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SUMMARY

This article describes SwingStates, a Java toolkit designed to facilitate the development of
graphical user interfaces and bring advanced interaction techniques to the Java platform.
SwingStates is based on the use of finite-state machines specified directly in Java to
describe the behavior of interactive systems. State machines can be used to redefine
the behavior of existing Swing widgets or, in combination with a new canvas widget
that features a rich graphical model, to create brand new widgets. SwingStates also
supports arbitrary input devices to implement novel interaction techniques based, for
example, on bi-manual or pressure-sensitive input. We have used SwingStates in several
Master’s level classes over the past two years and have developed a benchmark approach
to evaluate the toolkit in this context. The results demonstrate that SwingStates can be
used by non-expert developers with little training to successfully implement advanced
interaction techniques.

key words: human-computer interaction, graphical user interfaces, user interface toolkits, finite

state machines, Java Swing

1. INTRODUCTION

In many application areas, software systems have evolved from purely sequential systems to
reactive systems: their behavior is controlled by events that can arrive at any time. For example,
user interfaces react to events sent by the mouse and keyboard when the user operates them.
Distributed systems react to events notifying the arrival of packets from the network. Even
standalone applications may use events for inter-thread communication or simply to signal
that a timer has expired.

∗Correspondence to: LRI (Université Paris-Sud & CNRS), INRIA, bât 490, 91405 Orsay, France.
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State machines are a well-known formalism for describing such event-driven systems: by
identifying distinct states and the system’s reactions to the various possible events in each state,
they provide a simple yet powerful model for modeling the behavior of reactive and interactive
systems. Indeed, state machines are widely used in the design stages of a computer system.
For example, the well-known Unified Modeling Language (UML) [1] uses state machines to
describe the dynamic behavior of individual objects, use cases or entire systems.

Surprisingly however, state machines are not integrated as a native programming construct
of general-purpose programming languages such as Java or C++. As a result, developers resort
to workarounds in order to implement state machines. The most frequent pattern is the use of
event handlers, called listeners in Java. First, the programmer specifies a callback function (or
method) that will be called when the event occurs. Second, the programmer binds this callback
function or method to a specific event type, e.g. a mouse click. Since this programming pattern
does not explicitly represent states, the code of the callback typically contains a series of tests
on application’s global variables in order to trigger the correct behavior. For example, in a
user interface, the effect of a mouse click will be different if the cursor is on a menu item or in
a drawing area and, in a drawing area, it will depend on which tool is currently selected.

The first main contribution of the SwingStates toolkit described in this paper is to use
the native Java syntax to describe arbitrary state machines, almost as if they were a native
language construct. Our goal was to make SwingStates widely available and appealing to the
large community of Java developers. Therefore we did not want to customize the language, use
a preprocessor or other external tools to specify state machines. Instead, we wanted developers
to use the tools they are familiar with (editor, debugger, IDE, etc.) while taking advantage of
the flexibility of state machines.

User interfaces are arguably the most widespread type of event-driven application and the
one that suffers the most from the lack of higher-level abstractions to specify event-based
behaviors. All widely used user interface toolkits such as Gtk [2], Java Swing and the native
toolkits of MacOS X and Windows are based on the notion of widget. A widget is an interactive
component that represents a button, a menu, a scrollbar, a dialog box, etc. Building a user
interface consists of assembling those predefined widgets and linking them to the rest of the
application through event handlers (listeners in Java). While widgets typically provide a first
level of event dispatching based on the position of the cursor, i.e., a mouse click event is
dispatched to whatever widget is under the cursor, the use of callbacks nevertheless creates
what Myers calls a “spaghetti” of callbacks [3] with intricate dependencies. With typical real-
life applications containing hundreds of widgets and thousands of event handlers, this makes
the code brittle and hard to maintain.

Moreover, the widget sets of these user interface toolkits are closed: it is very difficult to
create new widget types that would be more adequate for particular interactions. This is
unfortunate because the human-computer interaction research community has a long history
of creating novel and effective interaction techniques (see the proceedings of the ACM CHI
and ACM UIST series of conferences for instance). For example, circular menus (also known
as pie menus) have been known for many years to be a lot more efficient than linear menus [4].
Yet few user interface toolkits feature them. So current user interface toolkits are actually an
impediment to the dissemination of advanced interaction techniques that would improve the
usability of applications used by millions of users.
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Figure 1. A graphical depiction of the state machine for a coffee maker

The second main contribution of the SwingStates toolkit is to extend the Java Swing widget
toolkit with state machines and a new canvas widget. The new canvas widget is based on a rich
structured graphical model and is designed to help create new advanced widgets such as the
circular menus mentioned above. State machines are used for programming user interactions
and replace listeners. They can be used with existing widgets to reprogram their behavior, as
well as with the new canvas widget to program complex interactions.

The rest of this article presents SwingStates in detail. We describe our integration of state
machines into the Java environment and illustrate how state machines differ from traditional
event handlers for programming event-based applications. We then present the new canvas
widget and the use of state machines both to create new widgets and to reprogram existing
Swing widgets. We complete this tour of SwingStates by describing its support for non-standard
input devices, including bi-manual input. One well-known shortcoming of state machines is
the potential explosion of the number of states and transitions. We explain how to control
this explosion by combining multiple state machines in various way. Finally, we report on our
evaluation of SwingStates by showing how it follows a set of design principles and by describing
our experience with using SwingStates for teaching and conducting a set of benchmarks on
advanced interaction techniques.

2. PROGRAMMING STATE MACHINES IN JAVA

This section describes the type of state machines used in SwingStates and its implementation.
In particular, we show how we took advantage of Java inner classes to integrate state machines
as a control structure in the Java language.

SwingStates implements event-driven finite-state machines, simply called state machines
from here on. A state machine is a model of computation consisting of a set of states, an event

alphabet, and a set of transitions labeled with events. Exactly one state, called the current

state, is active at any one time. Initially, the initial state is the current state. Figure 1 shows
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a graphical representation of a state machine that models the behavior of a coffee maker.
States are depicted by circles and transitions by arrows. There are four states: off, heating,
ready and busy. The initial state (labeled by an L-shaped arrow) is off. Each transition
connects an input state to an output state and may have an associated guard and action. A
transition is active only when its input state is the current state and its guard evaluates to
true (a guard that is omitted evaluates to true). For example, making coffee is allowed only
when in the ready state and the water container is not empty. Each transition may have a
transition action, which is executed when the transition is fired. For example, making coffee
(event coffee from state ready) opens the water tap. A state may have an enter action and
a leave action. Enter and leave actions are executed when a state becomes active or inactive.
For example, entering the ready state turns the green light on while leaving it turns it off.
The transitions that lead to a given state are called its input transitions while those that leave
a state are called its output transitions.

When an event occurs, the first† output transition of the active state that is labeled with
that event and whose guard evaluates to true is fired. If no such transition exists, the event is
simply ignored. Firing a transition executes three actions in the following order:

(i) the leave action of the current state;
(ii) the transition action associated with the transition being fired;
(iii) the enter action of the transition’s output state.

Once a transition is fired, its output state becomes the new current state.
Our goal was to seamlessly integrate state machines into Java programs in order to build on

the developers’ existing skills in using the Java language and its comprehensive set of tools.
While a graphical format is very appealing for describing state machines and is often used for
teaching and designing state machines, it did not meet our goals. Graphical editors such as
StateWORKS [5] require specific tools to execute, debug and store state machines. They also
require to specify the body of the actions separately from the state machine itself. This results
in a poor integration with the programmers’ workflow and requires significant training to use
these new tools. An alternative to graphical editors is a dedicated text format for specifying
state machines. For example, with the State Machine Compiler [6], developers must define
state machines using a custom text format and actions must be written in Java in a separate
file. State Chart XML [7] uses a similar approach, except that the text format is XML. As with
graphical editors, using a text format requires at least a specific tool for translating a state
machine into an executable form (either in source or object form). Forcing developers to juggle
with two languages, such as Java for the actions and XML for the state machine, complicates
their tasks and is error prone. Debugging also becomes a problem: either the developer has to
deal with the translated form of the state machine to identify errors, or extra debugging tools
must be provided.

Our solution was to use plain Java to specify state machines. Figure 2 shows the SwingStates
code for the state machine in figure 1. The complete state machine is described by a single

†transitions are naturally ordered in textual representations of state machines, however this order is not specified
in graphical representations such as Figure 1.
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1 StateMachine coffeeMaker = new StateMachine() {

2 public State off = new State() {
3 Transition switchOn = new Event("switch on", ">> heating") { };
4 Transition switchOff = new Event("switch off", ">> off") { };
5 };

6 public State heating = new State() {
7 public void enter() {
8 // switch on red light
9 }
10 Transition waterHot = new Event("water hot", ">> ready") { };
11 Transition switchOff = new Event("switch off", ">> off") { };
12 public void leave() {
13 // switch off red light
14 }
15 };

16 public State ready = new State() {
17 public void enter() {
18 // switch on green light
19 }
20 Transition coffeeOn = new Event("coffee on", ">> busy") {
21 public boolean guard() { return ! containerEmpty(); }
22 public void action() { openWaterTap() }
23 };
24 Transition switchOff = new Event("switch off", ">> off") { };
25 public void leave() {
26 // switch off green light
27 }
28 };

29 public State busy = new State() {
30 Transition coffeeOff = new Event("coffee off", ">> ready") {
31 public void action() { closeWaterTap() }
32 };
33 Transition switchOff = new Event("switch off", ">> off") { };
34 };

35 };

Figure 2. The coffee maker state machine in SwingStates
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block of Java code that can readily be run and debugged. As with most dedicated text formats,
a state machine is described in SwingStates by a set of states and each state is described by
the set of its output transitions. In SwingStates however, states and transitions are Java
objects, declared using anonymous inner classes‡. In our example, we see that coffeeMaker is
initialized with an instance of an anonymous subclass of StateMachine (line 1) that contains
four variables representing its states: off (lines 2-5), heating (lines 6-15), ready (lines 16-28)
and busy (lines 29-34). By convention, the first state of a state machine is its initial state.

Each state is itself an instance of an anonymous subclass of State. States can override the
enter and leave methods in order to specify the state’s enter and leave actions. For example,
lines 17-19 and 25-27 specify that the green light is turned on/off when entering/leaving
the state ready. States declare their output transitions using anonymous inner classes.
For example, in state ready, the variable coffeeOn (line20) is initialized with an object
representing the transition for the coffee on event. Transitions are specified as follows:

Transition <trans> = new <event>(<params...>, <ostate>) { ... }
where:

• <trans> is the name of the variable holding the transition;
• <event> is the name of a subclass of Transition that represents the class of event

labeling this transition. Here we use Event, a transition that can be triggered by simple
events labeled by text strings;

• <params> is a (possibly empty) list of parameters characterizing the event. Here, we use
the label of the event we want to match, i.e., "coffee on";

• <ostate> is the name of the output state of the transition (if omitted, the output state is
the same as the input state, i.e. the state in which the transition is declared). Note that
the output state is specified using a text string rather than the name of the output state
itself. This is a consequence of Java’s rules for initializing variables: when a transition
object is instantiated, such as coffeeOn on line 20, the parent object is not yet created
and its variables, in particular those holding states such as off or busy, are still null.
Our solution is to specify output states by a string holding the name of the state variable
and to resolve these strings to the corresponding states using Java’s reflection package§

the first time the state machine is used, i.e. only once. Leading non-alphabetic characters
are ignored, which allows developers to make output states stand out in their code (we
use " >> " in our examples).

Transitions, i.e. the anonymous inner classes that specify transitions, can override two
methods: guard to specify a boolean guard (e.g., line 21 for testing that there is water in the
container) and action to specify the transition action (e.g., line 22 for opening the water tap).

‡in Java, an inner class is a class declared within another class. An instance of an inner class only exists within
the scope of an instance of the parent class, and the inner class instance has access to the parent object’s
methods and variables. If A is the name of a class, the construct new A() {...} creates a new anonymous
subclass of A and a single instance of that anonymous subclass. The anonymous subclass can specify arbitrary
methods and variables within the curly braces, as with a normal class.
§a side effect of this solution is that states must be declared as public, otherwise they are not visible to the
reflection API.
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Of course, transitions, as well as states and state machines, can specify additional methods and
variables for their own use. For example, the coffeeMaker state machine could store its current
temperature in a variable. The natural nesting of scopes provided by anonymous inner classes
means that any state and any transition could access the temperature. Similarly, a method or
variable declared within a state can only be accessed from inside that state, including from its
transitions.

Transitions are triggered by sending events to the state machine. In our example, the “switch
on” event can be sent to the coffee maker as follows:

coffeeMaker.processEvent( new VirtualEvent(”switch on”) );
VirtualEvent is a subclass of Java’s standard EventObject that contains the event’s label to
be matched with an Event transitions, e.g., line 3 in Figure 2.

In summary, anonymous inner classes provide a natural syntax where states are nested within
state machines, transitions are nested within their input states and guards and actions are
specified by overriding methods. State machines are specified in plain Java so that programmers
can use their usual tools. For example, debugging can be done by setting a breakpoint on an
enter method to break when the corresponding state becomes current. Note that this approach
does not preclude the use of specific tools. For example, SwingStates provides facilities for
graphically displaying state machines at run-time (see figure 20 for an example). However,
such tools are not mandatory and our experience shows that the Java syntax is easily adopted
even by novice programmers (see section 8).

SwingStates implements different kinds of state machines. The simplest and most general
kind, StateMachine, features two types of basic events: events identified by a text string, as we
have seen above, and Timeout events that are fired after a delay specified by the programmer.
The other kinds of state machines are tailored to programming user interfaces with the Java
Swing toolkit and are described in the following sections.

3. PROGRAMMING USER INTERFACES WITH STATE MACHINES

While SwingStates can be used to program any general state machine, it has been especially
designed to facilitate the implementation of interaction techniques and user interfaces. This
section reviews the state-of-the-art in state machines for describing interaction and then argues
for the use of state machines in user interface toolkits.

Since Newman’s seminal work [8], state machines have often been used to describe user
interaction (see [9] and [10] for early examples) but rarely to actually directly program it
[11]. For example, Buxton [12] introduced the 3-state model to describe typical press-drag-
release interactions and Hinckley et al. [13] extended this model to describe more complex
bi-manual interactions. While they both use state machines to model interaction, neither use
them for their implementation. In 1990, Myers introduced Interactors [14], which are objects
that intercept events and translate them into operations on a target item. The Garnet [15]
and Amulet [16] toolkits implement Interactors as press-drag-release state machines but only
provide developers with a small set of predefined behaviors, such as a move and grow interactor
that translates or scales objects. Unfortunately, many interactions cannot be described by these
simple predefined state machines. For example, displaying a tooltip or opening a folder using
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a spring-loaded interaction as with Mac OS X require more complex state machines that use
time as input.

Jacob et al. [17] proposed a model and a language based on state machines to capture
the formal structure of post-WIMP interactions. Using this model requires a dedicated
environment: the developer specifies the machines using a visual editor and enters the actions
as C++ code by clicking on the relevant machine parts. The hybrid representation is then
translated into an executable C++ program. HsmTk [18] is a more recent C++ toolkit that
also uses state machines to program interaction. It uses the W3C Scalable Vector Graphics
format (SVG) to describe the graphical rendering of interactive objects and a textual format
for the hierarchical state machines that describe their behavior. HsmTk uses a preprocessor to
translate state machines and rendering code into C++. In both cases, the lack of integration
with existing user interface tools and the requirement to use specific tools and formats seriously
hinder the adoption of these systems by developers.

Developers of user interfaces instead have adopted widely available toolkits such as Java
Swing, Gtk [2], Qt [19] or the native tools provided by Mac OS X and Microsoft Windows.
Programming interaction techniques with these toolkits consists in assembling standard
widgets such as buttons, checkboxes or linear menus and linking them to the rest of the
application through callbacks or listeners. Such interactive applications are notoriously difficult
to debug and maintain due to the difficulty of following the flow of control [3]. Moreover,
creating new widget classes is difficult because it requires an intimate knowledge of the inner
workings of the toolkit. As a result, developers usually stick to the predefined widget set and
applications rarely feature novel interaction techniques.

We claim that using state machines instead of event handlers (callbacks or listeners) leads
to cleaner and easier to maintain user interface code and can facilitate the implementation of
novel and advanced interaction techniques in mainstream applications. The main reason for
the “spaghetti of callbacks” [3] is the fact that a single interaction is spread among several
handlers and that a single handler may contain code from several interactions. For example,
consider a press-drag-release interaction that moves an object if started on that object and
moves the whole window content (called panning) otherwise. This requires three handlers for
the press, drag and release events. Each event must be declared and bound to its event type.
The body of each handler must test whether it is moving an object or panning the window,
requiring a global variable to coordinate state among the handlers. With a state machine, we
need three states: an initial state that awaits for a press and determines whether it is a move or
a pan, a state that will be active while moving an object, and a state that will be active while
panning the window. Each state only specifies the events it is interested in, and the whole
specification is localized in a single piece of code. Figure 3 compares these two approaches.
While the code length is similar, it is important to realize that the logic of the interaction is
better represented in the state machine. For example, adding a constrained move when the user
holds the Shift key down translates into adding a state to the state machine while it requires
changing all three handlers and adding a global variable to the event handler approach.

Indeed, the developer must follow a different cognitive process when programming with state
machines vs. event handlers. Event handlers require an event-centered approach: for each event
type, the developer must ask herself “What are the different cases in which the interface must
handle this event and how?” Adding or modifying interactions typically affects several handlers
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Shape dragged = null;

boolean moveShape = false;

MouseListener listener = new MouseAdapter () {

   public void mousePressed(MouseEvent evt) {

      if(evt.getButton() == BUTTON1) return;

      dragged = pick(component, evt.getPoint());

      moveShape = (dragged != null);

      if(moveShape) {

         dragged.hilite();

      }

   }

   public void mouseReleased(MouseEvent evt) {

      if(evt.getButton() == BUTTON1) return;

      if(moveShape) 

           dragged.unhilite();

      dragged = null;

   }

}

component.addMouseListener(listener);

[...]

MouseMotionListener motionListener =  new MouseMotionAdapter () {

   public void mouseDragged(MouseEvent evt) {

      if(evt.getButton() == BUTTON1) return;

      if(moveShape)

           background.move();

      else

           dragged.move();

   }

}

component.addMouseMotionListener(motionlistener);

    StateMachine machine = new StateMachine() {  

      Shape dragged;

      public State start = new State() {

          Transition t1 = new Press(BUTTON1, "--> move_shape") {

               public boolean guard() {

                  dragged = pick(component, evt.getPoint());

                  return dragged != null;

               }

          } 

           Transition t2 = new Press(BUTTON1, "--> move_bg") { }

      }

      public State move_shape = new State() {

          public void enter() { dragged.hilite(); }

          Transition t1 = new Drag(BUTTON1) {

              public void action() {

                 dragged.move();

              }

          }

          Transition t2 = new Release(BUTTON1, "--> start") { }  

          public void leave() { dragged.unhilite(); }       

      }

    

      public State move_bg = new State() {

          Transition t1 = new Drag(BUTTON1) {

              public void action() {

                 background.move();

              }

          }

          Transition t2 = new Release(BUTTON1, "--> start") { }

      }

  }

   machine.attachTo(component);

Figure 3. Code for a “drag” interaction with event handlers (left) and with a state machine (right)

and requires new global variables, so event handlers are more compact for interfaces that have
only a few states or for interfaces whose behavior is very similar among states. State machines
require a state-centered approach instead: for each state, the developer must ask herself “Which
events are relevant to this state, i.e., which events cause a significant change, and which states
(existing or new) do they lead to?”. Adding or modifying interactions typically result in fairly
localized changes, although it may be difficult to control the growing number of states.

The potential advantages of using state machines to program interactions (as opposed to
just describing them) and the fact that Java developers are used to the Swing user interface
toolkit has led us to SwingStates : the first user interface toolkit to use state machines for
programming interaction directly in Java. Other advanced Java toolkits, such as Piccolo [20]
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and Zoomable Visual Transformation Machine (ZVTM) [21] for zoomable interfaces or InfoVis
[22] and Prefuse [23] for Information Visualization replace rather than extend Swing while
keeping an event-based model for handling input. A notable exception is SubArctic [24], which
builds on AWT (the predecessor of Swing) and Java2D, but manages input through a flexible
mechanism based on agents and dispatch event policies.

The following sections describe the two main uses of SwingStates :

• developing new widgets: SwingStates features (i) a canvas, which is a Swing widget (a
subclass of JComponent) with a rich graphical model, and (ii) state machines with a
comprehensive set of transitions dedicated to this canvas;

• customizing existing widgets: SwingStates features (i) state machines that can be used
to replace or extend the listeners of any Swing widget and (ii) state machines that can
be used to define interactions across several widgets.

4. PROGRAMMING NEW WIDGETS WITH THE SWINGSTATES CANVAS

Most user interface toolkits, including Swing, make it difficult for developers to create
new widget classes. Consequently, interactive applications do not take advantage of novel
interaction techniques such as the control menus [25] that we use as example in this section.
SwingStates features a canvas widget class, Canvas, designed specifically to create new widgets.
A canvas contains a set of shapes defined by geometrical and graphical attributes, as well as
attributes dedicated to interaction. Interaction with the canvas and its shapes is defined using
a special class of state machines, CStateMachine, that contains transitions for input events
that take into account these interaction attributes. The rest of this section presents the canvas’
graphical model and shows how to define interactions with the canvas’ content.

4.1. Graphical model

A SwingStates canvas contains a set of graphical objects called shapes stored in a display
list. Unlike other Java canvases such as AWT’s Canvas and Swing’s JPanel where developers
have to paint the content of the canvas directly using the Java2D API for 2D graphics, the
SwingStates canvas is declarative: its on-screen display is updated automatically when the
content of its display list is changed, e.g. when adding or removing shapes or when changing
their attributes. This is a similar approach to the scene graphs often used in 3D graphics, such
as Inventor [26].

Each shape in a canvas is a specialization of the CShape class. All shapes have a geometry,
defined by a Java2D Shape and an affine transformation, and visual attributes, defined by
Java2D Paint (fill and border color) and Stroke (border style). SwingStates comes with
six predefined shape classes (figure 4): CRectangle, CEllipse, CSegment, CText, CImage

and CWidget. CWidget is a special class that allows any Swing widget to be treated and
manipulated like a shape while keeping it interactive. For example, a JButton can be scaled
and rotated and still be clicked. All shapes have setters, e.g. setPaint(Paint) for any CShape

or setText(String) for CText, that trigger a redisplay of the canvas to keep the internal and
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CShape {

 protected Shape shape;

 protected Paint fillPaint;

 protected Paint outlinePaint;

 protected Stroke stroke;

        protected AffineTransform transform;

 ...

}

CRectangularShape
hello

Class   : class belonging to Java2D library

Figure 4. SwingStates’ predefined canvas shapes

visual states consistent. While the predefined shape classes cover most needs, developers can
create their own shapes by extending CShape or any of the predefined shape classes.

The shapes in the canvas are displayed in the order of the display list, i.e. the last shape
in the list is on top of the others. Shapes can be added or removed from the display list and
their order in the list can be changed. Shapes can also be hidden and then shown without
removing and re-adding them to the list by using the drawable attribute. This is useful to
improve performance and simplify programming for interfaces that show shapes temporarily,
such as a popup menu.

By default, the coordinates of a shape are relative to the canvas’ upper-left corner. These
coordinates can be transformed by an affine transform that combines scaling, translation and
rotation. The transformation can be relative, i.e. it is combined with the current shape’s
transform, or absolute, i.e. it replaces it. By default, the center of the scale and rotation
transforms is the center of the transformed shape but developers can set it to any point. The
coordinates of a shape can also be relative to those of another shape, called its parent. In this
case, the shape’s transform is combined with its parent’s. As a result, applying a transform
to a shape affects all its descendants. Finally, a shape s can be clipped by another shape c so
that only the parts of s that intersect c are displayed. As in the GmlCanvas toolkit [27], these
two relationships among shapes (hierarchy and clipping) are independent from each other and
from the order in the display list. For example, a parent shape can also be a clipping shape,
and a parent shape can be displayed above or below its child. Such independence provides a
lot of flexibility to describe complex displays and interact with them.

As an example, we describe the implementation of a control menu. A control menu [25] is a
circular menu that works as follows: the user invokes the menu by pressing a mouse button,
selects a menu item by crossing it and then continues to drag the mouse to control a parameter

11



Figure 5. Setting rotation angle using a control menu

of the selected command. For example, figure 5 shows an interaction to set the rotation angle
of a shape: (i) the user invokes the menu by pressing the mouse button ; (ii) the user visits the
“rotate” item ; (iii and iv) the user controls the rotation angle by dragging the mouse after
having crossed the item: dragging towards the left increases the angle while dragging towards
the right decreases it. Figure 6 shows the relationships among the shapes to implement a
control menu. Note that the parent of all the menu shapes is the last shape in the display
list. Displaying the control menu at a given location therefore simply consists of applying
an absolute translation to this shape. Showing and hiding the whole menu however requires
another feature called tags.

Each shape in a canvas can be tagged. A tag is a collection of objects that can be enumerated
using an iterator. Each object can have several tags and a given tag can be attached to several
objects. Tags are typically used to represent groups of shapes and to manipulate all the shapes
in a group at once. To that effect, the CTag class defines most of the methods of the CShape

class so that developers can manipulate all objects with a given tag as if it were a single object.
For example, the instruction below translates all the shapes tagged by aTag:

aTag.translateBy(10, 20);

SwingStates ’ tags were inspired by the Tk toolkit [28]. In Tk, a tag is simply a text string that
can be attached to one or more graphical shapes. The Tk canvas includes a set of commands
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is child of

is clip of

is displayed below

Figure 6. Relations between shapes in a control menu

that take a tag name as parameter to modify all the objects that have this tag at once.
While Tk tags are implemented as simple lists associated to the tag’s name, SwingStates ’
tags are full-fledge objects and therefore are more powerful. SwingStates features two types of
tags: extensional tags, which are explicitly added to or removed from a shape, as in Tk, and
intentional tags, which are specified by a predicate that tests whether or not a shape has this
tag. Extensional tags can be active: each time an extensional tag is added to or removed from
a shape, the tag’s added(CShape) or removed(CShape) method is called.

For example, to implement a selection mechanism, we define a tag selected that we add
to selected shapes. In order to provide a visual feedback of selected objects to the user, we
override the added(CShape) and removed(CShape) methods so that selected shapes have a
2-pixels outline while non selected shapes have a 1-pixel outline:

CExtensionalTag selected = new CExtensionalTag(canvas) {
public void added(CShape s) {

s.setStroke(new BasicStroke(2));
}
public void removed(CShape s) {

s.setStroke(new BasicStroke(1));
}

};
...
// create three objects, select two of them and translate them:
CRectangle rect = canvas.newRectangle(100, 100, 50, 150);
CEllipse circle = canvas.newEllipse (300, 300, 350, 350);
CText text = canvas.newText(250, 250, "Hello world", new Font("verdana", Font.PLAIN, 12));
rect.addTag(selected);
text.addTag(selected);
selected.translateBy(10, 20);

13



Intentional tags are used to define a set of shapes according to a given criterion. Each
time an intentional tag is used, the set of tagged shapes is recomputed. Because this can be
computationally expensive, e.g., when the canvas has many shapes, intentional tags should be
used wisely. The following example shows an intentional tag that turns all the red shapes of a
canvas into green shapes:

CIntentionalTag redShapes = new CIntentionalTag(canvas) {
public boolean criterion(CShape s) {

return s.getFillPaint() == Color.RED;
}

};
...
redShapes.setFillPaint(Color.GREEN);

4.2. State machines for the SwingStates canvas

CStateMachine is a class of state machines dedicated to programming interaction
with the canvas and its shapes. It provides a set of transition classes of the form
<EventType><?Context> to handle standard input events in different contexts. For example,
a Press transition is triggered by a mouse press anywhere in the canvas, while a
PressOnShape transition is triggered by a mouse press only if the cursor is on a shape, and
a PressOnTag(CTag) transition is triggered by a mouse press only if the cursor is on a shape
that has the given tag. The different contexts that are recognized by SwingStates can be seen
as predefined guards for the basic input event transitions. The implementation however is
more complicated: when a state machine is attached to a canvas and its current state contains
*OnShape or *OnTag transitions∗, the canvas performs picking, i.e. it determines which shape
is under the cursor and makes this shape available to the state machine. Note that a shape can
be made non pickable if it is to be displayed but ignored for picking. The canvas state machine
also implements a priority among the contexts so that an *OnTag transition, e.g., PressOnTag,
has priority over an *OnShape transition, e.g., PressOnShape, which has priority over a simple
input event transition, e.g., Press.

The code in figure 7 implements the state machine that runs our control menu. State menuOff
(line 1) uses a PressOnShape transition (line 5) to display a menu of shape creation commands
and a Press transition (line 8) to display a menu of application commands. State menuOn (line
12) becomes active once the mouse button is pressed and stays active until either the mouse
button is released (line 13) or an item is selected (line 17). If the mouse enters a menu item (line
14), this item becomes the current one and if it then leaves the whole menu, the machine enters
state control. In this state, the user controls a parameter of the current command (line 21)
until she releases the mouse button (line 23). To detect when the mouse cursor enters a menu
item and to get its associated command, we use an extensional tag of class ControlMenuItem
that stores the associated command as a field:

∗We use the notation *<context> to specify any input event (Press, Release, Move, Drag, Wheel, Enter, Leave)
in the given context. Similarly, we will use <event>* to specify the given input event in any context (OnShape,
OnTag).
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1 CStateMachine interactionControlMenu = new CStateMachine() {

2 Command selectedCommand;

3 public State menuOff = new State() {
4 public void enter() { hideMenu(); }

5 Transition invokeOnShape = new PressOnShape(BUTTON1, ">> menuOn") {
6 public void action() { showMenuShape(getPoint()); }
7 };

8 Transition invoke = new Press(BUTTON1, ">> menuOn") {
9 public void action() { showMenuBackground(getPoint()); }
10 };
11 };

12 public State menuOn = new State() {

13 Transition stop = new Release(BUTTON1, ">> menuOff") { };

14 Transition enterItem = new EnterOnTag(ControlMenuItem.class) {
15 public void action() { selectedCommand = ((ControlMenuItem)getTag()).getCommand(); }
16 };

17 Transition selectCommand = new EnterOnTag("background", ">> control") { };

18 };

19 public State control = new State() {

20 Transition control = new Drag(BUTTON1) {
21 // apply selectedCommand with a parameter computed according to the cursor location
22 };

23 Transition stop = new Release(BUTTON1, ">> menuOff") {
24 public void action() { canvas.getTag("background").setPickable(false); }
25 };

26 };

27 };

Figure 7. State machine for a control menu
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Figure 8. Fading out a menu (labels start to fade out only once the item backgrounds are completely
transparent.)

class ControlMenuItem extends CExtensionalTag {
private Command command;
public ControlMenuItem(Command command) {

super();
this.command = command;

}
public Command getCommand() { return command; }

}

Each menu item has a different tag that holds its command, however all these tags belong
to the same class. The transition EnterOnTag(ControlMenuItem.class) (line 14) is triggered
when the mouse cursor enters a shape with a tag of this class and its action can retrieve the
associated command (line 15)¶.

This example uses an invisible object to distinguish between the cursor leaving the menu
item to select it (i.e., the mouse cursor leaves the whole menu) from the cursor leaving the
menu item to select another item (i.e., the mouse cursor leaves the current item but enters
a new one): When displaying the menu (lines 6 and 9), we add a shape just below the menu
that is larger than the whole menu. We make this shape non visible but pickable and we tag
it with the string “background”. When the mouse cursor enters this shape (line 17), it means
that the cursor has left the whole menu. When the user releases the mouse button, we make
this shape non pickable so as not to interfere with other graphical shapes (line 18).

4.3. Animation

The SwingStates canvas and state machines support animation. Any shape, any tag and even
the whole canvas can be animated using mechanisms similar to those found in other toolkits
that support animation, such as ZVTM [21] or Piccolo [20]. An animation is an object that
can be started, suspended, resumed and stopped. It has a duration T, a number of laps N and
a delay d. While the animation is running, a parameter t goes from 0 to 1 over T milliseconds
during odd laps, and from 1 down to 0 during even laps. The parameter t evolves according to

¶Note that one could also specialize the shape representing the item to hold the command, but this would be
less generic. With the tag approach, any shape can be a menu item.
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either a linear or a sigmoid function of absolute time (the latter implements the typical slow
in-slow out of cartoon animations [29]). Every d milliseconds, the animation’s step method
is called to update the shapes it controls and trigger a redisplay of the canvas. SwingStates

includes a set of predefined animations to change the style and geometrical attributes of shapes
and tags, such as changing the transparency level to make an object fade in or out.

The main originality of SwingStates animations is their integration with state machines and
with the tagging mechanism. The combination of these two features help manage the scheduling
of animations. For example, in order to make an object shrink while another object changes
its color, the developer can use two animations with the same duration, tag them with the
same animation tag (a subclass of regular extensional tags) and call the tag’s start method
to start both animations simultaneously. Animations trigger events when started, suspended,
resumed and stopped. These events can be handled in state machines using transitions such
as AnimationStarted that take an animation or an animation tag as parameter.

For example, we may want to improve the graphical transitions in our control menu by
fading the menu out when the user releases the mouse button rather than instantly hiding
it. Also, because users are faster at visually searching for an item when they know the menu
layout, we want to make item labels more remanent than the menu background which clutters
the user’s working area and does not contain useful information. We use two animations that
continuously increase transparency (figure 9): animBg (line 1) for making the item backgrounds
disappear, followed by animLabels (line 2) for making item labels disappear. animBg is started
by the state machine that runs the control menu each time an item has been selected. In order
to start animLabels only once animBg has stopped, we use a separate state machine (lines
3-24) that runs in parallel with the control menu state machine (section 7 will elaborate on
the various ways to combine multiples state machines).

When animBg is started, this machine goes from state idle to state bgDisappearing (line
4-6). Then, when animBg ends (line 8), animLabels is started (line 11) and the current state
becomes labelsDisappearing until animLabels ends (line 19). We also force the current
animation to stop if the user invokes the menu again by pressing the mouse button while the
menu is still fading out (lines 14-16 and 20-22).

This section described how to use SwingStates ’ canvas and state machines to implement a
control menu, a widget that current user interface toolkits do not feature. The canvas’ graphical
model made it easy to describe the visual aspect of the menu while the use of tags and state
machines resulted in a compact and easy to follow description of the interaction. By using a
separate state machine for animation, we kept the descriptions simple and modular. The next
section describes how SwingStates can also be used to redefine the interaction with existing
Swing widgets, therefore providing developers with a complete tool for leveraging advanced
interaction techniques in existing as well as new Java Swing applications.

5. ENHANCING INTERACTION WITH EXISTING WIDGETS

While some interaction techniques require novel widgets, as shown with the control menu
in the previous section, many can be implemented on top of existing widgets. For example,
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1 AnimationTransparency animBg = new AnimationTransparency(0);
2 AnimationTransparency animLabels = new AnimationTransparency(0);
...
3 new CStateMachine(canvas) {
4 public State idle = new State() {
5 Transition t = new AnimationStarted(animBg, ">> bgDisappearing") { };
6 };
7 public State bgDisappearing = new State() {
8 Transition t = new AnimationStopped(animBg, ">> labelsDisappearing") {
9 public void action() {
10 // all labels are tagged with tagLabels so they can be animated at once
11 tagLabels.animate(animLabels);
12 }
13 };
14 Transition invokeMenu = new Press(BUTTON1, ">> idle") {
15 public void action() { animBg.stop(); }
16 };
17 };
18 public State labelsDisappearing = new State() {
19 Transition t = new AnimationStopped(animLabels, ">> idle") { };
20 Transition invokeMenu = new Press(BUTTON1, ">> idle") {
21 public void action() { animLabels.stop(); }
22 };
23 };
24 };

Figure 9. State machine for fade-out animation of a menu

OrthoZoom [30] is a navigation technique that turns a traditional scrollbar into a powerful
multi-scale navigation tool for very large documents: dragging the cursor along the colinear
dimension of the scrollbar, i.e. vertically in a vertical scrollbar, pans the document as with a
regular scrollbar while dragging the cursor along the orthogonal dimension, i.e. horizontally in
a vertical scrollbar, scales the whole document up or down to move faster or slower (Figure 10).
As another example, CrossY [31] augments traditional widgets so they can be manipulated
using crossing interactions instead of clicking. In CrossY, crossing a checkbox selects or
deselects it, crossing a scrollbar one time or several times in a row makes the document move
by a single step or by entire pages, etc.

SwingStates allows developers to reuse existing Swing widgets and redefine their interaction
with a state machine without having to reimplement the widgets’ rendering. First, SwingStates
features a class of state machine that replaces Swing’s event handlers for processing the
standard mouse, keyboard and timer events. Second, SwingStates features a special class of
state machines and component tags to define interactions over a set of heterogeneous widgets.
JStateMachine is a class of state machines designed to specify the interaction within and

across existing Swing widgets. It contains transitions suffixed by *OnComponent to handle
events on a given Swing widget and transitions suffixed by *OnTag to handle events on a
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Figure 10. OrthoZoom Scroller: moving the cursor to the left (i)(ii)(iii) zooms out, as shown by the
range of numbers and the size of the scrollbar thumb. The user may then move the cursor down (iv)
to move quickly to the end of the range and then to the right (v) (vi) in order to zoom in and adjust

the destination position

tagged widget. Similarly to the graphical shapes of a canvas, the widgets in a Swing container
can be tagged. In particular, when a JStateMachine is attached to a widget, this widget is
automatically tagged by the name of its class, e.g. a button has the tag “javax.swing.JButton”
and a checkbox has the tag “javax.swing.JCheckBox”.

The example in figure 11 turns a regular scrollbar into an OrthoZoom scroller that controls
the content of a canvas. The state machine is attached to the panel that contains the scrollbar
and canvas because, unlike a regular scrollbar, OrthoZoom uses the area of the controlled
widget for the interaction. Pressing the mouse button on the scrollbar (line 6) starts a regular
scrolling interaction while the cursor stays within the scrollbar (lines 14–18) and until the
mouse button is released (line 19). If the cursor is dragged over to the canvas (lines 9–13),
the document is scaled by a zoom factor that depends on the horizontal distance between
the cursor and the right edge of the canvas and is then scrolled (see [30] for the mapping
function). The state machine also implements rate-scrolling [30]: when the mouse cursor leaves
the canvas during a scrolling interaction (line 20), we arm a repeating timer (line 22) to scroll
continuously (lines 32-36) until the mouse cursor reenters the canvas (lines 27–31).

More complex interactions can be implemented by using a feature of Swing called the
glasspane. The glasspane is an overlay plane that floats above the widgets in a window and
that can contain arbitrary Swing components. SwingStates can create a canvas in the glasspane
of a window; by attaching a state machine to that canvas, a wide range of novel interaction
techniques can be implemented.

Figure 12 illustrates the crossing interaction described at the beginning of this section:
checkboxes can be selected and buttons can be activated by crossing them instead of clicking
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1 JStateMachine jsm = new JStateMachine() {

2 public State start = new State() {
3 public void enter() {
4 // scale view to 1
5 };
6 Transition startControl = new PressOnTag("javax.swing.JScrollBar", BUTTON1, ">> control") { };
7 };

8 public State control = new State() {
9 Transition orthoZoom = new DragOnTag("fr.lri.swingstates.canvas.Canvas", BUTTON1) {
10 public void action() {
11 // zoom and pan
12 }
13 };
14 Transition simplePan = new DragOnTag("javax.swing.JScrollBar", BUTTON1) {
15 public void action() {
16 // simple panning
17 }
18 };
19 Transition stopControl = new Release(BUTTON1, ">> start") { };
20 Transition startRateScrolling = new Leave(">> rateScroll") {
21 public void action() {
22 armTimer(40, true);
23 }
24 };
25 };

26 public State rateScroll = new State() {
27 Transition stopRateScrolling = new Enter(">> control") {
28 public void action() {
29 disarmTimer();
30 }
31 };
32 Transition timeOut = new TimeOut() {
33 public void action() {
34 // rate scrolling: one scroll step
35 }
36 };
37 Transition stopControl = new Release(BUTTON1, ">> start") { };
38 };

39 };
...
40 // frame is a window containing a Canvas and a vertical scrollbar
41 jsm.attachTo(frame);

Figure 11. State machine for an OrthoZoom Scroller
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Figure 12. Crossing interaction with checkboxes and buttons

them‖. Note that an ink trail is left behind the cursor, which disappears when the mouse
button (or pen) is released. This provides feedback to the user.

This interaction can easily be implemented with two state machines running in parallel.
One state machine is attached to the glasspane. It displays the ink trail and erases it when the
mouse button is released. The second state machine is attached to the frame covered by the
glasspane. It detects enter/leave sequences of events on buttons and checkboxes and selects
the checkbox or invokes the button as soon as the cursor finishes crossing the widget with the
mouse button depressed.

In summary, SwingStates is designed to work with existing widgets when a complete
redefinition is not necessary. Redefining the behavior of existing Swing widgets saves time when
compared with creating new widgets from scratch. It also helps repurpose existing applications
by keeping their visual appearance while changing the interaction, for example to improve their
usability when used with different input devices such as a pen. The following section pushes
this approach further by allowing SwingStates applications to use any input device, not just
the predefined mouse (or pen) and keyboard.

6. SUPPORTING GENERALIZED INPUT

Figure 13 summarizes the set of transitions supported by SwingStates. It covers interaction
with the keyboard and mouse, animations, and timers. While this represents a large vocabulary,
this is still insufficient for some advanced interaction techniques that use non-standard devices.
For example, Zliding [32] is a stylus-based multi-scale navigation technique that uses pressure
to control zooming and movements to control panning. Swing is limited to standard mouse and
keyboard events and therefore, even when using a pressure-sensitive pen, pressure information
is not available.

‖This interaction technique is particularly well suited to pen-based devices such as PDAs and Tablet PCs,
although it does work with a mouse as well.
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Figure 13. Classes of transitions available in SwingStates

Moreover, all devices that resemble a mouse are merged together, as are all devices that
resemble a keyboard. So for example, on a laptop computer that has both a trackpad and
a mouse, both devices control the single on-screen cursor and Swing reports the activity of
this cursor rather than that of the actual input devices∗. As a result, interface designers
cannot implement bi-manual techniques such as toolglasses or bi-manual palettes (Figure 14).
These techniques use one pointing device per hand in order to perform actions in parallel and
have been shown to be more efficient than standard, unimanual palettes [33]. For example, a
toolglass [34] is a semi-transparent palette that can be moved with a mouse or trackball held
in the non-dominant hand while the cursor is still controlled by a mouse held in the dominant
hand. To apply a tool at a given position, the user moves both the palette and cursor to this
position and clicks with the cursor through the palette to apply the appropriate tool. A bi-

∗This includes the fact that even though the mouse or trackball can be scrolled arbitrarily far away in any
direction, the reported events have their x and y coordinates clamped to the screen physical dimensions.
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Figure 14. Toolglass and bi-manual palette

manual palette is another variant of a standard palette that uses two cursors, one for selecting
tools with the non-dominant hand and one for applying the selected tool in the working area
with the dominant hand. This technique minimizes mouse movements by avoiding round trips
from the palette to the working area (the non-dominant cursor stays in the palette area while
the dominant cursor stays in the working area).

The rest of this section describes how SwingStates supports such advanced interactions. It
first describes the general input device model and its low-level events, and then the higher-level
event model and its use to program a bi-manual palette.
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6.1. Device model and low-level events

Handling non-standard input devices in Java requires access to low-level system information.
In order to keep SwingStates as portable as possible, we use the JInput library [35], which is
implemented on many hardware platforms. JInput describes input devices in terms of physical
devices called controllers, each composed of a set of axes that describe its state. For example,
a regular mouse is a controller, e.g., “USB Mouse”, with two axes for its two buttons, e.g.,
“USB Mouse.left” and “USB Mouse.right”, and two axes for the mouse displacements, e.g.,
“USB Mouse.x” and “USB Mouse.y”. JInput can query which controllers are available and
the current value of each axis.

We use an input manager that we first developed in the context of the TouchStone platform
[36]. This component queries the values of the axes of all known devices every delay milliseconds
and generates an event each time an axis has changed∗∗. These events can be handled in state
machines with AxesEvent transitions.

Handling such low-level events however is cumbersome. For example, tracking a mouse
requires listening to three axes (“USB Mouse.x”, “USB Mouse.y” and ”USB Mouse.left”),
testing the value of ”USB Mouse.left” to determine whether the mouse button was pressed or
released, and duplicating transitions for “USB Mouse.x” and “USB Mouse.y” to track mouse
motion. For this reason, we provide a higher-level model for handling events.

6.2. Handling high-level events

In order to support input events at a similar level of abstraction as Swing, e.g., a click at
a given 2D location, while supporting multiple devices and distinguishing them, SwingStates
features the GMouse class. GMouse is in fact a state machine that consumes low-level events
generated by the axes of a given JInput mouse controller and fires higher-level PickerEvent
events to the Swing component that is attached to it. A PickerEvent is a specialization of
the standard java.awt.MouseEvent class used by Swing that has an extra GMouse field.

The GMouse state machine implements the semantics of mouse events. For example, it detects
a click as a button press quickly followed by a button release and sends the appropriate Press,
Release and Click events; it integrates the relative displacements provided by the mouse into
an absolute position within the component and clamps it to the component size; etc. Since
the events fired by GMouse are subclasses of standard Swing input events, they can be handled
by regular Swing components and SwingStates state machines as if they were regular input
events, therefore providing upward compatibility.

The real value of GMouse however is that it can be used to implement bi-manual interaction
techniques. For example, the machine in figure 15 uses a SwingStates canvas to implement a
bi-manual palette for a laptop equipped with a trackpad and a USB mouse. Each tool in the
palette has a tag named “tool” while the shapes that can be edited have a tag called “shape”.
The canvas also contains a black cursor associated with the trackpad (lines 1 and 3), used to

∗∗The fact that JInput requires polling is a potential performance problem, although it has not been an issue
for us until now.
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1 CImage blackCursor = canvas.newImage("blackCursor.gif");
2 CImage whiteCursor = canvas.newImage("whiteCursor.gif");
// CanvasMouse is a subclass of GMouse that controls a canvas shape, here a cursor
3 CanvasMouse shapePicker = new CanvasMouse("USB Mouse", canvas, blackCursor);
4 CanvasMouse colorPicker = new CanvasMouse("Trackpad", canvas, whiteCursor);

5 new CStateMachine(canvas) {
6 Color colorSelected = null;

7 public State s = new SelectionState() {
8 Transition changeColor = new PressOnTag(colorPicker, "tool", BUTTON1, ">> on") {
9 public void action() {
10 colorSelected = (Color)getShape().getFillPaint();
11 }
12 };

13 Transition applyColor = new PressOnTag(shapePicker, "shape", BUTTON1) {
14 public boolean guard() { return colorSelected!= null }
15 public void action() {
16 getShape().setFillPaint(colorSelected);
17 }
18 };
19 };

20 };

Figure 15. State machine for a bi-manual palette

select tools in the palette, and a white cursor associated with the USB mouse to apply the
current tool (lines 2 and 4). The PressOnTag transitions take an optional first argument that
specifies the input device that sent the event. Pressing the trackpad button when the black
cursor is over a color tool in the palette changes the current color (lines 8–12) while pressing
the mouse button when the white cursor is over a shape fills this shape with the current color
(lines 13–18).

6.3. Integration into standard interfaces

Since PickerEvent events are standard Swing events, this generalized input scheme works
with any standard mouse listener as well as with the state machines presented in this article.
There are still a few problems however with the seamless integration of generalized input into
SwingStates. This part of the toolkit is therefore still experimental.

The main problem is the proper management of the cursor(s). Although we integrate the
relative x and y displacements provided by the mouse controller into absolute values, these
absolute values do not match the system cursor location because (i) the system cursor is
controlled by all pointing devices and (ii) its position is modified by system properties such
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as cursor acceleration. An alternative would be for SwingStates to hide the system cursor and
manage its own cursors, e.g. in a canvas associated to the glasspane. However the user must
also be able to use the system cursor outside SwingStates-controlled widgets. Using Swing’s
notion of focus, we can track when the system cursor enters a widget that uses generalized
input, hide the system cursor, constrain it to stay inside the widget (we use java.awt.Robot

for that purpose), and display our cursor. But this is unduly complicated and does not work
reliably on all platforms††.

The work presented in this section is a first step to integrate generalized input into a full-
fledge Java user interface toolkit. To the best of our knowledge, this has not been done before.
However, we are still investigating how to make such an integration completely seamless, robust
and independent of the runtime platform.

7. OVERCOMING THE LIMITATIONS OF STATE MACHINES

State machines are a simple formalism that is easy to understand and well adapted to describing
interaction [9, 37]. Their main limitation however is the lack of scalability: as the system
becomes larger and more complex, the number of states and the number of transitions grows,
sometimes exponentially, and they become hard to maintain. This problem is well-known and
a number of solutions have been presented to solve it, such as the early Recursive Transition
Networks (RTN) [38]. Most solutions consist of adding modularity and a notion of hierarchy
to state machines. The most well-known and succesful such extension is Harel’s StateCharts
[39], which introduce a hierarchy of states (a state can contain a state machine) and precisely
defines the semantics of this construct. StateCharts were used in the StateMaster User Interface
Management System [40], and a variant of them specifically tailored to designing user interfaces
was used in the more recent HsmTk toolkit [18]. StateCharts however are significantly more
complicated and hard to learn than plain state machines, and our experience is that user
interface designers and developers have difficulties exploiting their power. Other approaches
include Petri Nets [41], which have also been used to specify user interfaces, for example in
the PetShop system [42]. Here too, the learning curve is steep, making the adoption of such a
model by developers difficult.

Our experience in using state machines to describe interaction techniques is that the state
explosion is not an issue when the state machine describes a single interaction, but it becomes
a problem when combining the state machines for several techniques into a single one or when
adding visual feedback, such as animations, across different techniques. Our solution is to
support a form of modularity where multiple state machines can be active simultaneously and
can run independently while communicating with each other.

††Some platforms require special privileges or extensions to control the position of the system cursor, which is
understandable as it can be used for phishing attacks.

26



voice

gesture 

recognition

graphical 

menu
sm1

sm1

sm1

sm2

INPUT TECHNIQUES APPLICATION

sends events listened by

Figure 16. Communication between state machines

7.1. SwingStates’ model of communicating state machines

With SwingStates, any number of state machines can run simulateneously. A state machine
can be active, i.e., handling the events it receives, or inactive, i.e., ignoring events. It can send
events to other state machines (including itself) and, of course, it can handle events received
from other state machines. The execution model is strictly sequential, i.e., we do not rely on
each state machine running in a different thread for example.

This modularity offers a high power of expression. In the rest of this section, we illustrate
three typical constructs or patterns that we have identified and used successfully to address
situations typically found in user interfaces: Stacked state machines, shared transitions, and
parallel state machines.

Note that SwingStates can be used to nest a state machine inside the state of another state
machine, therefore reproducing the basic hierarchical construct of StateCharts. We do not
describe this pattern here because we have not found compelling examples yet of its use in
user interfaces.

7.2. Stacking state machines

A user interface can often be seen as a system that transforms low-level input events such
as clicks and drags into high-level commands such as “cut”, “copy”, or “paste”. As we have
seen in section 6, low-level input events can actually be generated by an even lower-level state
machine processing device events. At the command level, commands such as “cut”, “copy”,
and “paste” may be processed by a high-level state machine that ignores a paste command if
the selection is empty, i.e. unless a cut or copy has been performed before.

We call this arrangement stacking because each state machine works at a different level of
abstraction: device events, input events, command events. This separation of concern has the
added advantage that a state machine can easily be replaced by another one or work in parallel
with other ones as described later in this section.
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CStateMachine sm1 = new CStateMachine() {

Gesture g = new Gesture();

CPolyLine ink = canvas.newPolyLine().setDrawable(false);

public State default = new State() {

Transition beginGesture = new Press(BUTTON1, "--> gesturing") {

public void action() {

g.reset(getPoint());

ink.reset(getPoint()).setDrawable(true);

}

};

};

public State gesturing = new State() {

Transition draw = new Drag(BUTTON1) {

public void action() {

g.addPoint(getPoint());

ink. addPoint(getPoint()).

}

};

Transition endGesture = new Release(BUTTON1) {

public void action() {

String commandName = classifier.classify(g);

fireEvent(new VirtualEvent(commandName));

ink.setDrawable(false);

}

};

};

};

Figure 17. A machine transforming mouse events into command names. The machine records a gesture,
draws gesture ink and fires events with the commands recognized by the gesture classifier.
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StateMachine sm2 = new CStateMachine() {

public State clipboardEmpty = new State() {

Transition copy = new Event("copy", "--> clipboardFull") { };

};

public State clipboardFull = new State() {

[...]

};

};

sm1.addStateMachineListener(sm2);

Figure 18. A state machine that listens to high-level command events fired by state machine sm1 of
Figure 17

For example, it is often good practice for a user interface to offer different modalities for
entering the same commands: one may use a graphical menu with the list of commands, a
gesture recognition system where each command is specified by the shape of a mouse stroke,
or a voice recognition system with one word per command. As shown in figure 16, a different
state machine can be used to implement each of the modalities, without the higher-level of the
application even knowing how the command was entered. We illustrate here the stacking of a
gesture recognition machine and a command handling machine.

SwingStates supports gesture recognition to facilitate the development of pen-based
interfaces. It implements Rubine’s algorithm for classifying a gesture among a finite vocabulary
of gesture classes [43]. To build the gesture vocabulary, the developer uses SwingStates ’ training
application to enter the name of each gesture classes and to draw examples for each class. The
classifier learns the vocabulary from these examples and stores its data in a file that is loaded
by the application at run-time. Adding gesture recognition to an application only requires a
few line of code that are typically added to a state machine that draws the ink, as shown in
Figure 17.

State machines can communicate with their environments (and with other state
machines) using a simple notification mechanism: each state machine holds a list of
StateMachineListener objects that are notified each time this machine fires an event.
StateMachineListener is a simple interface that is implemented, in particular, by state
machines: when a state machine receives a notification, it simply processes the corresponding
event. Figure 18 illustrates stacking: The state machine sm2 processes the events, such as
“copy”, fired by fireEvent in sm1. As illustrated by Figure 16, machine sm1 for gesture
recognition could be replaced or completed by a machine for voice recognition and/or a machine
implementing a traditional menu interaction as soon as they fire events understood by sm2.
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class ControlState extends State {
Transition stopControl = new Release(BUTTON1, ">> start") { };

}

State control = new ControlState() {
Transition orthoZoom =

new DragOnTag("fr.lri.swingstates.canvas.Canvas", BUTTON1) {...};
Transition simplePan = new DragOnTag("javax.swing.JScrollBar", BUTTON1) {...};
Transition startRateScrolling = new Leave(">> rateScroll") {...};

};

State rateScroll = new ControlState() {
Transition stopRateScrolling = new Enter(">> control") {...};
Transition timeOut = new TimeOut() {...};

};

Figure 19. Two states share a common transition to implement a control menu

7.3. Sharing transitions among states

When a transition is active in several states, this transition must be duplicated in each of the
states in a conventional state machine. For example, in figure 11, the stopControl transition
is duplicated in states control and rateScroll (lines 19 and 37). A hierarchical model such
as StateCharts can solve this problem by grouping these two states inside a super-state and
adding the stopControl transition to that super-state, but we find this solution cumbersome.

SwingStates provides an alternative solution, based on inheritance. Since State is a Java
class, it can be specialized like any other class. If the specialization contains transitions, these
transitions will be shared by all instances of the specialized classes. In our example, the
developer defines a new class, called ControlState, that inherits from State and contains
the stopControl transition. Then, control and rateScroll are declared as ControlState

instead of State and implement their specific transitions, as illustrated in Figure 19.

7.4. Running state machines in parallel

The exponential growth in the number of states of a state machine typically occurs when
combining two state machines, i.e. when each state of one machine must be combined with
each state of the other, resulting in a total number of states that is the product of the number
of states of each machine. We have found that running the two state machines in parallel,
together with some simple communication among them, solves the explosion problem in all
practical cases.

Consider for example an interface that uses both a linear menu and a marking menu [44]
(a variant of the circular menu described earlier), and that highlights the background of
the menu items when the mouse cursor is over it. Rather than trying to combine all three

30



Figure 20. State machines in parallel: (i) machine for linear menu, (ii) machine for marking menu and
(iii) machine for highlighting any menu item

interactions into a single state machine, it is much easier, both conceptually and from a
programming perspective, to use three state machines (figure 20). The two state machines
at the top implement menu selection (linear menu on the left, marking menu on the right),
while the state machine at the bottom implements highlighting of any menu item. The three
state machines work as follows:

• A linear menu is invoked by pressing the left mouse button. Once invoked, releasing the
mouse button on an item selects this item; releasing it out of the menu simply hides it.

• A marking menu is a circular menu which is invoked by pressing the right mouse button.
The menu is shown only after a given delay. Releasing the mouse button selects the last
visited item, even if the menu was not visible (the user does not need to release the
mouse inside the item itself).

• Highlighting simply tracks whether the mouse is inside a visible item or not, and changes
the item background color accordingly.

When running the system, one of the menus state machine will run in parallel with the
highlighting state machine: in the same way as multiple AWT/Swing listeners of the same type
can be attached to the same graphical component, multiple state machines can be attached
to the same component, e.g., a SwingStates canvas, so that events occuring on this canvas
are dispatched to all the attached machines by the standard AWT dispatch thread. While
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the state explosion in this example would be manageable if we were to combine the state
machines together because there are so few states, it does illustrate the advantage of handling
different interaction features in separate state machines. The modular design makes it easy, in
particular, to add a new type of menu, such as the control menu seen before, to change the
kind of highlighting, e.g., to use animation, or to add a new feature, e.g., tooltips that provide
additional information on the item under the cursor.

Parallelism is powerful but can of course lead to concurrent actions on the same object,
even though the serialization of event handling eliminates “true” concurrency. Instead of
constraining the possible combinations, SwingStates provides a tool that visualizes state
machines as they run to help developers debug their programs (see Figure 20). This tool
uses the StateMachineEventListener interface to listen to the internal activity of a given
machine. Any object that implements this interface can be attached to a machine and be
notified each time the machine is suspended, resumed, reset or triggers a transition, providing
yet another way for state machine to control each other.

8. EVALUATING SWINGSTATES

Evaluating a user interface toolkit is a well-known problem with no single satisfying answer
[45]. The ultimate measure of success is to be widely adopted by developers, but of course
this takes years before a fair assessment can be made. In the meantime, one could conduct
usability studies with developers to gather their feedback about the toolkit, but there is no
agreed upon set of tasks for evaluating such development tools. One could also report only on
purely technical evaluation criteria such as the size and memory footprint of the toolkit or its
performance, but these require standardized benchmark to be meaningful.

On a technical level, SwingStates contains about 10.000 lines of Java source
lines (not counting comments and documentation), and the object library (jar
file) is 272 Kb. The library together with the examples from the on-line tutorial
(http://swingstates.sf.net/tutorial/) is 616 Kb. We have not experienced so far any
perceivable performance degradation due to the use of state machines when compared with
pure Swing applications. The canvas heavily relies on Java2D which unfortunately does not
take advantage of the advanced capabilities of today’s graphics hardware and therefore can
have performance problems when managing a large number of shapes. The canvas was not
designed for such situations however and there is plenty of room for optimization using well-
known techniques from 2D and 3D interactive graphics. Overall, SwingStates has proved to be
both efficient and lightweight at the technical level.

The rest of this section presents a more thorough evaluation of SwingStates from two
perspectives: a software engineering perspective based on design principles, and a user
perspective based on our experience in using SwingStates for teaching.
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8.1. Applying design principles

During the design of SwingStates, we used a small number of design principles from software
engineering and human-computer interaction to guide our choices. Our goal was to follow Alan
Kay’s famous quote: “Simple things should be simple, complex things should be possible”.

First, we wanted to keep the existing simplicity and power of Java and Swing by building on
them rather than fighting against them. This provided the main incentive for describing state
machines directly in Java as opposed to graphically or with a dedicated language. Similar to the
use of operator overloading in the Ubit toolkit [46] to create an expressive syntax for building
widgets, SwingStates uses Java anonymous inner classes to provide a natural syntax for state
machines. The only drawback is the fact that the output state of a transition must be specified
by a text string rather than the name of the state. The advantages however vastly outweighs
this drawback: state machines take advantage of Java scoping rules and inheritance. Integration
with Java and Swing also led us to rely on Java2D for the canvas graphics, to implement the
canvas as a Swing widget, and to allow state machines to work with unmodified Swing widgets.
Overall, these features greatly facilitate the adoption of SwingStates by Java developers, as
they leverages their knowledge of the language and the toolkit.

Second, we used two design principles called reification and polymorphism [47]: reification

consists in turning abstract concepts into concrete objects while polymorphism consists in
designing functions, objects and methods so that they can be used in different contexts. These
concepts are deeply rooted in object-oriented design and languages: reification corresponds
to representing concepts as classes and objects, while polymorphism includes ad hoc
polymorphism, where two classes can define methods with the same name so that the same
method can be applied to objects of different classes, and inclusion polymorphism, where
a subclass can redefine a method from its superclass. Reification and polymorphism are
also powerful tools for designing user interfaces. For example, tools in tool palettes reify
abstract commands such as “change color” or “cut-copy-paste’; a scrollbar reifies the notion
of navigating a large document, etc. Many commands and objects in user interfaces are
polymorphic, such as “open”, which can open a folder or launch an application, or the
clipboard, which can hold data of any type (text, image, sound, etc.).

State machines are a perfect example of reification: they reify the notion of interaction, which
is otherwise represented by a disconnected set of event handlers. Other user interface toolkits,
such as Interactors [14] and SubArctic’s dispatch agents [24], also externalize the management
of interaction into separate objects. SwingStates however turns interactions into first-class
objects that can be freely manipulated: multiple state machines can run simultaneously, a
state machine can transparently replace another one, etc.

The canvas also illustrates the use of reification since the content of the canvas is a set of
objects (the shapes), each with their own geometrical and graphical attributes. By contrast,
other canvases such as the original AWT canvas or Swing’s JPanel simply provide a drawing
area and a set of painting methods. The notion of 2D structured graphics as implemented
in SwingStates is not new, of course: the Tk canvas, for example, takes the same approach.
SwingStates however pushes the use of reification and polymorphism further than Tk with its
implementation of tags.
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SwingStates tags reify the concept of a group and generalize it: groups may overlap, and they
can be defined by intension rather than by extension. Tags can also have their own behavior
and properties. Finally, by applying the principle of polymorphism to shapes, tags and the
whole canvas, most of the methods applicable to a shape (or a widget) are also applicable to a
shape tag (or a widget tag) and to the canvas itself, which corresponds to the group of all its
shapes. In addition, a state machine can be attached to a single shape or a single tag rather
than the whole canvas so that developers can program a specific interaction fo a shape or
group of shapes. Altogether, these features drastically simplify the programming of advanced
interfaces by providing developers with a high power of expression.

As a final touch, all the modifier methods in SwingStates return the object that they have
just modified so that their result can be directly used for invoking another method of that
object. This makes programs more concise. For example, the five lines below (one assignment
and four method calls):

CShape e = new CEllipse(10,10,20,30);
e.rotateTo(Math.PI/4);
e.setFillPaint(Color.red);
e.setOutlined(false);
e.addTo(canvas);

are replaced by a single instruction (note that the Canvas methods of the form new* act as
constructors and return the newly created object instead of the canvas itself):

CShape e = canvas.newEllipse(10,10,20,30)
.rotateTo(Math.PI/4).setFillPaint(Color.red).setOutlined(false);

Note that Swing unfortunately does not use this idiom, which makes the initialization code
quite verbose when instantiating widgets.

8.2. Benchmarking using advanced interaction techniques

Using benchmarks is a well-known evaluation process in computer science in general and in
some areas of Human-Computer Interaction (HCI) such as information visualization [48], but it
has not been used to evaluate user interface toolkits. In this section, we report on a benchmark
that we have created for that purpose. The benchmark consists of a set of advanced graphical
interaction techniques published in the HCI literature over the past ten years, which represent
the state-of-the-art in the field. We have used this benchmark with Master’s level students as
part of an HCI course for the past few years, asking them to implement these techniques with
several toolkits. We believe that this benchmark helps evaluate two aspects of a user interface
toolkit: the technical capabilities of the toolkit for implementing advanced user interfaces, and
its ease-of-use by non-expert developers.

For the past five years, we have taught a Master’s level HCI course at Université Paris-Sud
that includes a project where students, working in pairs, implement one of a set of interaction
techniques based on its description in a research article. Over the years, students have used
a wide range of toolkits, including Tcl/Tk, GTk, Swing, even Visual Basic. The results have
been disappointing for us and frustrating for the students: they were spending a lot of time
on the project but in many cases they were not able to implement the technique properly,
sometimes not at all.
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Table I. Interaction techniques of our experiment
with second year master students

Interaction technique Number of groups

Marking Menu [44] 2 groups
Flow Menu [49] 1 group
Gesture-based interface [50] 2 groups
Side Views [51] 2 groups
Local tools [52] 2 groups
Alignment stick [53] 2 groups
Pushpins, rulers and pens [54] 2 groups
Magnetic guidelines [55] 1 group

For the past two years (2005-2006 and 2006-2007), we have used SwingStates for this project,
with roughly the same set of interaction techniques as in previous years. Table I lists the eight
techniques that we offered in 2005 together with the research article that the students had to
read to understand and implement the technique and the number of groups that chose that
technique. Most (but not all) students knew Java and had some experience with Swing. We
presented SwingStates in a one-hour lecture class and gave the students access to the on-line
documentation and a wiki site containing a tutorial and some sample code. We did not have
hands-on training with the students. This was a deliberate choice on our part to make the
conditions as similar to previous years as possible.

The results were well beyond our expectations. Unlike in previous years when students
were using other toolkits, all groups completed their projects in time with very little or no
help at all from us, demonstrating the power and simplicity of the canvas and state machines
to implement advanced interactions. Figure 21 shows three examples from the 2005 class:
alignment stick, local tools and magnetic guidelines. By examining the source code, we observed
that students understood the concepts and possibilities of SwingStates and put them to good
use. For example, even though we had not mentioned the possibility of using several machines
during the presentation, the group for the project “Pushpins, rulers and pens” used two
machines running in parallel, one for the rulers and one for the pens. The mean length of
the programs was 750 lines of source code, including the state machines (250 lines on average
per machine). The state machines had between 2 and 9 states and 8 to 32 transitions. Only
one group (SideViews) extended the CShape class to manage an history of transformations.
All groups used tags to group objects, e.g., the tools in a tool palette, and for interaction, e.g.,
to distinguish tools from other application objects. Some groups however did not understand
how the *OnTag transitions worked and used *OnShape transitions instead with a guard that
checks the shape’s tag. The version of SwingStates that we used that year [56] did not feature
intentional tags. Some groups reported difficulties, such as manipulating an object and its
descendants, that can now be solved with intentional tags.
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Figure 21. Examples of projects implemented by second year master students
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Since this 2005 experiment, we now use SwingStates as well in a first year Master’s level
class “Introduction to HCI”. This class is more applied, as students have many TA sessions
with hands-on programming. We teach Java2D and Swing in the first part of the class and
the students’ program a graphical editor for creating and manipulating geometrical shapes.
We introduce SwingStates in the second part of the class, and the students program the same
graphical editor with SwingStates. While this was not a fully controlled experiment (we should
have had some students start with SwingStates and then use Java2D and Swing, but this was
not practical in the context of a class), the results are instructive: the SwingStates programs
were significantly shorter, and even though it was not a graded exercise, a number of students
implemented additional tools in the SwingStates version of their editor. Two of the three
teaching assistants did not have prior experience with SwingStates, but we did not detect
significant differences in the quality of the student projects from their respective groups (the
graded project consisted in developing an iconic file explorer similar to the Mac OS X Finder).

In summary, these evaluations showed that developers can implement state-of-the-art
interaction techniques using SwingStates, i.e. that at least some “complex” things are possible.
It also showed that students (and TAs) with some basic Java experience can easily adopt
SwingStates, i.e. that the learning curve is gentle.

9. CONCLUSION

SwingStates (http://swingstates.sf.net/) is a novel way to use state machines to program
advanced interaction techniques with the popular Java Swing toolkit. The tight integration
between the state machines, the Java programming language and the Swing toolkit combines
power and simplicity, eliciting a programming style where multiple state machines can work
independently or in combination to create rich interactions. SwingStates can be used both to
modify existing Swing widgets and to create new widgets by extending its Canvas. SwingStates
also supports arbitrary input devices to implement state-of-the-art techniques such as those
based on bi-manual and pressure-sensitive input. The design of SwingStates was guided by
a few design principles that provide both simplicity (“simple things are simple”) and power
(“complex things are possible”). We have used a benchmark approach to assess these properties
on SwingStates, and we used the toolkit successfully with Master’s level students for teaching
as well as within our group to explore novel interaction techniques.

Our plans for future work include supporting the dissemination of SwingStates and
encouraging its use for teaching, research and development. We also want to improve the
support for generalized input and consider an OpenGL-based canvas that would provide the
level of performance necessary to data-intensive applications such as information visualization.
We are interested in exploring higher-level constructs to combine state machines, as well as
supporting distributed interfaces where multiple computers cooperate to deliver an interactive
experience, such as Rekimoto’s pick-and-drop [57], where data is transfered from a PDA to
a wall display simply by picking and dropping it with a pen. Finally, while SwingStates is
tightly linked to Java and Swing, we are interested in applying a similar approach based on
state machines to other contexts such as DHTML/Javascript/AJAX for the development of
Web applications.
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