
Using Strokes as Command Shortcuts:
Cognitive Benefits and Toolkit Support

Caroline Appert1,2

2LRI - Université Paris-Sud
Orsay, France
appert@lri.fr

Shumin Zhai1
1IBM Almaden Research Center

San Jose, CA, USA
zhai@us.ibm.com

ABSTRACT
This paper investigates using stroke gestures as shortcuts to
menu selection. We first experimentally measured the per-
formance and ease of learning of stroke shortcuts in com-
parison to keyboard shortcuts when there is no mnemonic
link between the shortcut and the command. While both
types of shortcuts had the same level of performance with
enough practice, stroke shortcuts had substantial cognitive
advantages in learning and recall. With the same amount of
practice, users could successfully recall more shortcuts and
make fewer errors with stroke shortcuts than with keyboard
shortcuts. The second half of the paper focuses on UI de-
velopment support and articulates guidelines for toolkits to
implement stroke shortcuts in a wide range of software ap-
plications. We illustrate how to apply these guidelines by
introducing the Stroke Shortcuts Toolkit (SST) which is a li-
brary for adding stroke shortcuts to Java Swing applications
with just a few lines of code.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Graphical user interfaces

Author Keywords
Gesture, Stroke, Shortcuts, Toolkit

INTRODUCTION
Invoking a command in a graphical user interface can usu-
ally be done through three different means: finding and click-
ing its label in a menu, finding and clicking its icon (e.g.
toolbar buttons) or recalling and activating a shortcut. The
most common type of shortcuts is typing a sequence of keys,
known as keyboard shortcuts or hotkeys. Gesturing strokes
is an alternative or complementary type of shortcuts that
is also used but only in a few products. For example, the
Opera1 and the Firefox2 web browsers have a set of strokes

1http://www.opera.com/products/desktop/mouse/
2http://www.mousegestures.org/

ACM, 2009. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in CHI 2009 (April 4 - 9, 2009, Boston,
Massachusetts, USA) http://doi.acm.org/10.1145/1518701.1519052

to open a new window, close a tab, etc. However, while
the UI community has a longstanding interest in strokes as
an interaction medium [24, 23, 7] and developed several re-
search GUI prototypes, e.g. [17, 25], our understanding in
this subject is still rather limited. In particular, there is a lack
of basic cognitive and motor performance measurements of
stroke gestures as command shortcuts in comparison to the
standard keyboard shortcuts.

Traditional keyboard shortcuts have their limits in many situ-
ations. First, studies show that users often have difficulty to
transition from menu selection to keyboard shortcuts [14].
Second, keyboard shortcuts may not be convenient to use,
particularly for a growing number of non-traditional com-
puting and communication devices. For example the iPhone
and the pen-based Tablet PCs either have no keyboard at all
or require the user to manipulate the screen to make the key-
board accessible. Enabling the users to efficiently trigger
a command with a stroke gesture would overcome some of
these problems, complement our current interaction vocabu-
lary and enhance user experience.

In this paper we formulate and investigate the following hy-
pothesis: stroke shortcuts may have a cognitive advantage in
that they are easier to memorize than keyboard shortcuts. To
better support recall, designers should make the shortcuts as
analogous or mnemonic to the command name or meaning
as possible (See related work on icons [19]). However arbi-
trary mappings are unavoidable since many concepts in the
digital world do not offer a direct metaphor to the physical
world. Interestingly, because strokes are spatial and iconic,
which makes richer and deeper processing possible in hu-
man memory [3] even if the mapping is arbitrary, we hypoth-
esize that stroke shortcuts could have cognitive (learning and
recall) advantages over keyboard shortcuts.

We test this hypothesis from a user behavior perspective.
Complementarily from a system design and development per-
spective, we articulate a set of guidelines for developing easy
to use stroke shortcuts toolkits. As a first step in this di-
rection, we present the Stroke Shortcuts Toolkit (SST) that
integrates stroke shortcuts in a widely used development en-
vironment, the Java programming language and its Swing
toolkit. Combining both types of contributions, we hope to
encourage broader and faster adoption of stroke shortcuts in
real world applications.

RELATED WORK

Strokes and commands
The best known work on using strokes to activate commands
is probably the marking menus designed by Kurtenbach and
Buxton [11]. A marking menu is a circular menu displayed
after a delay so expert users who have already learned the
menu layout can stroke ahead without the visual feedback.
Extensions to marking menus include simple mark hierar-
chical marking menus [27] and the Hotbox [12].

Kurtenbach and colleagues also proposed a technique that
can handle a larger vocabulary of gestures in the Tivoli sys-
tem [13]. In that system, if the user does not know which
gestures are available or how to gesture a command, he presses
down the pen and waits for a crib-sheet to display the com-
mands and their corresponding gesture strokes available in
the current context. The Fluid Inking [25] system proposes
a similar approach: to discover the available strokes, users
invoke a marking menu in which an item is composed of
a command name and the corresponding stroke description
(in words), such as “Select (Lasso)”. Neither crib-sheets in
Tivoli nor the augmented marking menus in Fluid Inking
have been experimentally evaluated.

Command strokes (CSs) proposed by Kristensson and Zhai
[10] took another approach. CSs are based on the ShapeWriter
text input system [26, 9]. With ShapeWriter, instead of tap-
ping a sequence of soft keys the user draws a stroke that ap-
proximately links the letters of the intended word on a soft
keyboard. To invoke a command, the user shape writes the
name, or a part of the name, of a command prefixed by the
special Command key. With CSs, users were able to invoke
a command 1.6 times faster than selecting an item in a pull-
down menu. Obviously, CSs require the presence of a soft
keyboard which takes some valuable screen space.

Shortcuts and memorization
Most studies on command input focus on the execution phase
and bypass the command recall phase by using experimental
tasks where the stimuli and the responses are congruent and
direct. For example, participants select an item in a marking
menu in response to a given direction (e.g., N, W, E, S) in
[11]. The same is true in [5, 8] where participants selected
a color swatch (in a toolglass, flow menu or a palette) in re-
sponse to a colored dot. In a study that did involve indirect
mapping between the stimulus and the response, Odell and
colleagues [18] compared toolglasses, marking menus and
keyboard shortcuts to invoke a set of three commands (oval,
rectangle, line). In particular, they compared two sets of key-
board shortcuts. One used the first letter of each command
(’O’, ’R’ and ’L’) while the second used three abstract nu-
meric keys (’1’, ’2’ and ’3’). The latter assignment was the
most efficient on average in their study.

Grossman et al. [4] recently conducted what is possibly the
most comprehensive study to date on learning arbitrary as-
sociations between commands and keyboard shortcuts. In
their task, the stimulus was a graphical icon of a familiar ob-
ject and the action was a keyboard shortcut composed of one
modifier key and an alphabetic key which was not a letter

contained in the object name depicted by the icon. They ex-
plored a number of display methods to accelerate user learn-
ing of keyboard shortcuts but found them ineffective except
for two rather forceful ones: one augments a menu com-
mand selection with the speech audio of the corresponding
hot keys; the other simply disables the menu selection abil-
ity (rendering the menu a crib sheet of shortcuts) forcing the
user to rehearse the keyboard shortcuts.

Despite these and other related works, using strokes as short-
cuts to commands still requires investigations. First, researchers
have never measured users’ ability to learn associations be-
tween a stroke and a command therefore the understanding
of strokes as commands is rather limited. Second, practition-
ers do not have the right tools to easily implement stroke-
based commands and integrate them into mainstream prod-
ucts. The following sections address these understanding
and practical aspects respectively.

STROKE SHORTCUTS VS KEYBOARD SHORTCUTS
In this section we evaluate the performance of stroke short-
cuts relative to that of keyboard shortcuts. This comparison
to keyboard shortcuts is not meant to be a competition, but
rather to use keyboard shortcuts as a baseline control condi-
tion. Since the use of shortcuts largely depend on their ease
of learning, we focus our study on learning aspects involved
in both types of shortcuts. We also limit our study to the gen-
eral case of arbitrary mappings between the commands and
the shortcuts, namely mappings without direct mnemonic as-
sociation in either condition. This decision was based on
several considerations. First, a learning experiment takes
time to do well even when it is focused. Second, the special
cases of mnemonic mapping, which should be maximized in
actual design, is rather limited in number. For example the
usual way of making a keyboard shortcut mnemonic is to
use the first letter of the command name. However this rule
makes interface developers quickly run into conflicts: in fact
the small set of five common commands {Cut, Copy, Paste,
Save and Print} already exhibits two conflicts. Also, for non-
English speakers, the same command may have different
names in different languages yet it has the same keyboard
shortcut (which is probably a reasonable design choice for
consistency). Third, stroke shortcuts can always be made as
mnemonics as keyboard shortcuts by choosing letter-shaped
strokes. Learning required in that case is probably limited.

Participants
Fourteen adults, two females and twelve males, 26 to 44
years old (mean = 31.8, SD = 4.7), participated in our ex-
periment. They were rewarded with a lunch coupon.

Apparatus
The apparatus was a 1.5GHz Pentium M ThinkPad Tablet
PC with a 13-inch tablet digitizer screen at 1024× 768 reso-
lution. The experiment window was set in full-screen mode.
Participants used the stylus to stroke gestures and could hold
the tablet at any time if it felt more comfortable. The set of
strokes was designed by the experimenter and the stroke rec-
ognizer was based on Rubine’s algorithm [20] trained with a
set of 15 examples per stroke input by the experimenter.

(a) (b) (c)

Figure 1. The task used in the experiment: (a) a command stimulus appears as an icon, the participant clicks on it (this makes the icon become
semi-transparent) (b) the participant invokes the command through a menu, (c) or through a shortcut (a stroke shortcut in this case)

ICON Keys Stroke ICON Keys Stroke

Shift+W Ctrl+W

Shift+D Ctrl+D

...

Figure 2. An excerpt of the mappings used in the experiment.

Task
We modeled our experimental task after Grossman et al. [4]
which was the most recent and most complete study to date
on learning keyboard shortcuts. The task required the par-
ticipants to activate a set of commands that were accessible
through both menus and shortcuts. Once a command stim-
ulus (i.e. a graphical icon, as in [4]) was displayed in the
center of the screen, the participant was asked to first click
on the icon (Figure 1-(a)) and then execute a correspond-
ing command as quickly as possible through either menu se-
lection (Figure 1-(b)) or a shortcut activation (by drawing a
stroke or pressing hot keys, depending on the experimental
condition) (Figure 1-(c)). The click on the icon at the begin-
ning of each trial prevented the participant from keeping the
mouse cursor in the menu area to only interact with menu
items. Both types of shortcuts were displayed on-line beside
the corresponding menu items. The participant was explic-
itly told to learn as many shortcuts as possible. In case he
did not know or remember a shortcut, he can use the menu
to directly select the command or look at the shortcut.

The keyboard shortcuts were assigned in accordance to the
rule used in [4]: they were composed of a sequence of a
modifier key followed by an alphabetic key that was not
the first or last letter of the name of the object. To reflect
a necessary difficulty in practical keyboard assignments, the
same alphabetic key preceded by two different modifier keys
(Ctrl or Shift) constituted two different commands. To re-
duce a potential bias, we reproduced this potential pair con-
fusion in stroke shortcuts as well: the same shaped stroke
with two different orientations activated two different com-
mands. Table 2 shows a sample of the icons and the two
types of shortcut we tested. To minimize the influence of
the participants’ personal experience, commands tested were
not those in common software applications but rather ob-
jects and activities of everyday life organized into five menus
(categories): Animals, Fruits, Office, Recreation and Veg-

m1
(Karate,12) ; (Pumpkin,12) ; (Hockey,6) ; (Mushroom,6) ; ... ;
(Keyboard,2) ; (Garlic,2) ; (Dinosaur,1) ; (Pineapple,1)

m2
(Karate,6) ; (Pumpkin,6) ; (Hockey,4) ; (Mushroom,4) ; ... ; (Key-
board,1) ; (Garlic,1) ; (Dinosaur,12) ; (Pineapple,12)

...

Figure 3. Examples of frequency assignments used in the experiment.

etables. Each menu contained 12 menu items resulting in a
total of 60 items. In order to have enough trial repetitions,
the participants had to activate a subset of 14 commands dur-
ing the experiment. Note that the rest of the 60 items were
also assigned shortcuts and served as distracters both to the
participants and to the stroke recognizer.

To reflect the fact that some commands are invoked more fre-
quently than others in real applications, we assigned differ-
ent frequencies to different commands for each participant,
as in [4]. The fourteen frequencies, defined as the number
of occurrence per block of trials, were (12, 12, 6, 6, 4, 4, 3,
3, 2, 2, 2, 2, 1, 1). We used 7 frequency assignments (m1,
..., m7), balanced across the 14 commands (Figure 3), and
assigned each mapping to a group of two participants. The
7 different mappings we used ensured that we collected the
same total number of measures per command in the overall
experiment.

Design
Participants had to complete 12 blocks of 60 trials organized
into two sessions on two consecutive days. Presentation or-
der for commands within a block was randomized while re-
specting the assigned frequencies. Participants had to per-
form 10 blocks on the first day and two blocks on the second
day. In the first two blocks on the first day (warm-up), the
only way of invoking a command was through menu selec-
tion so participants could become familiar with the menu
layout and the experimental task (Shortcut = None). In
the 8 other blocks (test) on the first day commands could be
invoked through either menu selection or shortcuts. These
blocks were divided into two sets: in 4 blocks the short-
cuts were keyboard-based (Shortcut = Keyboard) and in
the other 4 they were stroke-based (Shortcut = Stroke).
Within a group of two participants assigned to the same fre-
quency mapping mi, one experienced the test blocks in the
order Keyboard - Stroke while the other the order Stroke
- Keyboard. For the 11th and 12th blocks on the second

day (re-test) both types of shortcuts were available and the
participants were told to use what was most convenient for
each trial (Shortcut = Both).

Before starting the first session, the experimenter distributed
instructions explaining the task and asking the participants
to learn as many shortcuts as they could in order to com-
plete the study as quickly as possible. Participants were
not told what would be in the second session so that they
would not consciously rehearse shortcuts during the break
between the two days. On the second day, they were told to
complete the last two blocks as quickly as possible by us-
ing the method of their choice for each trial (re-test blocks).
Throughout the experiment the participants could rest not
only between blocks but after every 20 trials within a block.
At the end of the experiment, they were given a question-
naire about their background (if and how much they used
keyboard shortcuts and if they had already used a gesture-
based interface) and their preference between the two types
of shortcuts based on their experience in the study. The fi-
nal part of the questionnaire was a table organized into three
columns “Icon/command”, “Keyboard shortcut” and “Stroke
shortcut”, similar to Figure 2, but with only cells of the first
column filled. The participants had to write down the two
types of shortcuts as they recalled them for every icon they
saw during the experiment. They also had to indicate a con-
fidence level between 0 (don’t remember at all) and 1 (totally
confident) to each shortcut.

Hypothesis
As mentioned in the Introduction, we hypothesize that an
arbitrary association between a command and a shortcut is
more learnable when this shortcut is a stroke rather than a
combination of keys. This hypothesis is based on two argu-
ments, one in favor of strokes and one against key combina-
tions:

• It has been previously postulated in the literature that strokes
(also known as gestures or marks) have various possible
advantages including being iconic [17]. The fact that con-
temporary software applications widely use icons indi-
cates that many users are able to build arbitrary mappings
between commands and icons. For example, a compass
icon is used for launching the Safari browser, a curved
arrow is for reversing the last action (undo) and a floppy
disk, now an obsolete concept, is used as an icon for sav-
ing the current file on the hard drive. More theoretically,
human memory research suggests that deeper or more lev-
els of encoding and processing help memory [3]. The
spatial and iconic information in a stroke may better en-
able users to imagine (encode) an association between the
stroke and its corresponding commands. For example,
when an upward straight stroke was arbitrarily assigned
to the object “bat”, the user may make up the association
of a bat flying upwards.

• Letters are special symbols which are strongly linked to
words in which they appear so it can be very difficult to
link a letter to a command name that does not start with
this letter (such as Ctrl+V for paste).

Results
We used three measures in our analyses:

• Time, the total time interval (in ms) from the command
icon being presented to the completion of the correct com-
mand. Note that this was the total duration including both
recall and execution time.
• Errors, the number of times the participant entered a

wrong shortcut before typing or stroking the correct one.
• Recall, a binary measure which is equal to 1 when the

participant was able to activate the right command with a
shortcut without opening the menu and without any error,
0 otherwise.

The main results lie in the measures collected for the test
blocks in which Shortcut=Stroke and Shortcut=Keyboard
were balanced and compared. Variance analysis on the Time,
Error and Recall data showed that the interaction effect
of Presentation Order × Shortcut was not significant,
confirming that the counterbalancing strategy for minimiz-
ing presentation order effect was successful. We also veri-
fied that the participants followed the instructions and indeed
used the shortcuts instead of relying solely on menu selec-
tion. Across the 8 blocks they used shortcuts in 96% of the
trials for Shortcut = Stroke and in 88.5% of the trials
for Shortcut = Keyboard, indicating that the participants
switched from menu selection to stroke shortcuts more often
or earlier than to keyboard shortcuts. This measure already
suggests that stroke shortcuts were easier to learn.

Our hypothesis was also supported by the three main mea-
sures from the 8 test blocks. First, on average the trials in the
Stroke condition were completed faster than the trials in the
Keyboard condition (F1,13 = 36, p < .0001). Second,
the participants had significantly better recall scores with
stroke shortcuts than with keyboard shortcuts (F1,13 = 32,
p < .0001). Third, the participants made significantly fewer
errors with stroke shortcuts than with keyboard shortcuts
(F1,13 = 23, p < .0003)3. Figure 4 summarizes these re-
sults.

To compare the learning speed for each type of shortcut, we
plotted the mean Time and Recall performances as a func-
tion of the number of times an item was tested from the be-
ginning of the experiment (Figure 5). The results also sup-
ported our hypothesis: Time decreased faster with stroke
shortcuts than with keyboard shortcuts; Recall accuracy in-
creased faster with stroke shortcuts than with keyboard short-
cuts. Note that the performance difference between the two
types of shortcuts is primarily cognitive (learning and recall-
ing the shortcuts). With enough practice, when the user per-
formance is more likely to be limited by motor execution
(around the 25th exposure in this experiment), the difference
in both time and recall between the two types of shortcuts
became indistinguishable.

Data collected in the re-test blocks on the second day al-
lowed us to evaluate users’ memory retention of the short-
3Note that this result is actually even more favorable to stroke
shortcuts since some participants reported that some of their errors
were due to a lack of accuracy in the stroke recognizer.

Ti
m

e
(in

 m
s)

Shortcut within Item Frequency

stroke shortcuts
keyboard shortcuts

Shortcut within Item Frequency

R
ec

al
l

stroke shortcuts
keyboard shortcuts

Shortcut within Item Frequency

Er
ro

rs

stroke shortcuts
keyboard shortcuts

Figure 4. T ime, Recall and Error by Shortcut× Frequency

5000

Ti
m

e
R

ec
al

l

stroke shortcuts

keyboard shortcuts

Figure 5. Time and Recall performance according to the number of
times a command has been seen

100

75

50

25

0

stroke shortcuts
keyboard shortcuts

menu

S0
1

S0
2

S1
3

S1
2

S1
1

S1
0

S0
9

S0
8

S0
7

S0
6

S0
5

S0
4

S0
3

S1
4

Figure 6. Percentage of use of each technique in retest on the second
day (by participant)

cuts learned and to see which type of shortcuts they pre-
ferred. Figure 6 shows each individual participants percent-
age of use for each technique (Keyboard, Stroke and Menu).
Although varied by individual, on average significantly more
stroke shortcuts than keyboard shortcuts were used (F1,13 =
43, p < .0001). The overall mean percentages of use for the
three techniques were: 77.7 % Stroke, 20.3 % Keyboard,
2 % Menu.

Finally, answers to the post hoc questionnaire showed that
all of the participants had intensive previous experience with
keyboard shortcuts in their everyday activity (about 15-20
different shortcuts) and that none of them had ever used strokes.
Despite this experience bias in favor of keyboard shortcuts,

the answers to the final question where they had to fill the
table revealed that they had learned stroke shortcuts better
than keyboard shortcuts in this study. On average 11.6 stroke
shortcuts and 4 keyboard shortcuts were correctly answered.
The participants’ confidence level was also higher with stroke
shortcuts (11.7/14 on average; 14 means complete confi-
dence on all commands tested) than with keyboard shortcuts
(4.2/14 on average).

The participants’ open remarks confirmed some of the anal-
yses that led to our hypothesis. Strokes gave them richer
clues to make up an association (more levels of process-
ing) between a command and its arbitrarily assigned stroke:
“I thought of this stroke as fish because the shape’s stroke
makes me think about a basin” or “I associated this stroke
with a jump and I see karate as a sport where people jump”.
Interestingly, no two people mentioned the same trick to as-
sociate a stroke with a command.

In summary, although the purpose of stroke shortcuts is not
to replace or compete against either menu selection or key-
board shortcuts, the experiment clearly shows that stroke
shortcuts can be as efficient as or more advantageous than
keyboard shortcuts. After enough practice, the total trial
completion times including both recall and execution were
indistinguishable between the two types of shortcuts. How-
ever with the same fixed amount of practice, the participants
successfully recalled more shortcuts and made fewer errors
in the Stroke condition than in the Keyboard condition.
On the second day the participants chose to use stroke short-
cuts significantly more often than keyboard shortcuts, and
correctly recalled about 3 times as many stroke shortcuts as
keyboard shortcuts.

STROKE SHORTCUTS AND UI DEVELOPMENT
The study we conducted suggests that stroke gestures can be
used as command shortcuts that are as effective as, or even
more effective than, keyboard shortcuts. However, imple-
menting stroke shortcuts in real applications is more chal-
lenging than implementing keyboard shortcuts because com-
monly used graphical toolkits do not support stroke input. In
order to encourage the adoption of stroke shortcuts in a wide

range of applications, we articulate a set of guidelines for
stroke shortcuts development based on an analysis of previ-
ous literature and our own experience. We then introduce
Stroke Shortcuts Toolkit (SST), an extension to Java Swing
that we have developed to support stroke shortcuts.

Guidelines to make stroke shortcuts easy to implement
(1) template-based recognition algorithm
Several tools for implementing stroke recognition already
exist. For example, Satin [7] is a Java toolkit that uses a
special component, a Sheet, on which strokes can be drawn
and sent to a recognizer. Satin’s recognizer is built on Ru-
bine’s training-based recognition algorithm [20]. To accu-
rately train the different features representing a stroke in the
algorithm (e.g. size, orientation, speed), enough examples
(about 15) must be given for each stroke and these examples
must reflect the variance along these feature dimensions. Ei-
ther the interface designer or the end user has to enter these
examples. On the one hand, it is difficult for the designer to
foresee the stroke variations that can occur among all users
4. On the other hand, if the training task is left to the end
user, another set of difficulties arises: when and how should
the interface ask the user to enter these examples? Users
tend to be reluctant to invest time and effort upfront to train
or adjust software before using it. A third approach is to
train the recognizer with examples from a large standardized
stroke corpus. However, without a firmly established user
community and stroke standard, such a corpus is difficult to
collect.

While training-based recognition handles different styles and
habits in natural handwriting fairly well, it may not be neces-
sary with novel stroke gestures that can be explicitly defined
with unique templates. In fact the work of ShapeWriter has
shown that template-based recognition can handle thousands
of stroke gestures if multiple channels of information are ap-
propriately integrated ([9]). More recently, Wobbrock et al
[22] formally evaluated template matching methods (with
and without elasticity [21]) in comparison to Rubine’s al-
gorithm for recognizing strokes similar to those used in this
paper. In their favored method, the $1 recognizer, each tem-
plate is represented by a set of equally spaced points, scaled
to a given bounding box and rotated to an indicative an-
gle (i.e. the angle formed between the first point and the
centroid of the template). When a stroke is entered, it is
resampled, scaled and rotated to its indicative angle so its
distance to each template can be computed by summing the
distances between pairs of corresponding points. Their ex-
periment results show that such a simple template match-
ing approach in fact has better performance than Rubine’s
algorithm. By eliminating training issues while still being
accurate, a template-based algorithm is the best choice to
implement stroke shortcuts.

(2) Simplify the task of designing a set of strokes
In [15], Long et al. studied the task of designing a set of
strokes for Rubine’s recognition algorithm. Participants were
4This was a challenge that we faced during the experiment pre-
sented in the previous section in which the Rubine’s recognizer was
trained by the experimenter.

asked to obtain the best recognition accuracy they could. Re-
sults showed that it is a very difficult task and no one partic-
ipant was able to go beyond the 95.4% recognition rate. A
typical problem they observed is that participants tend to add
strokes that are too similar to those already defined. This
shows that designers’ imagination must be stimulated by
providing them with a design space for defining a set of
strokes for the commands of the application they want to en-
hance.

Most of the other problems Long et al. identify in the task
of defining a set of strokes are specifically dependent on
Rubine’s algorithm [15]. They concluded that participants
(including computer science students) were not able to get
a high recognition rate because they do not understand the
principles of the algorithm. It is very difficult to get a men-
tal model of how Rubine’s algorithm works: it represents a
gesture as a set of features and not as a series of points and
uses a covariance matrix that evolves each time an exam-
ple or a new stroke class is added with the potential unpre-
dictable consequence of degrading the recognition accuracy
between the old stroke classes. The study in [15] suggests
that the underlying mechanisms in the recognition engine
must be transparent to the interface designers.The simple
shape matching algorithm used in the $1 recognizer is prob-
ably better from that perspective. However, the rotation in-
dependence property can be hard to anticipate since the no-
tion of indicative angle is not straightforward. This rotation
step can also be a limitation: for example, the rotationa-
independent recognizer cannot distinguish among lines in
different directions which are convenient for invoking re-
ciprocal commands (e.g. “previous” and “next” in a web
browser). Furthermore, Long et al. [16] showed that stroke
initial angle and angle formed by first and last stroke points
are important to perceive two strokes as different while the
rotation independence limits variations that can be expressed
along these two dimensions. Thus the most comprehensive
and permissive recognition algorithm is probably the one
used in the $1 recognizer without the rotation independence
which in fact was also the algorithm used in the shape chan-
nel of ShapeWriter ([9]).

(3) Make stroke shortcuts visible to end users
A well-known and important drawback of using strokes to
activate commands is that these strokes are not self-revealing
[13, 6, 1]. In other words, as opposed to buttons and menus,
the user cannot guess which stroke-based commands are avail-
able and which stroke triggers which command. Often novel
features of an interface are unused not because they are dif-
ficult to use, but because the users are not aware of them.
Therefore interfaces should offer visual clues to available
strokes to make end users able to discover and learn their
effect.

(4) Integrate stroke shortcuts in graphical toolkits
Because interface developers are not willing to change their
development environment or rewrite their existing applica-
tions, interface toolkits should support the implementation
of stroke shortcuts. Of course, the implementation capabili-
ties should be high-level enough to minimize developer pro-

Figure 7. A simple Java Swing interface for a music player.

Figure 8. The Design Shortcuts application

gramming effort. As a baseline, developers typically need to
only add one line of code per command to implement a key-
board shortcut. Implementing a stroke shortcut should not
involve much more programming effort.

SST: stroke shortcuts in Java Swing
In this section, we present SST5, a Java Swing extension to
simplify the addition of stroke shortcuts to any Swing appli-
cation. To illustrate, lets consider that we want to add stroke
shortcuts to the music player window shown on Figure 7 and
built with the instruction:

SimplePlayer player = new SimplePlayer();

To define the mappings between the commands and their
shortcut strokes, the developer can invoke the Design Short-
cuts graphical design environment shown on Figure 8. Launch-
ing this environment on the application windows for which
he wants to map commands with stroke shortcuts requires
the single line:

// Launch Design Shortcuts environment on the main player
window and its About dialog shown on Figure 10
1 new DesignShortcuts(player, player.about);

The Design Shortcuts interface (Figure 8) is divided into
three areas: the stroke dictionary (left panel), the set of short-
5SST is an open source project containing about 3000 lines of code
and is available online: http://code.google.com/p/strokesshortcuts/.

cuts (middle panel) and the testing area (right panel). To
define a new shortcut, the developer clicks on the ’+’ button
displayed on the right of a stroke in the dictionary. This pops
up the list of commands found in the attached windows. He
can either (i) pick one of these commands in the list or (ii)
type a new command name. Callbacks for these new com-
mands are handled through the use of Java listeners as ex-
plained later in this section. At any time, the developer can
test the recognition accuracy by drawing in the testing area.
As soon as a stroke ends, the application displays the list
of the distances between the input stroke and each template,
the recognized stroke being the template with the shortest
distance.

The stroke dictionary contains an initial set of 9 predefined
strokes for the developer to choose from. With these prede-
fined strokes, the developer can already define a large set of
shortcuts by combining several of these strokes and/or ap-
plying geometrical transformations to them. One can use
the transformation buttons displayed on top of each stroke
to rotate or mirror (horizontally or vertically) a stroke before
adding it to the set of shortcuts (using the ’+’ button dis-
played to the right of the stroke). In the example shown in
Figure 8, the developer has used the same shape for Ok and
Play: the orientation of the Ok shortcut suggests a check
mark while the Play shortcut suggests the symbol usually
dedicated to the play command in many music players. Se-
lecting several strokes before pressing one of the ’+’ but-
tons will build a new stroke that is the concatenation of the
selected strokes. For example, the stroke for the About
command has been defined by concatenating the predefined
“arch” stroke with a mirrored copy of it6. Once added to the
set of shortcuts, the transformation buttons remain displayed
for further modifications. If needed, the ’-’ button displayed
to the right of each stroke allows the shortcut to be removed.

Compared with starting with a “blank page”, providing a set
of primitive strokes and a set of operations on these strokes
opens a structured design space that can be systematically
explored. However, there is no reason to constrain the de-
veloper to this set of primitives. Developers can expand the
stroke dictionary with additional custom strokes: a “Free
stroke” button at the bottom of the list of primitives opens
a separate frame for drawing a stroke to be added to the dic-
tionary. This is how the developer has defined a question
mark stroke for the Help command in our example (Fig. 8).

Once designed, the set of shortcuts can be saved as a file
(“player.strokes” here) and enabled on a given Swing inter-
face through a few lines of code. In our music player ex-
ample, only 10 lines of code (Figure 9) are needed to ac-
complish this. SST connects the shortcuts to a Swing GUI
using a central object, the stroke shortcuts manager (m, line
1). This object is in charge of integrating stroke shortcuts to
the Java Swing toolkit and is used to register:

• the mappings (stroke to command name) (line 2),

• the windows that contain commands that can be invoked
through these shortcuts (lines 3 and 4) and

6A pop up menu allows to duplicate any stroke in the dictionary.

http://code.google.com/p/strokesshortcuts/

1 StrokeShortcuts m = new StrokeShortcuts(
player, player.dialogAbout);

2 m.addShortcuts("player.strokes",
MENU_PREVIEW, TOOLTIP_PREVIEW);

3 m.setCriterion(player.playlist, new Criterion(){
4 public boolean startStroke(MouseEvent event) {
5 return event.getButton() == MouseEvent.BUTTON3;
6 }
7 });
8 m.disableStrokes(player.sliderSong);
9 m.disableStrokes(player.sliderVolume);

10 m.enableStrokesSheet();

Figure 9. Complete code to add keyboard shortcuts to the music player
interface.

Figure 10. Strokes in different windows.

• the “strokable” components, i.e. the Swing widgets on
which strokes can be drawn (lines 5 to 13, detailed below).

In SST, a stroke is defined as a series of points sent by an
analog input device (a mouse or a digital pen) that starts with
a press event and ends with a release event. Each stroke
occurring on a “strokable” component is entered into the
recognizer to get the name of the command that is then in-
voked through the Java accessibility interface. In our ex-
ample, line 1 registers both the main frame and the About
dialog as “strokable” components so the user can draw on
any of the two windows as illustrated in Figure 10. By de-
fault, all children components of a “strokable” component
are also “strokable”. Since press, drag and release are events
that may already be used by standard widgets, SST allows
the developer (i) to associate a criterion on the mouse press
event that specifies when the stroke recognition must be en-
abled or (ii) to disable stroke recognition on specific compo-
nents. For example, no criterion is required when the user
wants to stroke on the interface background while one is re-
quired for a list box on which a drag is already an action
dedicated to selecting items in the list. In this latter case,
the developer can decide to accept only strokes drawn when
the right mouse button is pressed (lines 3 to 7). Finally, he
disables stroke recognition on the sliders for adjusting the
playing point in a song and the volume (lines 8 and 9).

By default, in SST, a stroke leaves a visible ink trail (by
means of the transparent overlay available in the window
containing the component). At the end of a stroke, its ink
trail is either smoothly morphed into the template it matches
(in case of recognition, as ShapeWriter does [9]) or flashes
red (if it is not recognized). Note that the ink is morphed
into a template scaled to the same size as the stroke to min-

imize visual change. Also, the morphing animation stops
as soon as the user starts a new stroke so expert users can
enter strokes in rapid succession. The morphing animation
(or beautification) not only provides a feedback of recogni-
tion result but also helps novice users learn the correct stroke
shape and discourages expert users from departing too much
from the ideal shape. If the transparent overlay is already
used for another purpose, stroke ink can be disabled and
a different feedback mechanism can be implemented. One
or several stroke listeners can be attached to the shortcut
manager which will be notified each time the user begins a
stroke, adds a point to a stroke or ends a stroke. When ending
a stroke, the event can be of one of the three types: recog-
nized shortcut, recognized stroke or non recognized stroke.
In all cases, the current input stroke can be retrieved from
the received event so that it can easily be used for other in-
teractions. For example, a non recognized stroke could be
used for drawing in a graphical editor.

To address the visibility problem (i.e. users do not have a
way to discover the available strokes and their meaning),
SST offers three types of visual clues to make the user dis-
cover and learn the mappings: Tooltip, Menu preview and a
Strokes Sheet. The first two types of visual clues are turned
on or off by the parameters of addShortcuts (line 2 on Fig-
ure 9). If Tooltip is turned on, any graphical component that
provides a shortcut will display it in a tooltip that pops up
when the mouse cursor dwells over this component. If this
component already has a tooltip associated with it, the ex-
isting tooltip is augmented with the stroke illustration while
preserving its original text. Similarly, if the Menu preview is
turned on, any menu item that is invokable by a stroke dis-
plays a preview of this stroke beside its label as is usually
done with keyboard shortcuts. Finally, a Strokes Sheet can
be enabled in the stroke shortcuts manager (line 10, Figure
9). A strokes sheet is an independent window that displays
the list of shortcuts and the name of their associated com-
mands found in the current opened windows. The behavior
of the strokes sheet has been inspired by the Tivoli system
in [13]: this sheet pops up each time the user pauses during
a stroke (at the beginning or at any moment while stroking)
and remains visible until the user enters a shortcut that is
successfully recognized or closes the sheet.

In this section, we showed how SST allows a developer to
add stroke shortcuts to a Java Swing interface in only 10
lines of code without having to modify the basic code for
the music player. The 3000 lines of code in SST offload the
developer not only from having to implement or train any
recognizer but also from developing visual displays (morph-
ing feedback, tool tips or crib sheet). We have also shown
how the Design Shortcuts environment helps developers to
map a set of strokes by offering a structured design space.

Recognition accuracy in SST
Since the recognizer implemented in SST skips the rotation
step of the $1 recognizer evaluated in [22], one may wonder
to what extent it affects recognition accuracy. Although we
have not observed a noticeable degradation during our in-
formal tests, we decided to conduct a controlled experiment

that measures the recognition accuracy of our simple match-
ing algorithm on the set of strokes shown in Figure 11. We
chose to use a set of 16 strokes since the answers to the post
hoc questionnaire of Experiment 1 revealed that our partic-
ipants use roughly 15 different keyboard shortcuts in their
everyday use of computers.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Figure 11. The 16 strokes used in our experiment.

This experiment involved 6 of the participants that had al-
ready served in our first experiment and the same apparatus.
The task was very simple: one stroke was displayed on the
screen and the participant was told to reproduce it as fast
as possible and as accurately as possible. As soon as the
participant started to draw, the sample stroke disappeared to
avoid turning the reproduction task into a copy task. At any
time (except during stroking), the participant could have the
stroke displayed again by pressing the space bar and start the
task again. We implemented this possibility to avoid the sit-
uation where the recognition failed and the participant had
forgotten what stroke to produce. A trial ended only if the
right stroke was recognized.

The experiment had two Input device conditions: Pen and
Mouse. We included a regular mouse for two reasons. First,
since the mouse is less dexterous than a pen in articulat-
ing shapes (drawing one’s signature with a mouse vs. a pen
shows the difference), the mouse condition would add more
stress to the recognizer. Second, it is also practically useful
to know if stroke shortcuts can be used with a mouse. In the
experiment the participants had to perform 11 blocks in each
condition that were grouped to avoid successive changes of
input device. Each block consisted of 16 trials, one per
Stroke, presented in a random order. The presentation order
of input devices was counterbalanced between participants
so 3 participants started in the Mouse condition while the 3
others started in the Pen condition. In each condition, the
first block was a practice block.

We measured the Stroking time, i.e. the time between the
press and the release event when drawing the right stroke,
and the number of Recognition errors. Analysis of vari-
ance revealed a significant effect of both Input device (F1,5 =
34, p < 0.002) and Stroke (F15,75 = 25, p < 0.0001) on
Stroking time. Users were faster with a pen (394 ms on
average) than with a mouse (704 ms on average). Also, the
Stroking T ime increased with the complexity of the stroke,
supporting the results reported in [2]. More surprisingly,
we observed a significant interaction effect of Stroke ×
Input device on Stroking time (F15,75 = 5, p < 0.0001):
differences between input devices seem to increase with the
complexity of the stroke (particular more curves). All these
results are illustrated on Figure 12.

Analysis of variance also revealed a significant effect of Input

Input device within Stroke

St
ro

ke
 ti

m
e

(in
 m

s)

400

1400

1200

1000

800

600

200

Mouse
Pen

Figure 12. Stroke time by Stroke× Input Device

device (F1,5 = 9, p < 0.03) on Recognition errors. In the
Mouse condition, the participants made 7.4% errors on the
first attempt at each stroke sample presented. Among these,
they succeeded 73% of the time with the second attempt,
10% with the third attempt, and 17% with the subsequent
attempts. In the Pen condition, only 3% of the trials failed
with the first attempt, of which 76% were corrected with the
second attempt, 7% with the third attempt, and 17% with the
subsequent attempts. There was also a significant main ef-
fect of Stroke (F15,75 = 3, p < 0.001) on Recognition
errors: the error rates drastically changed when remov-
ing the 3 more complex strokes from our data: less than
0.001% of the trials in the Mouse condition and 0% of
the trials in the Pen condition on the first attempt. Finally,
for Recognition errors, the interaction effect Stroke ×
Input device was not significant. Overall this study shows
that the recognizer used in the StrokeShortcuts library is ac-
curate. Although users’ stroke articulation speed was con-
siderably slower with a mouse than with a pen, the shape-
matching based recognition algorithm could accurately rec-
ognize mouse strokes as well.

CONCLUSION
Menu selection has been, and will likely continue to be, the
basic and dominant way of activating commands in human-
computer interaction. Ubiquitous in modern software ap-
plications, keyboard shortcuts provide a faster alternative to
frequently used commands. The investigation presented in
this paper encourages the use of stroke gesture as shortcuts
for touch screen-based devices without a physical keyboard.
The conceptual and empirical study in the first part of the
article shows that stroke shortcuts can be as effective as key-
board shortcuts in eventual performance, but have cognitive
advantages in learning and recall. With the same amount
of practice, about three times as many stroke shortcuts were
learned as keyboard shortcuts. Following a set of develop-
ment guidelines articulated in the second half of the paper,
we have shown a simple way to implement stroke shortcuts
in Java Swing by providing developers with SST. Requir-
ing no training by the developer or the end user, the built-
in shape matching-based recognizer in SST can yield high
accuracy for simple strokes, even if the strokes are articu-
lated with a mouse. SST offers a structured yet open design
environment and simplifies the implementation of strokes’
visibility in applications.

Integrating stroke shortcuts in the Java / Swing platform-
independent framework is a first step, we now plan to de-
velop extensions to other frameworks like Objective C / Co-
coa or C# to cover most of the applications developed for
touch screen devices ranging from Apple’s iPhone to HP’s
TouchSmart desktop PCs.

ACKNOWLEDGEMENTS
We thank Michel Beaudouin-Lafon and Alison Sue for help-
ing to improve this article, our participants for having served
in our studies and Pierre Dragicevic for sharing with us the
set of icons used in [4].

REFERENCES
1. O. Bau and W. E. Mackay. Octopocus: a dynamic guide

for learning gesture-based command sets. In UIST ’08:
Proceedings of the 21st annual ACM symposium on
User interface software and technology, 37–46, New
York, NY, USA, 2008. ACM.

2. X. Cao and S. Zhai. Modeling human performance of
pen stroke gestures. In CHI ’07: Proc. ACM
Conference on Human factors in computing systems,
1495–1504, 2007.

3. F. Craik and R. Lockhart. Levels of processing: A
framework for memory research. Journal of Verbal
Learning and Verbal Behavior, 11(6):671–684, 1972.

4. T. Grossman, P. Dragicevic, and R. Balakrishnan.
Strategies for accelerating on-line learning of hotkeys.
In CHI ’07: Proc. ACM Conference on Human factors
in computing systems, 1591–1600, 2007.

5. F. Guimbretière, A. Martin, and T. Winograd. Benefits
of merging command selection and direct
manipulation. ACM Trans. Comput.-Hum. Interact.,
12(3):460–476, 2005.

6. K. Hinckley, S. Zhao, R. Sarin, P. Baudisch, E. Cutrell,
M. Shilman, and D. Tan. Inkseine: In situ search for
active note taking. In CHI ’07: Proceedings of the
SIGCHI conference on Human factors in computing
systems, 251–260, New York, NY, USA, 2007. ACM.

7. J. Hong and J. Landay. Satin: a toolkit for informal
ink-based applications. In UIST ’00: Proc. ACM
Symposium on User interface software and technology,
63–72, 2000.

8. P. Kabbash, W. Buxton, and A. Sellen. Two-handed
input in a compound task. In CHI ’94: Proc. ACM
Conference on Human factors in computing systems,
417–423, 1994.

9. P.-O. Kristensson and S. Zhai. Shark2: a large
vocabulary shorthand writing system for pen-based
computers. In UIST ’04: Proc. ACM symposium on
User interface software and technology, 43–52, 2004.

10. P.-O. Kristensson and S. Zhai. Command strokes with
and without preview: using pen gestures on keyboard
for command selection. In CHI ’07: Proc. ACM
Conference on Human factors in computing systems,
1137–1146, 2007.

11. G. Kurtenbach and W. Buxton. User learning and
performance with marking menus. In CHI ’94: Proc.
ACM Conference on Human factors in computing
systems, 258–264, 1994.

12. G. Kurtenbach, G. Fitzmaurice, R. Owen, and
T. Baudel. The hotbox: efficient access to a large
number of menu-items. In CHI ’99: Proc. ACM
Conference on Human factors in computing systems,
231–237, 1999.

13. G. Kurtenbach and T. Moran. Contextual animation of
gestural commands. Eurographics Computer Graphics
Forum, 13(5):305–314, 1994.

14. D. Lane, H. Napier, S. Peres, and A. Sandor. Hidden
Costs of Graphical User Interfaces: Failure to Make the
Transition from Menus and Icon Toolbars to Keyboard
Shortcuts. International Journal of Human-Computer
Interaction, 18(1):133–144, 2005.

15. A. C. J. Long, J. A. Landay, and L. A. Rowe.
Implications for a gesture design tool. In CHI ’99:
Proceedings of the SIGCHI conference on Human
factors in computing systems, 40–47, New York, NY,
USA, 1999. ACM.

16. A. C. J. Long, J. A. Landay, L. A. Rowe, and
J. Michiels. Visual similarity of pen gestures. In CHI
’00: Proceedings of the SIGCHI conference on Human
factors in computing systems, 360–367, New York, NY,
USA, 2000. ACM.

17. P. Morrel-Samuels. Clarifying the distinction between
lexical and gestural commands. Int. J. Man-Mach.
Stud., 32(5):581–590, 1990.

18. D. Odell, R. Davis, A. Smith, and P. Wright.
Toolglasses, marking menus, and hotkeys: a
comparison of one and two-handed command selection
techniques. In GI ’04: Proc. of Graphics Interface,
17–24, 2004.

19. Y. Rogers. Evaluating the meaningfulness of icon sets
to represent command operations. In Proc. Conference
of the British Computer Society, 586–603, 1986.

20. D. Rubine. Specifying gestures by example.
SIGGRAPH Comput. Graph., 25(4):329–337, 1991.

21. C. Tappert. Cursive script recognition by elastic
matching. IBM Journal of Research Development,
26(6):765–771, 1982.

22. J. Wobbrock, A. Wilson, and Y. Li. Gestures without
libraries, toolkits or training: a $1 recognizer for user
interface prototypes. In UIST ’07: Proc. ACM
Symposium on User interface software and technology,
159–168, 2007.

23. C. Wolf. Can people use gesture commands? ACM
SIGCHI Bulletin, 18(2):73–74, 1986.

24. C. Wolf, J. Rhyne, and H. Ellozy. The paper-like
interface. In Proc. International conference on
human-computer interaction on Designing and using
human-computer interfaces and knowledge based
systems, 494–501, 1989.

25. R. Zeleznik and T. Miller. Fluid inking: augmenting the
medium of free-form inking with gestures. In GI ’06:
Proc. of Graphics Interface, 155–162, 2006.

26. S. Zhai and P.-O. Kristensson. Shorthand writing on
stylus keyboard. In CHI ’03: Proc. ACM Conference on
Human factors in computing systems, 97–104, 2003.

27. S. Zhao and R. Balakrishnan. Simple vs. compound
mark hierarchical marking menus. In UIST ’04: Proc.
ACM Symposium on User interface software and
technology, 33–42, 2004.

	INTRODUCTION
	RELATED WORK
	Strokes and commands
	Shortcuts and memorization

	STROKE SHORTCUTS VS KEYBOARD SHORTCUTS
	Participants
	Apparatus
	Task
	Design
	Hypothesis
	Results

	STROKE SHORTCUTS AND UI DEVELOPMENT
	Guidelines to make stroke shortcuts easy to implement
	SST: stroke shortcuts in Java Swing
	Recognition accuracy in SST

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

