generation and then use
our tool only for selected method bodies.

Figure 3(a) depicts a very simple system state in which the
operation assignNewCustomers can be called. The company
employs two staff members whose names are Smith and Jones.
There are two skills: French and German language skills. Smith
speaks French while Jones speaks German. There are two cus-
tomers, called Petit and Schmidt, who ask for French and German
language skills, respectively, from the employee that is assigned
to them. Moreover, employee Smith prefers to work for customer
Schmidt. Figure 3(b) shows a possible outcome of calling the gen-
erated method in this system state. Employee Smith is assigned to
customer Schmidt and employee Jones is assigned to customer Pe-
tit. Unfortunately, neither customers’ request for language skills is
met. However, the assignment is stable, since employee Smith is
now assigned to his preferred customer Schmidt and therefore not
interested in changing the assignment.

Depending on the needs of the company, this result of the oper-
ation call may not be sufficient. It may well be that the customers’
demands for skills are deemed more important than the preferences
of the employees. If this is the case, simulation would have revealed
an important flaw of the specification. Note that this kind of un-
foreseen behavior cannot be discovered if the constraints are only
tested on system states that the specifier has designed to be correct
or incorrect.

If the operation is not performance-critical and sufficiently ef-
ficient code can be generated for it, animation may allow to skip
or postpone its implementation. Such an opportunity saves imple-
mentation effort and helps avoid coding errors. Moreover, a larger
part of the development can be carried out on a higher and platform
independent level of a abstraction. In this sense, animation of oper-
ation contracts can be regarded as a contribution to Model-Driven
Development.
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name = Example Corp.
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name = Smith
preferredCustomers = [c2]

e2 : Employee

name = Jones
preferredCustomers = []

c1 : Customer

name = Petit

c2 : Customer
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s1 : Skill

name = French

s2 : Skill

name = German

(a) State before simulation
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(b) State after simulation

Figure 3. Effect of simulating a call to the operation assignNewCustomers on a system state

3. Preliminary Analysis: Reasoning about New
Class Instances

As a first step of simulation, we determine for which classes new
instances may need to be generated. It is beneficial to restrict this
set of classes as much as possible. Knowing that no instances
need to be created for a certain class allows to reduce the search
space that has to be explored. Such an observation also concerns
the handling of class invariants. Class invariants have to always
hold for all objects of a certain class. The following OCL invariant
definition stating that the name attribute of an object of class Skill
may never be empty could be added to the specification presented
in Section 2:

context Skill inv: name <> ""

If no instances are created for a class that an invariant belongs
to and the invariant references no attributes that can be modified by
the operation, then we can conclude that the invariant can never be
violated in the post-state if it was satisfied in the pre-state. Hence,
such invariants do not need to be considered when searching for
animation results, which simplifies the computation.

The creation of new instances can be restricted by the operation
contract. OCL provides the oclIsNew test for querying whether
an object has been created by the operation call. By using this
language feature, postconditions can express that certain objects
must have already existed before the operation call. However, it is
usually not possible to observe that this test has been applied to a
set of object references that is sufficient to completely rule out the
creation of new instances for a certain class. In this case we must
take into account that it may be necessary to create new instances
of the class to satisfy the operation contract. Our goal is to compute
an approximation of the set of classes requiring new instances that
is as good as possible.

For defining a suitable approximation, we observe that, in order
to be relevant for simulation results, a reference to a new object
needs to be (i) the value of an output parameter, (ii) a value of a
modified attribute of an object existing before the operation call, or
(iii) a value of an attribute of a freshly created object.

We can approximate the set of classes for which new instances
need to be created by analyzing for which types of objects these
cases can occur. In order to limit the impact of case (iii), we
demand that attributes of a freshly created object are assigned
the undefined value representing an absence of value when this
is possible without compromising satisfiability of the operation
contract. This is the case when the multiplicity lower bound of the
attribute is zero and the attribute is not referenced by any constraint
considered during simulation.

Let T denote the set of classes for which new instances may be
created and C be the set of constraints considered for animation.
The observations above yield that the following conditions on T
and C are sufficient for ensuring correct simulation.

1. Every postcondition belongs to C.

2. If a modifies only clause lists an attribute a, then every invariant
referencing a belongs to C.

3. Every invariant of a class in T belongs to C.

4. If a class t is the type of an out-parameter of the operation or a
subtype of the parameter’s type, then t ∈ T . This corresponds
to case (i) above.

5. If a modifies only clause lists an attribute a, then every class t
which is the type of a or a subtype of the type of a belongs to
T . This corresponds to case (ii) above.

6. For every attribute a of a class in T , if a is referenced by a
constraint inC in the post-state or a does not have a multiplicity
lower bound of zero, then every class t which is the type of
a or a subtype of the type of a belongs to T . This condition
corresponds to case (iii) above.

The smallest sets T and C that satisfy these conditions can
easily be found by a closure computation. We initialize T and C to
empty sets and augment the sets according to the conditions until a
fixed point is reached.

When performing preliminary constraint analysis on the opera-
tion contract in Figure 2, the set C of constraints to consider con-
sists of the two postconditions, since the specification does not de-



fine any invariants. The set T is set to {Employee, Customer} ac-
cording to Condition 5. The class Company is added to T by Con-
dition 6 because the association end company of class Employee
does not have a multiplicity lower bound of zero, and the procedure
terminates with

T = {Employee, Customer, Company} .
Thus, no new instances of class Skill need to be created in the
post-state. Hence, even if the example invariant given at the begin-
ning of this section is included in the specification, it would not
need to be considered during simulation. However, if the invariant
was defined for the class Company instead of Skill, it would be
added to the set C by Condition 3.

4. A Simplified Intermediate Representation for
Constraints

UML/OCL constraints have a complex structure. They deal with a
rich set of types including classes and several kinds of collections.
In order to facilitate analysis, we translate constraints to a simpler
intermediate representation. The translation must preserve the se-
mantics of the constraints as far as needed for simulation.

It turns out that UML/OCL constraints can in large part be rep-
resented by integer expressions; solutions of these encoded con-
straints are assignments to their free variables and uninterpreted
function symbols. The underlying state of an OCL expression is
represented by uninterpreted function symbols for attributes. Thus,
solving OCL constraints boils down to finding solutions for integer
constraints. The latter reduces to two problems: first, we have to
find bounds for the uninterpreted functions, and second, we have
to provide an algorithm for effectively constructing solutions once
these bounds are fixed. The advantage of this intermediate language
is a substantial simplification of the implementation. In particular,
we no longer need to separately consider bounds on numbers of
class instances or on collection sizes. Moreover, the reuse of stan-
dard backend integer solvers is facilitated.

4.1 Arithmetic Expressions with Bounded Quantifiers and
Uninterpreted Functions

The following language, which we refer to as the language of arith-
metic expressions with bounded quantifiers and uninterpreted func-
tions, provides the building blocks for our intermediate constraint
representation. This language can be defined as follows:

1. Function symbols represent uninterpreted functions mapping
Zn to Z.

2. Additional function symbols represent arithmetic operations
available in OCL such as addition, subtraction and multiplica-
tion.

3. Variables are terms and assume values in Z.

4. A function symbol applied to terms is a term.

5. Binary predicates =, <, ≤, > and ≥ applied to terms are
formulas.

6. Formulas can be connected using the usual boolean operations.

7. For a formula p and terms t1 and t2, if p then t1 else t2 is a
term.

8. If p is a formula and t1, t2 are terms, then ∀t1 ≤ x ≤ t2 . p is a
formula. Here t1 is the lower bound and t2 is the upper bound
of the quantifier. Similarly, ∃t1 ≤ x ≤ t2 . p is a formula.

A UML system state can be represented by attribute functions
that are assigned to function symbols. Using bounded quantifiers
ensures that the evaluation of a closed formula in a given state

is executable. Thus, this class of arithmetic formulas preserves
the desirable property of OCL that constraints can be evaluated
at runtime. We will make use of quantifier bounds for analyzing
formulas and computing simulation results.

4.2 Translating OCL Expressions to Arithmetic Expressions
We outline how OCL expressions can be translated to nested tuples
of the arithmetic expressions defined above. Representing OCL ex-
pressions of type Integer by arithmetic terms is straightforward;
we cope with undefinedness in OCL separately (see below). Sim-
ilarly, OCL expressions of type Boolean can be compiled directly
to formulas.

Expressions whose type is a class are mapped to a pair (t1, t2)
of arithmetic terms, where t1 describes the dynamic type of the
object which is the expression value. For this purpose, we assign
an integer to every non-abstract class in the model. Note that due to
subtyping t1 can become quite complex. The second term t2 gives
an identifier of the object.

An expression of a collection type is mapped to the comprehen-
sion

〈t1 ≤ x ≤ t2 | p(x) • E(x)〉 , (1)

where x is a variable, t1 and t2 are terms, p(x) is a formula and
E(x) is itself an encoding of an OCL expression whose type is the
element type of the collection. The terms t1 and t2 are the lower
and upper bound of the variable x. As indicated by the notation, x
may occur in p(x) and E(x). For every integer i between t1 and
t2, the value described by E(i) belongs to the collection iff p(i) is
true. Here we denote by p(i) and E(i) the formula p(x) and the
encoding E(x), respectively, with i substituted for x.

Collection operations are translated by manipulating the tuple
that represents the collection expression. For example, a select
operation on a collection represented by a comprehension of the
form (1) is translated by conjoining the body of the select con-
struct with the predicate p(x). A collect operation can be trans-
lated by substituting E(x) by the body of the collect construct.

Every OCL type includes an undefined value.3 Therefore, we
add to every translation of an OCL expression e a formula de

that evaluates to true iff the expression does not evaluate to the
undefined value.

There are a limited number of OCL language features like re-
cursive operations that we do not support due to the effort required
to encode them using this kind of framework.

We show how the translation is derived for the the first postcon-
dition allCustomersAssigned of the operation contract in Fig-
ure 2. We adhere to the OCL convention that the variable holding
the object the operation is called on is named self. We assign the
integer 0 to the class Company and introduce the function symbol
fself in order to translate the self variable of type Company to
the term pair (0, fself). Note that self is the implicit source of
the attribute call employees@pre in this postcondition. We assign
the integer 1 to the class Employee and introduce the 0-1-valued
function symbol femployees with arity four for representing a
characteristic function that indicates whether an Employee object
is associated with a Company object in the pre-state. The function
symbol fEmployee represents the number of Employee instances.
Thus, the expression employees@pre of type Set can be trans-
lated to the comprehension˙

0 ≤ x ≤ fEmployee − 1 | p(x) • (1, x)
¸

with

p(x) := femployees (0, fself, 1, x) = 1.

3 More recent versions of the OCL standard call for two undefined values,
null and invalid. For the sake of simplicity, we only use one undefined
value here.



We use the 0-1-valued function symbols fdef(customer) and
f ′def(customer) for indicating whether the values of the attribute
customer are undefined in the pre- and post-state, respectively.
Thus, the translation of the expression

employees@pre

->select(customer@pre.oclIsUndefined()

and not customer.oclIsUndefined())

becomes
˙
0 ≤ x ≤ fEmployee − 1 | q(x) • (1, x)

¸
with q(x) := femployees (0, fself, 1, x) = 1

∧fdef(customer) (1, x) = 0

∧¬f ′def(customer) (1, x) = 0.

We assign the integer 2 to the class Customer and introduce
the function symbol f ′customer with arity two for representing
a function which maps Employee instances to their values of the
attribute customer in the post-state. As a result, applying the
collect construct with body expression customer to this source
yields the translation˙

0 ≤ x ≤ fEmployee − 1 | q(x) • f ′customer (1, x)
¸

with the same formula q(x) as in the previous comprehension.
Using the function symbol fnewCustomers as characteristic

function for the set-valued parameter newCustomers and applying
the same translation scheme as above for this expression gives us
the comprehension

〈0 ≤ x ≤ fCustomer − 1 | r(x) • (2, x)〉 with
r(x) := fnewCustomers (2, x) = 1.

Based on these translations, we obtain the following formula
that expresses that all elements of newCustomers belong to the
collection on the left side of the equality:

∀ 0 ≤ x ≤ fCustomer − 1 .

fnewCustomers (2, x) = 1

=⇒ ∃ 0 ≤ y ≤ fEmployee − 1 .

q(y) ∧ x = f ′customer (1, y) .

In order to translate the entire equality, we only need to add an
analogous formula for the containment in the other direction.

5. Solving Constraints in the Intermediate
Representation

For simulating an operation, we translate the postconditions of the
operation and all relevant invariants4 to arithmetic constraints as
outlined in the previous section. The conjunction of the resulting
formulas expresses the condition that must be satisfied when the
operation returns. In the next step we attempt to find a model
for this formula, i.e., an assignment of specific functions to the
function symbols for which the formula evaluates to true. Since
our translation preserves the semantics of the operation contract, a
model found yields a new system state conforming to the contract.
The new state can be directly constructed from such a model. We
only search for models that comply with the respective pre-state.

To find a model of the formula, we encode arithmetic formu-
las into Boolean constraints which are solved using an off-the-shelf
satisfiability (SAT) solver. A model of the original formula can be
obtained by straightforward decoding of a solution to the Boolean
problem. This approach is called bit-blasting since a large number
of Boolean variables may be necessary to encode an integer value
or an arithmetic operation. Bit-blasting is a widely used approach

4 These are the constraints in the set C defined in Section 3.

for analyzing systems that employ finite-precision bit-vector arith-
metic; see [7] for a recent overview. The advantage of this approach
is that highly optimized SAT solvers are available for solving the
resulting Boolean constraints. Although the Boolean satisfiability
problem is NP-hard, powerful heuristics enable these solvers to
scale well for a wide range of constraints arising in different ap-
plication domains.

To find a model of an arithmetic formula with bounded quan-
tifiers, we proceed as follows. First, the formula is simplified in
order to remove redundant subexpressions.5 Second, we construct
a Boolean circuit that computes the validity of the formula. In or-
der to construct the circuit, we may need to restrict the ranges of
certain values. Third, the Boolean circuit is converted to conjunc-
tive normal form (CNF). Fourth, the resulting CNF is solved by an
off-the-shelf satisfiability (SAT) solver. A solution to the Boolean
satisfiability problem yields a model for the original arithmetic for-
mula. If no solution to the Boolean problem exists and we had to
restrict any ranges in order to construct the circuit, we repeat the
analysis with larger ranges.

In the sequel we describe this procedure in more detail and show
how this approach is made suitable for simulation.

5.1 Encoding as a Boolean Circuit
Our encoding of arithmetic formulas as Boolean circuits does not
differ significantly from the encodings employed by other SAT-
based analysis tools [12, 35].

Encoding of Function Symbols Recall that function symbols
represent uninterpreted functions mapping Zn to Z. We encode
function symbols as vectors of Boolean variables. For every func-
tion value these vectors contain as subvector a bit-vector that is
long enough to represent all values in the range of the function
(we discuss the problem of fixing this range below in Section 5.2).
Through an analysis of the formula we determine the set of possible
arguments the function may be evaluated for during an evaluation
of the formula. The length of the vector for a function symbol is
the product of the number of possible arguments and the number of
bits necessary for representing a function value.

Encoding of Terms We encode integer terms as vectors of
Boolean circuits which represent the bits of the integer value. Arith-
metic operations like addition and multiplication are dealt with by
constructing a Boolean circuit for the operation, as would be done
for computing the operation in hardware. In conformance with the
UML/OCL standard, we do not allow arithmetic overflow. E.g., we
encode the sum of two integer attributes mapped to Java ints as
a vector of 33 bits, so all values that can result from the addition
of two 32-bit integers can be represented. We translate function
application to a multiplexer circuit that selects the bit-vector which
corresponds to the value of the function argument. If a term con-
tains free variables, we perform the encoding for every possible
variable assignment. This results in a map that assigns a vector of
Boolean circuits to every variable assignment.

Encoding of Formulas Boolean operations in the intermediate
constraint representation can be mapped directly to corresponding
gates in the generated Boolean circuit. For quantifiers, we encode
the body of the quantified formula together with a guard checking
the quantifier bounds for all possible assignments to the quantified
variable. The resulting Boolean circuits are fed into the respective
gate (∧ or ∨).6

5 These simplifications apply mainly to subexpressions that identify unde-
fined values and are not further described here.
6 Of course this is not necessary for quantifiers that can be eliminated by
skolemization.



Translating arithmetic formulas this way yields a Boolean cir-
cuit whose inputs are Boolean variables encoding a post-state and
any output parameters of the operation.

5.2 Choosing Suitable Ranges for Function Symbols
Recall that in the Boolean encoding of the intermediate constraint
representation outlined above, a subexpression with free variables
is encoded separately for all values the variables can assume during
an evaluation of the formula. It is clearly not feasible to always
perform the encoding for all values in the largest possible quantifier
range, e.g., all 32-bit integers.

Existing analysis tools for UML/OCL operation contracts like
UML2Alloy [1] and UMLtoCSP [9] depend on bounds provided
by the user for restricting quantifier ranges. The results of the
analysis only make a statement about system states that comply
with the provided bounds. However, for the purpose of simulation
it is highly desirable to use a form of analysis that is complete in the
sense that valid simulation results are obtained if they exist. We aim
to relieve the user from the burden of providing adequate bounds.
In particular, the necessity of specifying bounds is a considerable
obstacle to the integration of animated operations with other code,
since it requires a modification of the operation interface.

Some SMT (Satisfiability Modulo Theories) solvers, such as
Z3 [13], apply heuristics to instantiate the quantifiers in their input
sufficiently for proving that the constraint is unsatisfiable. How-
ever, these quantifier instantiation strategies are only complete for
limited theory fragments. In general, that quantifier instantiation
cannot derive unsatisfiability does not imply that a correct model
of the formula can be obtained. So-called model finders like Para-
dox [12] that search for models of first-order formulas with a SAT
solver proceed by generating SAT problems that do not cover all
potential models. If no model is found, they generate a larger SAT
problem to cover more models, and so on.

We propose a similar iterative approach that is based on restrict-
ing the ranges of certain function symbols occurring in the arith-
metic formula. We restrict the ranges of those function symbols that
occur in quantifier bounds provided by the intermediate represen-
tation. Through interval arithmetic, we can then derive a restricted
range for each lower and upper quantifier bound. Thus, we can ob-
tain a sufficient translation of a quantified formula by instantiating
the quantified variable only for the restricted set of values that can
be between the quantifier bounds. If the function symbol ranges are
chosen to be small enough, this set of values the quantified variable
can assume is manageable. If no model is found for the first choice
of restricted function symbol ranges, a more expensive attempt with
larger ranges is made, and so on.

We restrict the ranges of function symbols occurring in function
arguments as we do for function symbols occurring in quantifier
bounds. As a result, we can derive through interval arithmetic suf-
ficiently bounded ranges for all terms that are function arguments.
This allows us to encode function symbols as vectors of Boolean
variables that are of manageable size.

Restricting the range of a function symbol results in an under-
approximation of the original satisfiability problem, i.e., cer-
tain models are excluded, whereas every solution to the under-
approximation is a valid model for the formula. Note that simply
restricting the quantifier ranges considered during the translation
while leaving function symbol ranges unchanged does not neces-
sarily yield an under-approximation, and thus may give rise to so-
lutions that are not valid models of the formula.

Since in a bit-blasting approach a fixed number of bits has to
be allocated for every function value in order to obtain a Boolean
encoding of the formula, the range of every function symbol has to
be bounded. We assume that UML integers are mapped to bounded
Java types by code generation. This allows us to restrict function

symbols that do not occur in quantifier bounds or function argu-
ments to ranges which are certainly sufficient. Consider as an exam-
ple a function symbol corresponding to an attribute that is mapped
to a Java field of type int. Its values may be restricted to 32-bit
numbers, which is sufficient to represent all values of the Java int
type.

As a result of this approach to bounding function values, we
search for models using different bounds for the integer values
in the system state. These integer values can be values of integer
attributes, numbers of instances of a class or collection sizes. The
bounds for these values are chosen depending on the contexts
in which the values are used in the constraints. In the formulas
resulting from the example translation in Section 4.2, the only
function symbols that appear in quantifier bounds are fCustomer
and fEmployee. These function symbols represent numbers of
class instances in the pre-state. Thus, these values are fixed, and
an optimal instantiation of the concerned quantifiers is performed
during the translation in this case. Assume that we were dealing
with the translation of a different OCL constraint, such that the
function symbols would instead represent numbers of instances in
the post-state and therefore not be fixed. Then we would introduce
restrictive bounds for these function symbols which, if necessary,
are increased in future iterations in order to find a model. Another
case are variable function symbols that do not appear in quantifier
bounds. Suppose the operation contract in the example included the
additional postcondition

totalCustomers = totalCustomers@pre

+ newCustomers->size() .

Then, if the function symbol for the integer attribute
totalCustomers used in this example does not occur in
quantifier bounds, we consider all possible 32-bit values of this
attribute already in the first attempt to find a valid post-state.
Thus, even states with very large values for this attribute are not
necessarily problematic for simulation.

5.3 Efficient Translation of Formulas to Boolean Circuits
In our approach, the actual constraint solving is performed by the
SAT solver that receives the CNF. The preceding computation that
generates the Boolean circuit from the arithmetic formula and con-
verts the circuit to a CNF is deterministic and has a complexity
that is polynomial in the size of the circuit. These facts suggest
that the SAT solving is the bottleneck regarding runtime, whereas
the preprocessing steps are uncritical for performance. Neverthe-
less, in our experience the cost of generating the input to the SAT
solver is for many simulation problems far more expensive than the
execution of the SAT solver itself.7 We observed that many SAT
instances arising during animation are solved in a fraction of a sec-
ond. The main factor that determines the size of the Boolean circuit
and the CNF, and thus the preprocessing time, are the quantifiers
that are present in the input formula and the ranges for which they
are instantiated. Nested quantifiers are particularly expensive.

In order to reduce the time used for preprocessing, we have im-
plemented an improved algorithm for translating formulas of our
intermediate language to Boolean circuits. Figure 4(a) shows a typ-
ical approach to perform an encoding like the one described in
Section 5.1. The assignment env to the free variables of the for-
mula is a parameter to the translation. This assignment can then be
passed on to recursive calls of the procedure for translating subex-
pressions. The resulting subexpression translations can be used for
obtaining a translation of the entire formula, e.g., by feeding them
into an addition circuit constructed by the function make PLUS as

7 See Section 6 in this paper and [10, 35] for measurements showing that
preprocessing consumed more time than SAT solving.



procedure t r a n s l a t e ( expr , env ) :
case exp r of PLUS( in1 , i n 2 ) :

re turn make PLUS ( t r a n s l a t e ( in1 , env ) ,
t r a n s l a t e ( in2 , env ) )

case exp r of FORALL( x , body ) :
i n p u t s := ∅ ;
f o r i i n [ lowerBound ( x ) . . upperBound ( x ) ] do

i n p u t s :=
i n p u t s ∪ t r a n s l a t e ( body , env [ x := i ] )

end f o r ;
re turn make AND ( i n p u t s )

case exp r of . . .
end procedure

(a) Top-down

procedure t r a n s l a t e ( exp r )
case exp r of PLUS( in1 , i n 2 ) :

t r a n s l a t i o n s 1 := t r a n s l a t e ( i n 1 ) ;
t r a n s l a t i o n s 2 := t r a n s l a t e ( i n 2 ) ;
f o r env i n Ass ignment s ( F r e e V a r s ( exp r ) ) do

t r a n s l a t i o n s [ env ]
:= make PLUS ( t r a n s l a t i o n s 1 [ env ] ,

t r a n s l a t i o n s 2 [ env ] )
end f o r ;
re turn t r a n s l a t i o n s

case exp r of FORALL( x , body ) :
b o d y t r a n s l a t i o n s := t r a n s l a t e ( body ) ;
f o r env i n Ass ignment s ( F r e e V a r s ( exp r ) ) do

i n p u t s := ∅ ;
f o r i i n [ lowerBound ( x ) . . upperBound ( x ) ] do

i n p u t s :=
i n p u t s ∪ b o d y t r a n s l a t i o n s [ env [ x := i ] ]

end f o r ;
t r a n s l a t i o n s [ env ] := make AND ( i n p u t s )

end f o r

case exp r of . . .
end procedure

(b) Bottom-up

Figure 4. Approaches to Generating Circuits from Formulas with
Quantifiers (pseudo-code)

shown in Figure 4(a). For translating a quantified formula, a loop
iterates over the values for which the quantifier is instantiated. For
every value, the body of the quantified formula is translated with
the quantified variable set to this value.8 The translations of the
body are then aggregated according to the type of the quantifier.
This approach to formula translation is straightforward to imple-
ment. It is also suggested by some semantics definitions that define
the semantics of quantifiers by constructs that resemble loops. This
is also the case for the OCL standard [30].

However, it turns out the straightforward approach depicted in
Figure 4(a) is not optimal concerning efficiency. Note that it causes
a separate translation of every subexpression in the scope of a
quantifier for every value the quantified variable can assume —
even for subexpressions in which the quantified variable does not
occur. For example, the subexpression

c.requestedSkills@pre

->intersection(c.employee.skills@pre)

8 Here we assume that this body already contains the guard checking the
quantifier bounds.

in the specification of Figure 2 would be translated for every value
that the variable e of the enclosing forAll construct can assume,
although this subexpression does not depend on this variable. This
clearly is a waste of resources. It would be much more efficient
to perform translations of subexpressions depending on their free
variables.

This observation leads to the algorithm sketched in Figure 4(b).
We call this approach bottom-up in contrast to the top-down
method in Figure 4(a). The bottom-up algorithm first translates
subexpressions for all possible assignments to their free variables.
The resulting translations are stored in a map data structure that
supports lookups based on a variable assignment. When translating
an application of an operation like addition, the translations of the
subexpressions are retrieved for every assignment to the free vari-
ables of the entire formula. When performing these map lookups,
we discard any values for variables that are not free variables in the
respective subexpression. The retrieved subexpression translations
are then used for computing corresponding translations of the en-
tire formula. For translating a quantified formula, the translations
of the body are aggregated according to the type of the quantifier.

The bottom-up approach has the advantage that the number of
times a subexpression is translated only depends on the values that
its free variables can assume. The translation procedure visits ev-
ery subexpression only once. All translations of a subexpression
are performed in an efficient loop structure. This promotes opti-
mizations like the elimination of loop invariant computations and
caching of memory.

In the implementation of OCLexec, we use an adapted version
of the kodkod solver for constructing the circuit as a Compact
Boolean Circuit [35], a compressed representation of a Boolean
circuit. Kodkod includes effective algorithms for constructing and
compressing Compact Boolean Circuits. We do not make use of
higher-level features of kodkod such as symmetry breaking or en-
coding of relations.

6. Experimental Results
We evaluated the efficiency of OCLexec by simulating the opera-
tion contract of Figure 2 in system states of increasing size. Specifi-
cally, these are states with a number n of Employee and Customer
objects, respectively, and blog2 nc Skill objects. Employees and
customers are associated independently to every skill with proba-
bility 1/2. This achieves that every subset of skills is quite likely
to be associated with at least one employee or customer, which fa-
vors conflicts between the different actors. Similarly, an employee
lists every customer as preferred with probability 1/2. The results

Customers Employees Skills Total
Runtime

Runtime
SAT

5 5 2 0.4 sec 3 msec
10 10 3 0.5 sec 7 msec
20 20 4 0.8 sec 160 msec
30 30 4 2.2 sec 1200 msec
40 40 5 23 sec 21 sec
50 50 5 78 sec 75 sec

Table 1. Experimental results

of the evaluation are shown in Table 1. We give the total execution
times of animating the operation as well as the times consumed
by the SAT solver alone. The measurements were performed on a
machine with 2 GB RAM and a dual-core 2.4 GHz P8600 mobile
CPU. The SAT solver used was MiniSat [16], a well-known state-
of-the-art SAT solver.

For states with up to 20 employees and customers, the time
of pre- and postprocessing the constraints dominates the runtime.



States of this size already include many interesting application sce-
narios. We note that for these states, simulation is efficient enough
for certain applications like prototyping. However, for larger states
the time consumed by SAT solving increases quickly, and anima-
tion becomes infeasible. These runtimes may seem disappointing,
considering that a polynomial-time algorithm exists for the stable
marriage problem. Note that the number of generated Boolean con-
straints grows faster than linearly in the number of employees and
customers, due to e.g., the nested quantifers in the specification.
Also recall that the we are processing a high-level specification in
a relatively general-purpose language.

7. Related Work
There has been constant interest in animation as a research prob-
lem. Work on animation has focused particularly on the specifica-
tion languages Z [15, 21, 36] and B [3, 27, 32]. The benefit of using
intermediate languages for implementing animation tools has been
recognized, and led to the intermediate languages µZ [21] for ani-
mating Z and CLPS-B [3] for B. These intermediate languages do
not directly address the problem of quantifier bounding.

Pioneering work on animating UML/OCL can be found in [20,
31]. In comparison to our previous work [26], we introduced sup-
port for modifies clauses and improved the translation from the in-
termediate constraint representation to Boolean circuits. Animators
for operation contracts have also been implemented, for example,
for the specification language JML [4, 11, 25]. These animators do
not use SAT solving like OCLexec does, but rely on other constraint
solving techniques. They are automatic in the sense that they do not
explicitly require the user to provide additional information such as
bounds. However, they cannot handle certain constraints. Specifi-
cally, the JML-TT animator [4] lacks support for quantifiers, which
severely restricts the class of specifications it can process. The jmle
animator [11, 25] works by generating a prototype implementation
in Java, as does OCLexec, and throws an exception at runtime for
certain constraints it cannot handle. In contrast, an operation imple-
mentation generated by OCLexec always terminates successfully if
valid operation results exist.

The power available through SAT solvers as constraint solving
engines has long been recognized. Alloy [22], NP-SPEC [10], an-
swer set programming systems (e.g., smodels [29]) and SAT-based
CSP solvers (see e.g., [34]) are tools that process constraint lan-
guages using SAT solvers or similar search techniques. These lan-
guages avoid constructs that are difficult to encode in Boolean con-
straints, like multisets and nested collections which are available in
OCL, and usually require narrow bounds on integer values that al-
low for explicit enumeration of the considered integers. As a result,
these languages offer an attractive trade-off between expressive-
ness and efficiency. This comes at a price: since these languages
are not tightly integrated into a large-scale language like UML
or Java, developers need to write tedious glue code to interface
with the constraint solver. We view OCLexec as complementary to
these tools; after simulating an operation with OCLexec, a devel-
oper could seek a more efficient execution of the operation using
such a SAT-based tool. The Alloy annotation language [23] could
be regarded as an approach to close the gap between Alloy as a con-
straint language and Java as a large-scale language. Another closely
related family of tools that use SAT solvers are SAT-based model
finders [2, 12, 28]. They originally aim at analyzing mathematical
theorems rather than solving constraints that arise in software de-
velopment.

An alternative to the conventional type of SAT solver used in
our simulation approach are Satisfiability Modulo Theories (SMT)
solvers based on theory combination like Z3 [13]. Theory combi-
nation is a technique for integrating separate solvers for subtheo-
ries such as the theory of linear arithmetic or the theory of unin-

terpreted functions. This avoids encoding these subtheories using
large Boolean formulas. We do not claim here that one of these
constraint solving approaches is in general superior to the other, but
observe that in either case efficiency depends on a carefully tuned
implementation of the solver. An advantage of theory combination
is that built-in solvers for linear arithmetic can handle real numbers
with arbitrary precision and solve quantifier-free linear constraints
without requiring any bounds.

UML2Alloy [1] and UMLtoCSP [9] are tools for analyzing
UML/OCL specifications. UML2Alloy performs a translation to
the Alloy language, while UMLtoCSP uses the Eclipse constraint
programming system. These tools aim to verify certain properties
of specifications, which basically amounts to solving the OCL
constraints. Both require the user to specify bounds to restrict the
scope of analysis. Moreover, they do not support modifies clauses
and do not provide an interface for supplying the system state an
operation is called in. A workaround could be to encode the input
data as additional OCL constraints, but this is not straightforward
and likely to have a negative impact on efficiency. USE [18] is an
integrated environment for OCL that allows a form of animation.
However, USE requires the user to explicitly construct the system
states that are to be considered, and thus is not fully automatic.
HOL-OCL [5, 6] is an embedding of OCL into an expressive
language processed by an interactive theorem prover and also relies
on substantial guidance from the user for most kinds of analysis.
Another tool along these lines is the SQL query explorer Qex [37]
that automatically constructs test cases for databases and is based
on a powerful SMT solver.

Our bottom-up approach to translating quantifiers described in
Section 5.3 is similar to a technique used by a past version of the
Alloy tool [33] which augments the basic top-down approach with a
cache of the generated Boolean subcircuits in order to prevent un-
necessary quantifier instantiations. This technique can potentially
save more quantifier instantiations than ours since it also takes
identities obtained by constant folding into account. In contrast, we
avoid the overhead of cache misses by performing all translations of
a subexpression at once. This also allows us to process subexpres-
sions in a predictable order, which facilitates optimizations. Our
observation that a bottom-up translation can be more efficient than
a straightforward top-down approach has an analogue in the area of
XPath query evaluation [19].

8. Conclusions and Future Work
We presented an improved approach to simulating operation
contracts. We implemented the approach in the simulation tool
OCLexec that generates Java implementations from UML/OCL op-
eration contracts.

Operation contracts are translated to arithmetic expressions with
bounded quantifiers as intermediate constraint representation. Al-
though OCL has a complex semantics, most of the UML/OCL lan-
guage features can be mapped conveniently to this simple interme-
diate language. Final constraint solving is performed by encoding
the constraints as a Boolean formula and calling an off-the-shelf
SAT solver.

The intermediate constraint representation facilitates the auto-
matic selection of bounds which are necessary for obtaining a
Boolean encoding. As a result, the simulation is fully automatic,
and no effort is required to link simulated operations with other
code. Another useful characteristic of the simulation is that it is
complete in the sense that valid simulation results are obtained if
they exist.

We note that for many simulation problems the Boolean en-
coding phase is the performance bottleneck. As a consequence, we
adopt an improved translation scheme for generating the Boolean
constraint representation. Another beneficial optimization is a pre-



liminary constraint analysis that can allow to disable object cre-
ation and discard invariants for certain classes. Experimental results
demonstrate that our approach can efficiently handle simulation in-
stances of considerable size.

As future work we plan to add support for optimization accord-
ing to an objective function when simulating. This would allow
more operations to be specified and simulated. Also, we are consid-
ering assisting the user in providing modifies only clauses, which
we find tedious to write. Finally, we would like to integrate our
simulation method into a comprehensive code generation system.
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