
Unifying Theories in Isabelle/HOL

Abderrahmane Feliachi, Marie-Claude Gaudel and Burkhart Wolff

1 Univ Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405, France
2 CNRS, Orsay, F-91405, France

{Abderrahmane.Feliachi, Marie-Claude.Gaudel, Burkhart.Wolff}@lri.fr
∗

Abstract. In this paper, we present various extensions of Isabelle/HOL
by theories that are essential for several formal methods. First, we explain
how we have developed an Isabelle/HOL theory for a part of the Unifying
Theories of Programming (UTP). It contains the theories of alphabetized
relations and designs. Then we explain how we have encoded first the
theory of reactive processes and then the UTP theory for CSP. Our work
takes advantage of the rich existing logical core of HOL.
Our extension contains the proofs for most of the lemmas and theorems
presented in the UTP book. Our goal is to propose a framework that
will allow us to deal with formal methods that are semantically based,
partly or totally, on UTP, for instance CSP and Circus. The theories
presented here will allow us to make proofs about such specifications
and to apply verified transformations on them, with the objective of
assisting refinement and test generation.

Keywords: UTP, Theorem Proving, Isabelle/HOL, CSP, Circus

1 Introduction

The fundamental problem of the combination of programming paradigms has
raised significant interest recently; a framework to combine different languages
describing various facets and artifacts of software development in a seamless,
logically consistent way is vital for its solution. Hoare & He gave one of the most
significant approaches towards unification [10]. A relational theory between an
initial and subsequent states or observations of computer devices is used to give
meaning to specifications, designs, and programs. States are expressed as pred-
icates over observational variables. They are constrained by invariants, called
healthiness conditions, that characterize theories for imperative, communicat-
ing, or reactive processes and their designs.

The UTP framework has proved to be powerful enough for developing a
theory of CSP processes, and more recently for giving semantics to languages like
Circus [13] that combines CSP and Z features and enables states, concurrency
and communications to be easily expressed in the same specification.

The motivation of this paper is to provide effective deductive support of UTP
theories, in particular those related to Circus. Effective deduction is needed for

∗
This work was partially supported by the Digiteo Foundation.

2

practically useful transformations on Circus specifications, and for our objective
of refinement support and automated test generation. Therefore, it is of major
importance to find a semantic representation that has a small “representational
distance” to the logic used in the implementing proof-environment: since Cir-
cus comprises typed sets, only frameworks for higher-order logics (HOL, Z, ...)
are coming into consideration.

Textbook UTP presentations reveal a particular syntactic flavor of certain
language aspects, a feature inherited from the Z tradition. The UTP framework is
centered around the concept of alphabetized predicates, relations, etc, which were
written (αP ,P) where αP is intended to produce the alphabet of the predicate
P implicitly associated to a superset of the free variables in it. In prior works
based on ProofPower [2], providing a formal semantics theory for UTP in HOL
[12], [14], [15], the authors observed the difficulty that “the name of a variable
is used to refer both to the name itself and to its value”. For instance, in the
relation

({x , x ′}, x > 0 ∧ (x ′ = x + 1 ∨ x ′ = x − 1)), (1)

the left-most x , x ′ indicates the names x resp. x ′, while the right-most x , x ′ stand
for their value. Since Oliveira et al. [12] aimed at the proof of refinement laws,
the authors saw no alternative to proving meta-theorems using a so-called deep
embedding ; thus, an explicit data type for abstract syntax and an explicit seman-
tic interpretation function was defined that relates syntax and semantic domain.
However, such a representation has a number of drawbacks, both conceptually
as well as practically wrt. the goal of efficient deduction:

1. there are necessarily ad-hoc limitations of the cardinality of the semantic
domain VAL (e.g. sets are limited to be finite in order to keep the recursive
definition of the domain well-founded),

2. the alphabet uses an untyped presentation — there is no inherent link from
names and their type, which must be established by additional explicit con-
cepts adding a new layer of complexity, and

3. the reasoning over the explicit alphabet results in a large number of nasty
side-conditions (“provisos”) hampering deduction drastically. For example,
the rule for the sequential composition ;C in Circus reads as follows:

∀ a, b, c : CA | αa = αb ∧ αb = αc ∧ a;C (b;C c) = (a;C b);C c (2)

where CA abbreviates CIRCUS ACTION .

In contrast to this “deep embedding” approach we opt for a “shallow embed-
ding”. The characterizing feature for the latter is the following: if we represent
an object-language expression E of type T into the meta-language by some ex-
pression E ′ of type T ′, then the mapping is injective for both E and T (provided
that E was well-typed with T). In contrast, conventional representations are a
surjective map from object-expressions to, say, a data type AST (abstract syn-
tax tree) and therefore not shallow. Due to injective map on types, the types

3

are implicit in a shallow representation, and thus reference to them in provisos
in rules is unnecessary. It means that type-inference is used to perform a part
of the deduction task beforehand, once and for all, as part of a parsing process
prior to deduction.

At this point, we will already recklessly reveal the only essential idea of
this paper to the knowledgeable reader: we will represent equation (1) by the
λ-abstraction:

λσ • σ.x > 0 ∧ (σ.x ′ = σ.x + 1 ∨ σ.x ′ = σ.x − 1) (3)

having the record type 〈x ZZ, x ′ ZZ, ...〉 ⇒ bool, which is, in other words, a
set of records in HOL. The reader familiar with SML-like record-pattern-match
notation may also recognize expression (3) as equivalent to:

λ{x , x ′, ...} • x > 0 ∧ (x ′ = x + 1 ∨ x ′ = x − 1)

Note that in record notation, the order of the names is insignificant (in contrast
to, say, a representation by tuples). Further note that we use extensible records
— the dots represent the possibility of their extensions, allowing to build up the
UTP in an incremental way similar to Brucker and Wolff’s approach [6].

Represented in the form of expression (3), the rule (2) above is practically
an immediate consequence of rules of a HOL-library. The function αP becomes
a meta-function (implemented in the meta language of the target HOL system,
typically SML), and the notation (αP ,P) is a particular pretty-print of P for
sets of records.

Note that in a shallow embedding, the injective representation function must
not be a one-to-one translation of operator symbols; rather, it can introduce
coercions in E ′ on the basis of object-language types. For example, it can be
necessary to coerce isomorphically a 〈x ZZ, x ′ ZZ, ...〉 set-predicate to a
(〈x ZZ, ...〉 × 〈x ZZ, ...〉) set-relation in order to support the semantics of
the UTP dash-notation x ′ in terms of relational composition. Similar compiler
techniques are necessary to add or remove fields in extensible records, for example
when entering and leaving the scope of a local variable declaration.

Another price we are ready to pay is that there may be rules in Textbook
UTP, which must be implemented by a rule scheme in our representation. That
is, there will be specific tactic support that implements a rule scheme, e. g., by
inserting appropriate coercions in a more general rule and applying the result
in a specific context. This technique has been used for the Z schema calculus by
Brucker et al. [3].

As concrete implementation platform, we chose Isabelle/HOL [11] which is a
well established tool for formal proof development. As member of the LCF-style
prover family, it offers support for user-programmed extensions in a logically
safe way. This choice is motivated by our wish to exploit, in a future step, the
semantic Circus theory developed here with HOL-TestGen [4, 5], a powerful
test-case generation system that has been built on top of the specification and
theorem proving environment Isabelle/HOL.

4

The paper is organized as follows: Section 2 recalls briefly some useful aspects
of various background concepts: UTP, Isabelle/HOL, some advanced aspects of
HOL; Section 3 presents how we have expressed in HOL the part of UTP that is
relevant for the Circus semantics; Section 4 introduces the Circus language and
the theory we have developed in HOL from its denotational semantics; Section 5
gives a small example of a Circus specification defined in Isabelle/HOL; and the
last section summarizes our current contributions and sketches our future work.

2 Background

2.1 Isabelle and Higher-order Logic

Higher-order logic (HOL) [9, 1] is a classical logic based on a simple type system.
It provides the usual logical connectives like ∧ , → , ¬ as well as the
object-logical quantifiers ∀ x • P x and ∃ x • P x ; in contrast to first-order logic,
quantifiers may range over arbitrary types, including total functions f : : α⇒ β.
HOL is centered around extensional equality = : : α ⇒ α ⇒ bool. HOL is
more expressive than first-order logic, since, e. g., induction schemes can be ex-
pressed inside the logic. Being based on some polymorphically typed λ-calculus,
HOL can be viewed as a combination of a programming language like SML or
Haskell and a specification language providing powerful logical quantifiers rang-
ing over elementary and function types.

Isabelle/HOL is a logical embedding of HOL into the generic proof assistant
Isabelle. The (original) simple-type system underlying HOL has been extended
by Hindley/Milner style polymorphism with type-classes similar to Haskell.
While Isabelle/HOL is usually seen as “proof assistant”, systems like HOL-
TestGen[4, 5] also use it as symbolic computation environment. Implementa-
tions on top of Isabelle/HOL can re-use existing powerful deduction mechanisms
such as higher-order resolution, tableaux-based reasoners, rewriting procedures,
Presburger Arithmetic, and via various integration mechanisms, also external
provers such as Vampire and the SMT-solver Z3. Isabelle/HOL offers support
for a particular methodology to extend given theories in a logically safe way:
A theory-extension is conservative if the extended theory is consistent provided
that the original theory was consistent. Conservative extensions can be constant
definitions, type definitions, datatype definitions, primitive recursive definitions
and well-founded recursive definitions.

For example, typed sets were built in the Isabelle libraries conservatively
on top of the kernel of HOL as functions to bool; consequently, the constant
definitions for membership is as follows:3

types α set = α ⇒ bool
definition Collect :: (α ⇒ bool) ⇒ α set −−− set comprehension
where ”Collect S ≡ S”
definition member :: α⇒ bool −−− membership test
where ”member s S ≡ S s”

3 To increase readability, we use a slightly simplified presentation.

5

Isabelle’s powerful syntax engine is instructed to accept the notation {x • P}
for Collect (λ x. P) and the notation s ∈ S for member s S. As can be inferred
from the example, constant definitions are axioms that introduce a fresh constant
symbol by some closed, non-recursive expressions; this type of axiom is logically
safe since it works like an abbreviation. The syntactic side-conditions of this
axiom are mechanically checked, of course. It is straight-forward to express the
usual operations on sets like ∪ , ∩ : : α set⇒ α set⇒ α set as conservative
extensions, too, while the rules of typed set-theory were derived by proofs from
these definitions.

2.2 Advanced concepts of the HOL-Language

Similarly, a logical compiler is invoked for the following statements introducing
the types option and list:

datatype α option = None | Some α
datatype α list = Nil | Cons a l

Here, [] or a#l are an alternative syntax for Nil or Cons a l ; moreover, [a, b, c] is
defined as alternative syntax for a#b#c#[]. These (recursive) statements were
internally represented in by internal type- and constant definitions. Besides the
constructors None, Some, there are match-operations like:

case x of None⇒ F | Some a ⇒ G a.
Finally, there is a compiler for primitive and well-founded recursive function

definitions.
Isabelle/HOL also provides a rich collection of library theories like sets, pairs,

relations, partial functions lists, multi-sets, orderings, and various arithmetic
theories which only contain rules derived from conservative definitions. Setups
for the automated proof procedures like simp, auto, and the arithmetic types
such as int have been done.

Isabelle/HOL’s support for extensible records is of particular importance for
this work. Record types are denoted, for example, by:

record T = a :: T1

b :: T2

which implicitly introduces the record constructor La :=e1,b :=e2M and the up-
date of record r in field a, written as rLa := xM. Extensible records are represented
internally by cartesian products with an implicit free component δ, i.e. in this
case by a triple of the type T1 ×T2 ×δ. Thus, the record T can be extended
later on using the syntax:

record ET = T +
c :: T3

The key point is that theorems can be established, once and for all, on T types,
even if future parts of the record are not yet known, and reused in the later def-
inition and proofs over ET-values. Thus, we can model the effect of defining the

6

alphabet of UTP processes incrementally while maintaining a fully typed shal-
low embedding with full flexibility on the types T1, T2 and T3. In other words,
extensible records give us the means to implement the dots in the representation
type of the alphabetized predicate (3):

〈x ZZ, x ′ ZZ, ...〉set

shown in the introduction.

3 Representing UTP in HOL

3.1 Core UTP

In this section, we present the most general features of UTP: the concept of
alphabetized predicates, and sub-concepts such as alphabetized relations. As al-
ready unveiled in the introduction, we semantically represent alphabetized pred-
icates by sets of extensible records, and the latter by sets of pairs of extensible
records; for the latter, there is already the theory Relation .thy in the Isabelle
library that provides a collection of derived rules for sequential relational com-
position o or operators for least and greatest fixpoints (lfp , gfp).

In order to support a maximum of common UTP look-and-feel, we implement
on the SML level implementing Isabelle a function that computes for a term de-
noting an alphabetized predicate (a cterm in Isabelle terminology) the alphabet
of a theorem, be it in the format of an alphabetized predicate or an alphabetized
relation. This function is suitably integrated into the command language ISAR
of Isabelle such that we can define and query on the ISAR shell:

define pred sample ”({x:: int ,x ’:: int , ...}, x = x’ + 1) ”
alpha sample
inalpha sample
outalpha sample

The first statement will be expanded internally into definitional constructions of
an alphabetized predicate; the latter three statements make Isabelle execute the
common alphabet projection functions α sample, the input alphabet inα sample
and the output alphabet outα sample (which are {x , x ′, ...},{x , ...} and {x ′, ...},
respectively). In more detail, the alphabetized predicate mechanism expands
internally the define pred-command as follows:

record sample type = x :: int , x ’:: int
definition sample ”sample ≡{A::sample type.A.x = A.x’ + 1}”

where the latter introduces per default a constant sample with the right type
and a theorem sample def containing the constant definition for sample. Note that
leaving out the dots “...” in the define pred-declaration leads to non-extensible
records (the internal δ type-variable representing future extensions is instanti-
ated with the trivial unit-type); the query-functions will reflect this in the output
accordingly.

7

Alphabetized Predicates. We introduce the abbreviation α alphabet as a
syntactic marker to highlight types that we use for alphabetized elements; on
this basis, alphabetized predicates as sets of records are defined as follows:

types α alphabet = ”α”
types α predicate = ”α alphabet ⇒bool”

The standard logical connectives on predicates are simply introduced as ab-
breviations:

abbreviation true :: ”α predicate”
where ”true = λA. True”

abbreviation false :: ”α predicate”
where ”false = λA. False”

abbreviation not :: ”α predicate ⇒ α predicate ” (”¬ ”)
where ”¬ P = λA. ¬ (P A)”

abbreviation conj :: ”[α predicate , α predicate] ⇒ α predicate ” (infix ”∧”)
where ”P ∧ Q = λA. (P A) ∧ (Q A)”

abbreviation disj :: ”[α predicate , α predicate] ⇒ α predicate ” (” ∨ ”)
where ”P ∨ Q = λA. (P A) ∨ (Q A)”

abbreviation impl :: ”[α predicate , α predicate] ⇒ α predicate ” (” −→ ”)
where ”P −→ Q = λA. (P A) −→ (Q A)”

Note that our typing requires that all arguments range over the same al-
phabet. This is a significant restriction compared to textbook UTP, where all
alphabets were merged (by the union of the underlying sets), pretty much in
the style of Z. Thus, there are implicit coercions between sub-expressions in
UTP alphabetized predicates that have to be made explicit in suitable coercion
functions. For example, if we have the additional alphabetized predicate:

define pred sample2 ”({y:: int , ...}, y = 5) ”

an expression like sample −→ sample2 is simply ill-typed since they are both
built over different alphabets. In order to make this work, it is necessary to insert
suitable coercion functions (whose definition will be shown below):

(Injαsample 7→αsample∪αsample2 sample) −→ (Injαsample27→αsample∪αsample2 sample2)

The insertion of such coercion functions can be done automatically (based on
an SML- computation of the alphabet of each sub-expression) and in an opti-
mized form (only in cases where the alphabets are not just inclusion, only at the
“leaves”, i.e. around constants denoting alphabetized predicates). The details of
such an automated coercion inference are out of the scope of this paper; the
technique, however, has already been applied elsewhere [3].

8

It remains to define universal and existential quantifications in terms of HOL
quantifications.

abbreviation ex :: ”’β ⇒ [’β ⇒’α predicate] ⇒ ’α predicate” (”∃ ”)
where ”∃ x P ≡λA. ∃ x. (P x) A”

abbreviation all :: ”’β ⇒ [’β ⇒’α predicate] ⇒ ’α predicate” (”∀ ”)
where ”∀ x P ≡λA. ∀ x. (P x) A”

Alphabetized Relations. the alphabetized relations type is defined as a HOL
relation over inαP and outαP . Some programming constructs are then defined
over relations, for example the conditional expression. The condition expression
is represented as a predicate over inαP , the symbols are kept as defined in the
UTP book.

types α relation = ”(α alphabet ×α alphabet) set”
types α condition = ”α ⇒bool”

abbreviation cond::”[α relation ,αcondition,α relation]⇒ α relation ” (” / . ”)
where ”(P / b . Q) = λ(A, A’). (b A ∧P (A, A’)) ∨

(¬ (b A) ∧Q (A, A’))”

The second definition concerns the sequential composition; we use a predefined
HOL relation operator, which is the relation composition. This operator corre-
sponds exactly to the definition of sequential composition of alphabetized rela-
tions.

abbreviation comp::”α relation ⇒ α relation ⇒ α relation ” (” ;; ”)
where ”(P ;; Q) = P o Q”

Since the alphabet is defined as an extensible record, an update function is gen-
erated automatically for every field. For example, let a be a field in some record,
then there is the function rLa := xM, or represented internally update name a
x. We use this internal representation to define by a syntactic paraphrasing the
update relation family defined as {(A,A’). A’= La := E AM}.

The syntactic transformation of the assignment to the update function is
instrumented as follows:

syntax
” Assign” :: ”[idt , α⇒ β] ⇒ α relation ” (” :== ”)
translations
”x :== E” => ”{(A,A’). A’ = update name x (E A)}”

A last construct is the Skip relation, which keeps all the variable values as
they were. We use an equality over inαP and outαP to represent this. By using
the record type for the alphabet, this equality is considered as values equality.

abbreviation skip r :: ”α relation ” (”Π r”)
where ”Π r = λ(A, A’). (A’ = A)”

9

The notion of refinement is equivalent to the universal implication of predi-
cates, it is defined using the universal closure used in the UTP.

abbreviation closure :: ”α predicate ⇒ bool” (”[]”)
where ”[P] = ∀ A. P A”

abbreviation refinement :: ”[αpredicate ,α predicate] ⇒ bool” (” v ”)
where ”P vQ = [Q −→P]”

Coercions. As mentioned earlier, it is crucial for our approach to generate
coercions in order to make our overall approach work. While it is impossible to
define coercion function once and for all for an arbitrary αP inside HOL, it is
however possible for any concrete alphabet, say {x :: int , x ′ :: int , ...}, a coercion,
and compute this concrete alphabet for each UTP theory context outside the
logic in suitable parsing functions.

More concretely, we have:

1. InjA7→B P which embeds pointwise. Elements of the P -set with alphabet
αP are mapped to elements with identical field content if field a ∈ αP ,
and with arbitrary values if a ∈ A. For example we consider the case
Injαsample7→αsample∪αsample2 which is just: Inj{x ,x ′,...}7→{x ,x ′,y...}. Then we de-
fine it by:

λ P. {σ . P Lx:=x σ , x’ := x’ σ , ... M}

2. ProjA P projects pointwise. Elements of the P -set with alphabet αP are
mapped to elements with identical field content if field a ∈ αP ; the fields
were ommited otherwise.

3. InjA7→(B×C) P is a version of InjA7→B P that splits into pairs (useful for the
transition between predicates and relations). Example:
Injαsample7→αinsample×αoutsample or concretely:

λ P. {(σ , σ ’) . P Lx:=x σ , x’ := x σ ’, ... M}

4. ProjA×B 7→A∪B P is the inverse of the latter.

5. etc.

3.2 Designs theory

The Designs theory is centered around a new concept which is captured by the
extra name ok. Thus, we consider alphabets that contain at least this variable.
This fits well to our representation of alphabets in extensible records: any the-
orem that we prove once and for all in the Designs theory will hold in future
theories, too.

10

The name ok. For short, the definition proceeds straightforwardly:

define pred alpha d ”({ok::bool, ...}, true) ”

However, it is worthwhile to look at the internal definitions generated here:

record alpha d = ok::bool
types ’α alphabet d = ”’α alpha d scheme alphabet”
types ’α relation d = ”’α alphabet d relation ”

In this construction, we use the internal type synonym alpha d scheme which
Isabelle introduces internally for the cartesian product format where δ captures
the possible type extension.

Since the definition of alphabets and relations uses a polymorphic type, we
declare a new alphabet and relation type by instantiating this type to an exten-
sible alpha d. All the expressions defined for the first, more general type, will be
directly applicable to this new specific type.

Designs. Designs are a subclass of relations than can be expressed in the form:

(ok ∧ P) → (ok’ ∧ Q)

which means that if a program starts with its precondition P satisfied, it will
finish and satisfy its post condition Q . The definition of designs uses the previous
definitions of relations and expressions.

definition design :: ”[α relation d , α relation d] ⇒ α relation d ” (”(`)”)
where ” (P ` Q) ≡λ(A, A’). (ok A ∧P (A, A’)) −→ (ok A’ ∧ Q (A ,A’))”

As seen above, ok is an automatically generated function over the record type
alpha d, it returns the value of field ok

Once given the definition of designs, new definitions for skip are stated as
follows:

abbreviation skip d :: ”α relation d ” (”Π d”)
where ”Π d ≡(true ` Π r)”

Our definitions make it possible to lead some proofs using Isabelle/HOL, as for
the true−; left zero lemma. More details about proofs are given in Sect. 3.5.

3.3 Reactive processes

As for designs, reactive processes require more observational variables to be
defined. They are used for modeling the interaction of a process with its en-
vironment. Proceeding like we did with ok, we extend the alphabet with the
variables wait, tr and ref . The corresponding extended alphabet and the defini-
tion of reactive processes are given in our Reactive Process theory. This kind of
alphabet is called a reactive alphabet .

11

The names wait, tr and ref . The variable wait expresses whether a process
has terminated or is waiting for an interaction with its environment. The variable
tr records the trace of events (interactions) the process has already performed.
The ref variable is an event set, that encodes the events (interactions) that the
process may refuse to perform at this state.

The new alphabet is an extension of the alphabet of designs, using the same
construct: extensible records. The traces are defined as polymorphic events lists,
and the refusals as polymorphic events sets.

datatype α event = ev α
types α trace = ”(α event) list ”
types α refusals = ”(α event) set”

define pred alpha rp
”(alpha d ∪ {wait :: bool, tr ::α trace , ref ::α refusals ,...}, true)”

and we add the handy type abbreviation:

types (α, δ) relation rp = ”(α, δ) alpha rp scheme relation ”

Again, the δ is used to make the record-extensions explicit.

Reactive Processes. Reactive processes are characterised by three healthiness
conditions. The first healthiness condition R1 states that a reactive process
cannot change the history of performed event.

R1 P = P ∧ (tr ≤ tr ′)

This healthiness condition is encoded as a relation, it uses a function ≤ on traces,
which is defined in our theory.

abbreviation R1::”(α, δ) relation rp ”
where ”R1 (P) ≡λ (A, A’). P (A, A’) ∧ (tr A ≤ tr A’)”

To express the second healthiness condition R2, we use the formulation proposed
by Cavalcanti and Woodcock [7].

R2 (P(tr , tr ′)) = P(<>, tr − tr ′)

It states that a process description should not rely on what took place before its
activation, and should restrict only the new events to be recorded since the last
observation. These are the events in tr − tr ′.

abbreviation R2::”(α, δ) relation rp ”
where ”R2 (P) ≡λ (A, A’). P (A(|tr:=[]|),A’(|tr:= (tr A ’ − tr A) |))”

The last healthiness condition for reactive processes, R3, states that a process
should not start if invoked in a waiting state.

R3 (P) = Π / wait . P

A definition is given to Π (Skip process), and the healthiness condition is ex-
pressed as a conditional expression over predicates.

12

abbreviation R3::”(α, δ) relation rp ”
where ”R3 (P) ≡ (Π rp / (wait o fst) . P)”

We can now define a reactive process as a relation over a reactive alphabet that
satisfies these three healthiness conditions. This condition can be expressed as a
functional composition of the three conditions.

definition R::”(α, δ) relation rp ”
where ”R ≡R3 o R2 o R1”

3.4 CSP Processes

As for reactive processes, a theory CSP Process corresponds to the CSP processes
healthiness conditions. In UTP, a reactive process is a CSP process if it satisfies
two additional healthiness conditions CSP1 and CSP2.

definition CSP1::”(α, δ) relation rp ”
where ”CSP1 (P) ≡ λ (A, A’). (P (A, A’)) ∨ (¬ ok A ∧ tr A ≤ tr A’)”

definition J csp :: ”(α, δ) relation rp ”
where ”J csp ≡ λ (A, A’). ok A −→ok A’ ∧ tr A = tr A’ ∧ wait A = wait A’

∧ ref A = ref A’ ∧more A = more A’ ”

definition CSP2::”(α, δ) relation rp ”
where ”CSP2 (P) ≡ P ;; J csp”

CSP basic processes and operators can be encoded using their definitions as
reactive designs. Isabelle can be used to prove that these reactive designs are
CSP healthy. This could be an extension of our theory, which contains only the
definitions of the two CSP healthiness conditions above. There are three other
CSP healthiness conditions that we don’t mention here. However, they will be
considered in the Circus theory since they are required for Circus processes.

3.5 Proofs

As mentioned above, the theories contains also proofs for some theorems and
lemmas. In the relations theory, 100 lemmas are proved using 250 lines of proof,
and in the designs theory 26 lemmas are proved using 120 lines of proof. Since
our definitions are close to the library definitions of Isabelle/HOL, we can exploit
the power of the standard Isabelle proof procedures. For example, we consider
the proof of the true−; left zero lemma. There are almost the same proof steps
as those used in the textbook proof.

lemma t comp lz: ”(true ;;(P `Q)) = true”
apply (auto simp: expand fun eq design def rel comp def raw mem def)
apply (rule tac x=”b(|ok:=False|)” in exI)
by (simp add: mem def)

13

In the previous proof we first apply some simplifications using the operators
definitions (eg. design def), then we fix the ok value to false and finally some
simplifications will finish the proof.

4 Circus

4.1 A Brief Introduction into the Circus Language

Circus is a formal specification and development approach providing a combina-
tion of process algebra and model-based abstract data types, with an integrated
notion of refinement. As a language, it combines CSP, Z and refinement.

channel out : N

process Fib =̂ begin
state FibState == [x , y : N]
InitFibState == [FibState ′ | x ′ = y ′ = 1]
InitFib =̂ out !1→ out !1→ InitFibState
OutFibState == [∆FibState; next ! : N | next ! = y ′ = x + y ∧ x ′ = y]
OutFib =̂ µ X • (var next : N • OutFibState ; out !next → X)
• InitFib ; OutFib

end

Fig. 1. The Fibonacci suite in Circus

Syntactically, a Circus specification is a sequence of paragraphs, just like
in Z or Isabelle/ISAR, with the possibility to declare schemas, channels and
processes. In the example of Fig. 1, there is first a paragraph where a channel
is declared, namely out : N. Then comes the definition of the Fib process as a
sequence of (1) a state definition, which is just a couple of natural numbers, (2)
an initialization operation InitFibState on the state defined by a Z schema, (3)
a Circus action named InitFib defined as a CSP-like process with the specificity
that the InitFibState operation appears as an event, (4) a normal operation
on the state OutFibState, defined by a Z schema and (5) a recursive action
OutFib defined by CSP-like constructs where OutFibState operation appears
as an event. Finally, the main action of the Fib process is given by just the
sequential composition of the two actions above.

This example just shows the description of a process with an encapsulated
state, where the behavior combines CSP-like external interactions and Z-like
internal state operations. The small example gives only a flavor of Circus, which
comprises a combined semantics for features like parallelism, internal choices,
encapsulated complex data types, imperative statements, and refinements.

14

4.2 The Circus Theory

The denotational semantics of Circus was defined by Oliveira et al. [13], based
on UTP. Circus actions are defined as CSP healthy reactive processes. The
Circus Actions theory contains the definition of the type Action, which restricts
the relations to the subset of CSP healthy relations.

typedef(Action)
(α,δ) action = ”{p::(α,δ) relation rp . is CSP process p}”

proof −
have ”true ∈ {p ::(α,δ) relation rp . is CSP process p}”

by(auto simp add: Collect def mem def Healthy def)
thus ? thesis by auto

qed

We assume here the predicate is CSP process capturing the known health-
iness conditions of CSP (not shown here). Isabelle methodology imposes that
type definitions should be non-empty. In the action type definition, the first
part declares the actions as subset of CSP healthy relations, and the second part
is the proof that this subset is not empty.

Every Circus operator is defined as an alphabetized predicate. the first defi-
nitions concern the basic processes Stop, Skip and Chaos. Some other examples
of operators are also shown in the sequel of the paper.

Basic Processes. Stop is defined as a reactive design, with a precondition true
and a postcondition stating that the system deadlocks and the traces are not
evolving.

definition
Stop :: ”(α,δ) action”

where
”Stop ≡ Abs Action (R (true ` λ (A, A’). tr A’ = tr A ∧wait A’))”

Skip is defined as a reactive design, with a precondition true and a postcondition
stating that the system terminates and all the variables of the state are not
changed.

definition
Skip :: ”(α,δ) action”

where
”Skip ≡ Abs Action (R (true ` λ (A, A’). tr A’ = tr A ∧¬ wait A’

∧more A = more A’))”

The Chaos process is defined as a reactive design with false as precondition and
true as postcondition.

Communications. The prefixed actions definition is based on the definition of
a special predicate do C. In the Circus denotational semantics, different forms of

15

prefixing were defined, we define in our theory one general form, and the other
notations can be defined using this form.

abbreviation
do C :: ”[α event, α event set] ⇒ (α,δ) relation rp ’’

where
”do C x S ≡ (λ (A, A’). (tr A = tr A’) ∧ (S ∩ (ref A’) = {}))

/ wait .
(λ (A, A’). ∃ e. e ∈ S ∧ (tr A’) = (tr A)@[e] ∧ x = e)”

The definition of do C is different from Oliveira et al.’s definition [13], because
we want our definition to be more general. The prefixing action can then be
defined, using the same denotational semantics definition.

definition
Prefix :: ”[α event set ,α event ⇒ (α,δ) action] ⇒ (α,δ) action”

where
”Prefix S P ≡Abs Action((∃ e. R (true ` (λ (A,A’). ((do C e S)(A,A’)

∧more A’ = more A)))) ;; P e)”

Different types of communication are considered below. The channels are defined
as functions over communicated values. We distinguish three types of communi-
cations:

– Inputs: the set of communications contains all possible values.
– Outputs: the set of communications contains only one value.
– Synchronizations: the set is empty, there is just a channel name.

Below, we define these three communications forms

definition
read :: ”[α ⇒ β event,α set , α⇒ (β, δ) action] ⇒ (β, δ) action”

”read c S P ≡ Prefix (c ‘ S) (P o (inv c))”
write :: ”[α ⇒ β event, α, (β, δ) action] ⇒ (β, δ) action”

”write c a P ≡Prefix {c a} (λ x. P)”
write0 :: ”[β event, (β, δ) action] ⇒ (β, δ) action”

”write0 a P ≡ Prefix {a} (λ x. P)”

and configure the Isabelle syntax-engine such that it parses the usual communi-
cation primitives:

syntax
” read” :: ”[id , pttrn , (α,δ) action] ⇒ (α, δ) action” (” ‘?‘ → ”)
” readS” :: ”[id , pttrn ,β⇒bool, (α,δ)action] ⇒ (α,δ)action”(” ‘?‘ ‘ : ‘ → ”)
” write” :: ”[id ,β ,(α,δ)action] ⇒ (α,δ) action” (” ‘ ! ‘ → ”)
” writeS” :: ”[α,(α,δ)action] ⇒ (α,δ)action” (” → ”)
translations
”c ‘?‘ p → P” ≡”CONST read c CONST UNIV (λp. P)”
”c ‘?‘ p ‘ : ‘ b → P” ≡”CONST read c {p. b} (λp. P)”
”c ‘ ! ‘ p → P” ≡”CONST write c p P”
”a → P” ≡”CONST write0 a P”

16

Guarded Actions. A guarded action is defined with a condition and an action,
we define a special function Spec that fixes the values of wait and ok’ for a given
predicate.

abbreviation
Spec

where
”Spec b b’ P ≡λ (A,A’). P (ALwait := b’M , A’Lok := bM)”

definition
Guard :: ”[(α,δ) relation rp ,(α,δ)action] ⇒ (α,δ)action” (” & ”)

where
”g & P ≡ Abs Action(R ((g → ¬ Spec False False P) `

((g∧Spec True False P) ∨
(¬ g ∧ λ (A,A’).(tr A’=trA∧ waitA’)))))”

Sequencing Actions may be composed sequentially using the squential compo-
sition operator. The definition is based on the UTP relation composition.

definition
Seq :: ”[(α,δ)action ,(α,δ)action] ⇒ (α,δ)action” (” ‘ ; ‘ ”)

where
”P ‘ ; ‘ Q ≡ Abs Action (Rep Action P ;; Rep Action Q)”

The complete Circus theory contains the definition of all actions operators,
constructs, healthiness conditions and the proofs of some theorems over them.

Circus Processes. Finally, the Circus process definition contains the alphabet
declaration, schema expressions and actions. The alphabet is defined by ex-
tending the alpha rp record with the process variables. The normalized schema
expressions are defined separately as relations over the defined alphabet. The
actions are defined as Circus actions over the alphabet.

The next section gives an example of how a Circus process is written using
the previous theories.

5 Example: Using Isabelle/Circus

To illustrate the use of the Circus theory we come back to our example in Fig. 1
of a process that calculates and outputs the Fibonacci suite. The process uses
only one channel out that communicates natural numbers. The process state
is defined by two natural variables x and y . The process contains two schema
expressions InitFibState and OutFibState, and two actions InitFib and OutFib.
InitFibState initializes the state variables to the value 1. InitFib action outputs
twice the value 1 over the channel out , then calls InitFibState. OutFibState
performs the Fibonacci suite step, and returns a value next . The OutFib action

17

recursively calls OutFibState and outputs the value of next . The main action
of the process performs initialization with InitFib, then generates the fibonacci
suite with OutFib.

In the following, we will encode this example in our Circus theory. Note
that we deliberately refrain from a front-end here that hides the Isabelle/Circus
internals from the user (such a front-end consisting of the existing CZT-parser
and type-checker for Circus will be integrated in the future); the purpose of this
section is to have a glance at our Circus semantics “at work”.

5.1 Channels and alphabet

We first define the channels, types and alphabets. The state definition corre-
sponds to the extension part of the defined alphabet.

datatype channel = out nat

record fib state = ”channel alpha rp” +
x :: nat
y :: nat

types my alpha = ”fib state alphabet”
types my pred = ”my alpha relation”

types my action = ”(channel, (|x :: nat, y :: nat|)) action”

5.2 Schema expressions and actions

Normalized schema expressions are defined as reactive processes. The predicate
value corresponds to the schema formula, and the input/output variables are
passed as parameters (eg. next). The actions are defined as Circus actions.

definition
InitFibState :: ”my pred”

where
” InitFibState ≡R (λ(A, A’). (x A’ = 1 ∧y A’ = 1))”

definition
InitFib :: ”my action”

where
” InitFib ≡ (out ‘ ! ‘ 1 → (out ‘ ! ‘ 1 → Abs Action InitFibState))”

definition
OutFibState::”nat ⇒ my pred”

where
”OutFibState next ≡R (λ(A, A’). x A’ = y A

∧ y A’ = x A + y A ∧next = x A + y A)”

18

definition
OutFib :: ”my action”

where
”OutFib ≡µ X. Abs Action (λ A. ∃ next.

((OutFibState next) ;; (Rep Action (out ‘ ! ‘ next → X))) A)”

5.3 Main action

The main action is also defined as a Circus Action, by a sequential composition
of the defined actions InitFib and OutFib.

definition
Fib :: ”my action”

where
”Fib ≡ InitFib ‘ ; ‘ OutFib”

6 Conclusions and Future Work

This paper introduces the Isabelle/Circus proof environment. It is conceived as a
shallow embedding into Isabelle/HOL and aims for effective deductive support of
those UTP theories related to Circus and to Circus itself. This is work in progress:
while the foundation of the UTP is done and most textbook proofs have been
formalized, there is at present still very little automated proof support with
respect to our ultimate goal, the development of efficient deductive support for
verification and test generation for Circus.

Our choice of Isabelle as a foundation is justified by the fact that this proof
environment comes with a rich set of deduction machinery, and the powerful
binding mechanism and type inference system of HOL that we can re-use. How-
ever, our main motivation is that we plan to use the HOL-TestGen system [4, 5],
that is developed on the top of Isabelle/HOL, for developing well-founded test
generation strategies from Circus specifications, on similar formal bases as those
presented by Cavalcanti and Gaudel [8] for CSP.

When developing these theories, it turned out that using HOL extensible
records for representing alphabetized predicates is extremely convenient and
allows an incremental encoding that remains very close to the original UTP
definitions.

Moreover, a significant advantage is that we do not encode the alphabet in
our key formalization of the “alphabetized predicate”: after a pre-processing, we
do everything in the semantic representation with the type (as in HOL-Z). This
means

– that P is not of type boolean (“predicate”), but of form α => bool , which
is equivalent to α set .

19

– for α, we uses the fact that the fields of the extensible records correspond to
the elements of the alphabet,

– the function α P becomes a meta-function in ML.

The price to pay are a number of coercions that we have currently to add by
hand (and that might be generated by a future front-end using the CZT-Parser,
in the way the “Encoder” works in HOL-Z).

From prior experiments, for instance the HOL-Z system mentioned above,
we expect this approach to lead to the deductive efficiency required to support
proofs about Circus specifications, to apply verified transformations on them,
with the objective of assisting refinement and test generation.

References

1. Andrews, P.B.: Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. 2nd edn. (2002)

2. Arthan, R.: The ProofPower homepage (2009), http://www.lemma-
one.com/ProofPower/index/

3. Brucker, A.D., Rittinger, F., Wolff, B.: Hol-z 2.0: A proof environment for z-
specifications. Journal of Universal Computer Science 9(2), 152–172 (Feb 2003)

4. Brucker, A.D., Wolff, B.: Symbolic test case generation for primitive recursive
functions. In: Grabowski, J., Nielsen, B. (eds.) FATES. Lecture Notes in Computer
Science, vol. 3395, pp. 16–32. Springer (2004)

5. Brucker, A.D., Wolff, B.: Test-sequence generation with hol-testgen with an appli-
cation to firewall testing. In: Gurevich, Y., Meyer, B. (eds.) TAP. Lecture Notes
in Computer Science, vol. 4454, pp. 149–168. Springer (2007)

6. Brucker, A.D., Wolff, B.: An extensible encoding of object-oriented data models
in hol with an application to imp++. Journal of Automated Reasoning (JAR)
41(3–4), 219–249 (2008), serge Autexier, Heiko Mantel, Stephan Merz, and Tobias
Nipkow (eds)

7. Cavalcanti, A.L.C., Woodcock, J.C.P.: A Tutorial Introduction to CSP in Unifying
Theories of Programming. In: Refinement Techniques in Software Engineering.
Lecture Notes in Computer Science, vol. 3167, pp. 220 – 268. Springer-Verlag
(2006)

8. Cavalcanti, A., Gaudel, M.C.: A note on traces refinement and the conf relation in
the Unifying Theories of Programming. In: Butterfield, A. (ed.) Unifying Theories
of Programming, Second International Symposium, UTP 2008, Trinity College,
Dublin, Ireland, September 8-10, 2008, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 5713, pp. 42–61. Springer (2008)

9. Church, A.: A formulation of the simple theory of types 5(2), 56–68 (Jun 1940)
10. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall Inter-

national Series in Computer Science (1998)
11. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/hol!—A Proof Assistant for

Higher-Order Logic, vol. 2283 (2002)
12. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: Unifying theories in

ProofPower-Z. In: Dunne, S., Stoddart, B. (eds.) UTP 2006: First International
Symposium on Unifying Theories of Programming. LNCS, vol. 4010, pp. 123–140.
Springer-Verlag (2006)

20

13. Oliveira, M., Cavalcanti, A., Woodcock, J.: A denotational semantics for Circus.
Electron. Notes Theor. Comput. Sci. 187, 107–123 (2007)

14. Zeyda, F., Cavalcanti, A.: Encoding Circus programs in ProofPowerZ. In: Uni-
fying Theories of Programming, Second International Symposium, UTP 2008,
Trinity College, Dublin, Ireland, September 8-10, 2008, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 5713. Springer-Verlag (2009),
http://www.cs.york.ac.uk/circus/publications/docs/zc09b.pdf

15. Zeyda, F., Cavalcanti, A.: Mechanical reasoning about families of UTP theories.
Science of Computer Programming (2010), in Press, Corrected Proof, Available
online 17 March 2010

