Prog IS - Toolkits

Programming of Interactive
Systems

Anastasia.Bezerianos@Iri.fr

(Nolwenn.Maudet@Iri.fr)

Week 6 :
a. System structure and Toolkits

Anastasia.Bezerianos@Iri.fr

(part of this class is based on previous classes from Anastasia,
and of T. Tsandilas, S. Huot, M. Beaudouin-Lafon, N.Roussel, O.Chapuis)

interactive systems

A. Bezerianos

graphical interfaces

GUIs: input is specified w.r.t. output

Input peripherals specify commands at specific
locations on the screen (pointing), where
specific objects are drown by the system.
Familiar behavior from physical world

18/10/16

Prog IS - Toolkits

software layers

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output

Operating System

Applications/Communication (MacApp)

Builders,
Java Swing, Qt, GTK+, MFC, Cocoa

GDI+, Quartz, GTK+/Xlib, OpenGL

X Windows (+KDE or GNU)

Windows, Mac OS, Unix, Linux,
Android, iOS, WindowsCE

input/output peripherals

software layers

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output

Operating System

interactivity VS. computing

closed systems (computation):
= read input, compute, produce result
= final state (end of computation)

open systems (interaction):
= events/changes caused by environment
= infinite loop, non-deterministic

A. Bezerianos

18/10/16

Prog IS - Toolkits

problem

= we learn to program algorithms (computational)

= most languages (C/C++, Java, Lisp, Scheme,
Pascal, Fortran, ...) designed for algorithmic
computations, not interactive systems

problem

treating input/output during computation
(interrupting computation) ...

= write instructions (print, put, send,..) to
send data to output peripherals

= read instructions (read, get, receive,..)to
read the state or state changes of input

problem

to program IS in algorithmic/computational form:

two buttons Bl and B2
finish <- false
while not finish do
button <- waitClick () //interruption, blocked comp.
if button
Bl : print « Hello World »
B2 : finish <- true
end

end

A. Bezerianos

peripherals
managing input
Querying Polling Events
Query & wait Active wait Wait queue
1 per. at a time Polling in sequence
CPU cost
_

18/10/16

Prog IS - Toolkits

event based (driven) programming

while active
if queue is not empty
event <- queue.dequeue()
——> source <- findSource(event)
source.processEvent (event)
end if

event (waiting) queue ~ end while

(LI TM—

queue.enqueue(event)

Source o
Mouse Click

Animations : « clock » source of events
« tick » -> event -> animation progression

event based (driven) programming

while active
if queue is not empty
event <- queue.dequeue()
——> source <- findSource(event)
source.processEvent (event)
end if

event (waiting) queue ~ end while

(LI TM—

queue.enqueue(event)

Source o
Mouse Click

processEvent (event)
target <- FindTarget (event)
-7 if (target # NULL)

Target -
Bu&ﬂqucdn target.processEvent (event)

Animations : « clock » source of events
« tick » -> event -> animation progression

event handling

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output

Operating System

Lower layers fill-up the queue
Upper layers de-queue and treat events

A. Bezerianos

software layers

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output

Operating System

Today we will focus on a specific Tookit ...

18/10/16

Prog IS - Toolkits 18/10/16

interface builders interface builders

can be used to

= create prototypes (but attention it looks real)
= get the « look » right

= be part of final product

= design is fast
= modest technical training needed
= can write user manuals from it

But: still need to program (and clean code ...)

Examples : MS Visual Studio (C++, C#, etc.), NetBeans (Java),
Interface Builder (ObjectiveC), Android Layout Editor

interface toolkits interface toolkits

. .) . . . Qt multiplatform C++

libraries of interactive objects (« widgets », e.g. GTK+ multiplatform C

buttons) that we use to construct interfaces MFC later WTL Windows Cast

. . WPF (subset of WTL) Windows (any .Net language)
functions to help programming of GUIs FLTK multiplatform Cot
. AWT / Swing multiplatform Java

usually also handle input events (later) Android Android Java
i0S i0S/ WatchOS Objective C / Swift
Cocoa MacOs Objective C / Swift
Gnustep Linux, Windows Objective C
Motif Linux C
JQuery UL Web javascript
Problem with toolkits?

A. Bezerianos 5

Prog IS - Toolkits

treating events

« widgets » (window gadget)

button menu window pallet

L

Fages

= LR —
3 text zone

PATS
&,

Box_shapes

list

*% scroll bar

L e slider

facettes of a widget

presentation
= appearance

behavior
= reaction to user actions

interface with the application:
notification of state changes

Button:
border with text inside
« pressing » or « releasing » animation when clicked
call function when the button is clicked

A. Bezerianos

facettes of a widget

presentation
= appearance

behavior
= reaction to user actions

interface with the application:
notification of state changes
= active/linked/wrapped variables (Tcl/Tk)
= event dispatching (Qt)
= callback functions (Swing)

Prog IS - Toolkits 18/10/16

variable wrappers (active variables) event dispatching
two-way link between a state variable of a
widget and another application variable widgets act as input peripherals and send
(in Tcl/Tk referred to as tracing) events when their state changes
main (){

a while loop reads and treats events

int i = 0;

(o] o . associate an object to a widget, and its
- S R methods to changes in the widget state
{12]

/* active var */

SetIntegerActivevVariable (nc, &i); E saveDialog
problems } oKy ———— Dialog.Clicked(event
= limited to simple types saveDialog Clicked(even?)
= return link can be costly if automatic
= errors when links are updated by programmers
event dispatching callback functions

Registration at widget creation

saveDialog { string filename }

(6K Dosave (...){ ... }
File saveDialog.EditField(event)
. o I(théskfélenarge =..})) R
Cancel saveDialog.OK(event
= o Koot fienme)) Call at widget activation

@ ————— > DoSave (...){ ...}

= divide event sending and treatment

= better encapsulation (inside widget class)

= but when similar behaviors exist ... Save File global string filename;
Flle DoSetFile () {filename = ...}

| (R

DoSave () { SaveTo(filename) }

A. Bezerianos 7

Prog IS - Toolkits

callback functions

Problem: spaghetti of callbacks

Sharing a state between multiple callbacks by:
= global variables: widgets check them
e too many in real applications

callback functions

Problem: spaghetti of callbacks

Sharing a state between multiple callbacks by:

= global variables: widgets check them
e too many in real applications

= widget trees: callback functions are called with a reference
to the widget that called it (visible in the same tree)
¢ Fragile if we change the structure of the UI, does not deal with
other data not associated to widgets (e.g. filename)

callback functions

Problem: spaghetti of callbacks

Sharing a state between multiple callbacks by:
= global variables: widgets check them
e too many in real applications

= widget trees: callback functions are called with a reference
to the widget that called it (visible in the same tree)

¢ Fragile if we change the structure of the UI, does not deal with
other data not associated to widgets (e.g. filename)

= token passing: data passed with the callback function call

A. Bezerianos

callback functions

/* callback function */
void DoSave (Widget w, void* data) {
/* retrieve file name */
filename = (char**) data;
/* call an application function */
SaveTo (filename);
/* close the dialog */
CloseWindow (getParent(getParent(w)));

18/10/16

Prog IS - Toolkits 18/10/16

callback functions event listeners (Java)

/* callback function */

void DoSave (Widget w, void* data) { .)))
/* retrieve file name */ Listeners are a variation of callbacks in Java:
filename = (char**) data;
/* call an application function */
o (2 GG methods of type AddListener that do not

/* close the dialog */

| Closeindov (gecrarent(gecrarent(v)); specify a callback function but an object,
the listener

/* main program */
main () {

i it e name Callbacks registered once when a widget changes state, it triggers a
predefined method of the listener object

N/'* create a widget and assosiate a callback */ .
ok = CreateButton (....); (e.g . aCthnPerfOrmed)

RegisterCallback (ok, DoSave, (void+*) &filename);

/* event manager loop */ \

MainLoop ();

token

}
Events generated here, treated by calling apporpriate callback

interface toolkits

event-action model
= can lead to errors (e.g. forgotten events)
= difficult to extend (e.g. add hover events)

= complex code
=> Finite State Machine and Hierarchical SM

(soon 1)

hard to do things the toolkit was not designed for

e.g. multi-device input, multi-screen applications,
advanced interaction techniques (CrossY)

A. Bezerianos

