Towards Verified and Certifiable Subsystems

Burkhart Wolff

Univ. Paris-Saclay / IRT SystemX: Project PST

http://www.lri.fr/~wolff

10/27/17

B. Wolff - ECE Department Seminar Virginia Tech

Abstract

Title: Towards Verified and Certifiable Subsystems

Abstract: This talk addresses the problem of comprehensive verification of (safety-critical) subsystems including processor, OS, and application function. Modeling, Refinement-Proofs, Code - and Document Generation were done in Isabelle/HOL. Particular emphasis is done on the aspect of document-generation targeting a formal certification process; the approach is centered around a central document from which all artefacts were generated in oder to ensure their coherence both in formal as well semi-formal aspects.

The approach is demonstrated for the Odometric Function of a railway system implemented on top of seL4 and a SabreLight Board. The toolchain build around Isabelle is called CVCE.

Overview

- The Case Study: An Odometric Subsystem
- Verification Methodology
- Certification Methodology
- Scaling up: Integrating the Odometer Business Logic into the seL4-OS stack

- Train position and movement detection system
- Makes the decision that a train comes to a halt
- Hard- and software: embedded system
- key safety critical component

- Train position and movement detection system
- Makes the decision that a train comes to a halt
- Hard- and software: embedded system
- key safety critical component

• The physics:

 Movement, its detection and encoder sequences

Problem: Get An Odometer Formally Certified

- Certification Critical Components
 - Safety in Railways: CENELEC 50126/50128
 - Safety in Avionics : DO 178 B/CSecurity:
 - COMMON CRITERIA (ISO 15408)
- Goal: Complete Traceability of Development, Hypothesis and Assumptions of Models, and Evidence
- Formal Methods recommended or mandatory 10/27/17 B. Wolff - ECE Department Seminar Virginia Tech

- We use Isabelle (http://isabelle.in.tum.de) for the formal development process
- Isabelle: The "Eclipse" of Formal Methods
 - offering plugin mechanism
 - an Prover IDE
 - code-generators (SML(->C), OCaml (-> FSharp, dotnet), Haskell, Scala)
 - documentation generator
 - modeling methodology for Higher-Order Logic
 - language for automated and interactive proof

B. Wolff - ECE Department Seminar Virginia Tech

10/27/17

- Abstract Model: Requirements Definition and their Analysis
 - well-behaved distance functions:

- Abstract Model: Requirements Definition and their Analysis
 - well-behaved distance functions:

- Abstract Model: Requirements Definition and their Analysis
 - shaft encodings:

- Abstract Model: Requirements Definition and their Analysis
 - some simple proofs on safety:

```
lemma Encoder_Property_1: "(C1(Phase x) ∧ C2(Phase x) ∧ C3(Phase x)) = False"
proof (cases x)
    case 0 then show ?thesis by (simp add: Phase_def)
next
    case (Suc n) then show ?thesis
    by(simp add: Phase_def,rule_tac n = n in cycle_case_split,simp_all)
qed
lemma cycle_mod : " phase<sub>0</sub> x = phase<sub>0</sub>(x mod 6)"
    apply(subst mod_div_mult_eq[symmetric, of _ 6])
    using phase<sub>0</sub>_is_cycle by blast
lemma phase<sub>0</sub>_inj_on_6: "∀x<6. ∀y<6. phase<sub>0</sub> x = phase<sub>0</sub> y → x = y"
```

- Abstract Model: Requirements Definition and their Analysis
 - definition of sampling of a distance function:

definition encoding :: "distance_function \Rightarrow nat \Rightarrow real \Rightarrow shaft_encoder_state" **where** "encoding df init_{enc_pos} == λx . Phase(nat[df(x) / δs_{res}] + init_{enc_pos})"

- Abstract Model: Requirements Definition and their Analysis
 - theorem: sampling is accurate for well-behaved distance functions:

```
theorem no_loss_by_sampling :
assumes * : "normally_behaved_distance_function df"
and ** : "δt<sub>odo</sub> * Speed<sub>Max</sub> < δs<sub>res</sub>"
(* This establishes a constraint between w<sub>circ</sub>,
<u>tpw</u>, Speed<sub>Max</sub> and sample_frequency *)
shows "∀ δt≤δt<sub>odo</sub>. 0<δt →
(∃f::nat⇒nat.
retracting f ∧
sampling df init<sub>enc_pos</sub> δt = (sampling df init<sub>enc_pos</sub> δt<sub>odo</sub>) o f)"
```

B. Wolff - ECE Department Seminar Virginia Tech

- Abstract Model: Requirements Definition and their Analysis
 - theorem: sampling is accurate for well-behaved distance functions:

PROOF : Nothing for the faint-hearted ...

- Abstract Model: Requirements Definition :
 - input and output of the module:

```
record "output" =
          Odometer Status
                                        :: boolean
          Odometric Position Valid
                                        :: boolean
          Odometric Position Count
                                        :: unsigned int 32 bit
          Odometric Position TimeStamp :: unsigned int 32 bit
          Last Marker Position
                                        :: unsigned int 32 bit
          Last Marker TimeStamp
                                        :: unsigned int 32 bit
          Relative Position
                                        :: unsigned int 32 bit
                                        :: signed int 32 bit
          Speed<sub>0</sub>
          Acceleration<sub>0</sub>
                                        :: signed int 32 bit
                                        :: signed int 32 bit
          Jerk∩
          Cinematics TimeStamp
                                        :: unsigned int 32 bit
```


10/27/17

- Requirement Analysis: Results:
 - Establishment of the dictionary of the physical system,
 - the principles of sampling into encoder sequences,
 - and the interface of the module.
 - main theorem establishes conditions under which the sampling can be valid in principle. ("no jumps in sequence")

- Design Analysis: Results:
 - Computable definitions for odo_{step}
 which is the heart of the odometric calculations.
 - $-\mbox{The}\xspace$ main theorem establishes that $\mbox{odo}_{\mbox{step}}$
 - indeed approximates distance, speed and acceleration assuming a rational arithmetic with unlimited precision.
 - -odo_{step} is converted into executable code as a reference for precision tests.

- C-Code Verification:
 - Results:
 - We provide a handwritten C function and verify it via the C-to-HOL compiler against the design odo_{step}
 - –The main theorem establishes that the C-level calculations done on bounded machine arithmetics indeed approximate the calculations of odo_{step} under certain conditions.
 - -This proof work just started.

 Observation: Formal Models are not Enough for Formal Certification

 Observation: Formal Models are not Enough for Formal Certification

Software certification

- The railway industry requires certification processes to be applied to ensure the safety of transportation systems
 - CENELEC

- Observation: Formal Models are not Enough for Formal Certification
 - The railway industry requires certification processes to be applied to ensure the safety of transportation systems
 - CENELEC
 - V/ISA Requirements Software V/ISA Commissioning definition certification is a "deeper"development process Document 10-40 V/ISA V/ISA Test times larger than Design the primary artefact Document Development must be Code Formal engineered Development V/ISA Activity

х

 Observation: Formal Models are not Enough for Formal Certification

- CVCE Methodology
 - Logical Consistency
 - ... and Coherence between semi-formal and formal evidence (tests, proofs)
 - ... our experience shows, that document coherence and traceability is a major cost problem in certifications

- Development Method
 - Versioning of all artefacts, integrate into global document
 - Make doc's inside Isabelle
 - Start informal requirements capture within Isabelle

- Development Method
 - Versioning of all artefacts, integrate into global document
 - Make doc's inside Isabelle
 - Start informal requirements capture within Isabelle

14 text{*

Accurate information of train's location along a track is crucial to safe railway operation.
Position measurement along a track infrastructure usually lays on a set of independent measurements
based on different physical principles - as a way to enhance precision and availability. As a rule,
the train gets absolute position coordinates by running over stationary markers in the track, while
an odometer allows estimating a relative location while the train runs between successive markers.

- 21 Odometrics module, which processes the signals issued by an incremental
- 22 shaft encoder attached to a bogies axle, producing a real-time estimation of the trains progress.
- 23 Kinematics module, which calculates:
- 24 the trains relative position
- 25 the trains absolute speed, acceleration and jerk.

26 *}

27 10/2//1

- Development Method
 - Versioning of all artefacts, integrate into global document
 - Make doc's inside Isabelle
 - Start informal requirements capture within Isabelle
 - ... add formalizations of key concepts early

("literate programming style")

- Development Method
 - Versioning of all artefacts, integrate into global document
 - Make doc's inside Isabelle
 - Start informal requirements capture within Isabelle
 - ... add formalizations of key concepts early

```
fun phase<sub>0</sub> :: "nat \Rightarrow shaft encoder state"
                                          where
                           (C1 = False, C2 = False, C3 = True)"
       "phase₀ (0) =
      |"phase₀ (1) =
                           (C1 = True, C2 = False, C3 = True)"
                           (C1 = True, C2 = False, C3 = False)"
       | "phase<sub>0</sub> (2) =
      "phase₀ (3) =
                           (C1 = True, C2 = True, C3 = False)"
      "phase₀ (4) =
                           (C1 = False, C2 = True, C3 = False)"
      |"phase_0 (5) =
                           (C1 = False, C2 = True, C3 = True)"
      "phase₀ x =
                           phase_0(x - 6)"
```

definitionPhase :: "nat \Rightarrow shaft_encoder_state"where"Phase (x) = phase_0 (x-1) "nia Tech

- Development Method
 - Versioning of all artefacts, integrate into global document

- Development Method
 - Versioning of all artefacts, integrate into global document
 - Make doc's inside Isabelle
 - Start informal requirements capture within Isabelle
 - add formalizations of key concepts early
 - make the informal semi-formal: highlight antiquotations

- Development Method
 - Versioning of all artefacts, integrate into global document
 - Make doc's inside Isabelle
 - Start informal requirements capture within Isabelle
 - ... add formalizations of key concepts early
 - make the informal semi-formal: highlight antiquotations

- Development Method
 - Versioning of all artefacts, integrate into global document
 - Make doc's inside Isabelle
 - use a certification specific ontology to enforce links as antiquotations.
 - -... turn links into antiquotations

- Development Method
 - Versioning of all artefacts, integrate into global document
 - Make doc's inside Isabelle
 - use a certification specific ontology to enforce links as antiquotations.
 - -... turn links into antiquotations

definition of a "software related application constraint"

814 tex(*[enough_samples::srac])(* Note that the theorem above establishes a constraint between
815 @{consts w_{eire}}. @{consts tpw} , @{consts Speed_{Max}} and sample_frequency; since this
816 exported constraint is fundamental for the safe functioning of odometer and therefore
817 a safety-related exported application constraint. It is formally expressed as follows:
818 *}
819

Development Method

- Versioning of all artefacts, integrate into global document
- Make doc's inside Isabelle
 - use a certification specific ontology to enforce links as antiquotations.

- ... turn links into antiquotations

applications of a "srac" ref as an exported "exported constraint". Compatibility via "is_A" relation in the CENELEC Ontology.

822

823 text{* Summing up, the property that the odometer provides sufficient sampling
824 precision --- meaning no wheel encodings were ``lost'' compared to any sampling done with
825 a higher sampling rate --- can be established under the set of general hypothesis captured
826 in @{docref <general_hyps>} (formally expressed in @{thm normally_behaved_distance_function_def})
827 and the SRAC @{ec <enough_samples>} formally expressed by @{thm srac1_def}. *}
828

- Development Method
 - Semi-formal Requirements capture the ontology framework enforces for CENELEC
 - tracking of assumptions, hypothesis, constraints
 definitions, theorems
 - -code
 - -tests
 - -the structure and usage of links.

Integrating into seL4-OS

seL4: secured L4 (Klein & Heiser SOSP'09)

- OS Kernel in the L4 tradition
- advanced Security (Access-Control) Model "Take-Grant Capabilities"
- virtual memory, dyn. thread creation, IPC, Fast-Track-IPC, support of AnoCom.
- designed to be formally verifiable (in Isabelle/HOL)
- designed to be performant

Integrating into seL4-OS

Scaling up: Integrating Odo into seL4

CVCE : An Environment for Formal "Agile Development"

CVCE : Continuous Verification and Certification Environment

- Isabelle/HOL: core for consistency
- Global Version Management
- Global Config Management (docker)
- jenkins
- CVCE jenkins view (I):

10/27/17

Conclusion

- Formal Development based on ITP technology is at the brink to leverage formally verified embedded subsystems
- Embracing formality can increase the agility of the development ("embrace change")
- Linking the Formal and Semi-Formal is Key to lower the costs of Formal Certifications
- SE Infrastructure (like CVCE) is Key to scale up.

Thank you.

Formal "Agile Development"

+ adaptive planning,

+ evolutionary, distributed development,

+ early delivery,

+ continuous improvement, continuous build, and
+ rapid and flexible response to change

Techniques / Methods:

- social engineering, stand-ups, pairprogramming,
 scrum sprints etc ...
- animosity of documentation, over-emphasis of tests
- see B. Meyer's book critical resumee (Agile! The Good, the Hype and the Ugly ...

Experimental Evaluation

Bugs found

 in more detail:

sched

S

Experimental Evaluation

 implem errors
 covered
 in more
 detail:

Execution always defined:

- no null pointer de-reference
- no buffer overflows
- no code injection
- no memory leaks/out of kernel memory
- no div by zero, no undefined shift
- no undefined execution
- no infinite loops/recursion

Evaluation

- cost analysis Effort
 - overall : 25 py investment, mostly for the refinement proof
 - about 10 py infrastructure (reusable?)
 - arguably cost

effective:

stly nt	Haskell design	2	ру
	First C impl.	2	weeks
	Debugging/Testing	2	months
	Kernel verification	12	ру
	Formal frameworks	10	ру
	Total	25	ру
Со	st		
	Common Criteria EAL6:		
L4.verified:			\$6M

r

r

seL4 is free - what does this mean to you ?

• seL4 became an open source project

(see video https://www.youtube.com/watch?v=IRndE7rSXiI)

The seL4 Microkernel

Security is no excuse for poor performance!

The world's first operating-system kernel with an end-to-end proof of implementation correctness and security enforcement is available as open source.

seL4 is free - what does this mean to you ?

- anybody can contribute (and chances of acceptance are high if proof provided)
- consistency

 can be maintained
 even in distributed
 collaboration
 (easy impact
 analysis in Isabelle)

Supported C this way:

52

- Final step : Eliminate C - 2 - Isabelle/HOL/Simpl
 - generated optimized ARM assembly (conventionally via gcc -o4 ...)
 - re-use an ARM operational semantics model(going back to A. Fox)
 - use smt technology to verify that action contracts are still valid on machine level ...