
1

SwingStates: Adding State Machines to the Swing Toolkit
Caroline Appert & Michel Beaudouin-Lafon

LRI (Univ. Paris-Sud & CNRS) / INRIA Futurs
Bât. 490, Univ. Paris-Sud, 91405 Orsay, France

appert@lri.fr, mbl@lri.fr

ABSTRACT
This article describes SwingStates, a library that adds state
machines to the Java Swing user interface toolkit. Unlike
traditional approaches, which use callbacks or listeners to
define interaction, state machines provide a powerful
control structure and localize all of the interaction code in
one place. SwingStates takes advantage of Java’s inner
classes, providing programmers with a natural syntax and
making it easier to follow and debug the resulting code.
SwingStates tightly integrates state machines, the Java
language and the Swing toolkit. It reduces the potential
for an explosion of states by allowing multiple state
machines to work together. We show how to use
SwingStates to add new interaction techniques to existing
Swing widgets, to program a powerful new Canvas
widget and to control high-level dialogues.

ACM Classification: D.2.2 [Design tools and
Techniques]: User Interfaces; H.5.2 [Information
Interfaces and Presentation]: User Interfaces – Graphical
User Interfaces.
General terms: Design, Human factors

Keywords: toolkit, state machine, Java Swing, widget

INTRODUCTION
Programmers today rely on user interface toolkits to
program graphical user interfaces, assembling standard
widgets to create the user interface and linking them to the
rest of the application through callbacks or listeners. Such
interactive applications are difficult to debug and maintain
due to the difficulty of following the flow of control [8].
Moreover, adding new widget classes is complicated. As a
result, mainstream applications rarely feature novel
interaction techniques. Some toolkits, e.g., subArctic [6],
address this issue, but are not used by most developers.

SwingStates takes a different approach by extending Java

Swing, an existing, widely used toolkit. Breaking away
from the traditional callback model, SwingStates uses
state machines as a powerful control structure for
programming interaction. Since Newman’s seminal work
[10], state machines have often been used to describe
interaction but rarely to actually program it [7, 13].

The strength of SwingStates is the tight integration
between state machines, the Java language and the Swing
toolkit. We allow multiple machines to work together,
thus reducing the potential for an explosion in the number
of the states. We describe the syntax and semantics of
SwingStates and illustrate how it combines power and
simplicity when programming advanced interaction.

CODING STATE MACHINES IN JAVA
A state machine (Fig. 1) consists of a set of states and a
set of transitions labeled with events. Each transition
connects an input state to an output state and may have an
associated guard and action. Conversely, each state has a
set of output transitions and a set of input transitions and
may also have an enter and a leave action. Only one state
is active at any one time. When an event occurs, the first
output transition of the active state that is labeled with that
event and whose guard evaluates to true, is fired. Firing a
transition executes three actions in sequence: the leave
action of the active state; the action associated with the
transition being fired; and the enter action of the output
state. The output state is now the new active state.

Figure 1: A simple state machine for dragging objects.
States are circles; transitions are arrows, labeled with
events (roman font) and actions (italics). This example
includes neither enter and leave actions nor guards.

SwingStates implements state machines using Java’s inner
classes, which allow new subclasses to be declared in-line
wherever a new (unique) object of that class is needed.
The inner class is anonymous and has a single instance.
Beyond the in-line syntax, inner classes have the
advantage that their instances can access the fields and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST'06, October 15–18, 2006, Montreux, Switzerland.

Copyright 2006 ACM 1-59593-313-1/06/0010...$5.00.

2

methods of the object within which they are declared.
Java Swing uses this syntax to attach listeners to widgets.
Fig. 2 illustrates a classic Swing idiom where an instance
of an anonymous subclass of ActionListener is created and
passed to the quitButton's addActionListener method. The
new subclass redefines the actionPerformed method so as
to quit the application when the button is clicked.

1 quitButton.addActionListener(
2 new ActionListener(){
3 public void actionPerformed(ActionEvent e)
4 { System.exit(1) ; }
5 }) ;

Figure 2: A button to quit an application.

SwingStates uses inner classes to declare each state within
the state machine and to declare each transition within its
input state. Fig. 3 shows SwingStates' version of the state
machine in Fig. 1.

1 StateMachine sm = new StateMachine() {
2 SMShape dragged = null;
3 public State start = new State() {
4 Transition dragOn =
5 new PressOnShape(BUTTON1, "drag") {
6 public void action() {
7 dragged = getShape();
8 }
9 };
10 };
11 public State drag = new State() {
12 Transition drag = new Drag(BUTTON1, "drag") {
13 public void action() {
14 move(dragged);
15 }
16 };
17 Transition dragOff =
18 new Release(BUTTON1, "start") { } ;
19 };
20 };

Figure 3: The SwingState state machine for Fig. 1.

Each transition is declared by instantiating a class that
corresponds to the event labeling it. SwingStates provides
a large and extensible set of event classes, including
mouse events (Fig. 3: lines 5, 12, 18), keyboard events,
timer events and virtual events (Fig. 7 & 8 feature virtual
"color" events). Some transitions include a guard, e.g.,
PressOnShape (line 5, Fig. 3) corresponds to a mouse
press on any shape of the Canvas widget described below.

A transition action is specified by overriding the action
method (lines 6-8 and 13-15, Fig. 3). Transition guards
and state enter and leave actions are specified by
overriding similar methods. Note that the scoping rules of
inner classes allow these methods to access the enclosing
objects, such as the dragged variable of the state machine
(declared at line 2 and used at lines 7 and 14, Fig. 3).

The transition’s output state is always the last argument of
its constructor and is specified using a string, e.g., "drag"
(line 5, Fig. 3) refers to the state drag (line 11). We must

use a string rather than a direct reference to the field
because it is not initialized at the time the constructor is
called. We use the Java reflection interface to transform
the string into a reference to the field the first time the
state machine is used.

Like Interactors [9] and SubArctic's dispatch agents [6],
SwingStates' machines externalize the management of
interaction into separate objects. Interactors however use a
single generic state machine, which may not handle all
novel techniques, while SubArctic does not provide
explicit support to program new dispatch agents.

ATTACHING STATE MACHINES TO UI OBJECTS
A powerful way to establish the link between a state
machine and the target objects it controls is to use tags
similar to those in the Tk toolkit [12]. Tags can be
associated with any Swing widget and any shape of our
Canvas widget described below. Many SwingStates
transition classes, such as Press, have a variant, such as
PressOnTag, that only fires when the event occurs on an
object with the specified tag. For example, selectionTag
could be added to currently selected objects. The
transition PressOnTag(selectionTag) would then fire only
when a mouse button is pressed on an object with
selectionTag. Tags may also have names, so this could
also be specified as PressOnTag("selected").

SwingStates defines two kinds of tags: extensional tags,
which are added to or removed from objects explicitly,
and intentional tags, which are specified using a
predicate, e.g., all objects with a blue background. For
extensional tags, subclasses can override methods that are
called when the tag is added or removed. For example a
SelectionTag class could specify that the target object
changes color when the tag is added and restores its
original color when the tag is removed. Tags also
implement some methods of their target objects for easily
manipulating the group of tagged objects. For example,
the method call select ionTag.setBackground(blue)
changes the color of all the objects with this tag.

USING STATE MACHINES
This section shows how multiple state machines can work
both independently and together to create rich interactions
from simple building blocks.

A Generic Crossing Interface
SwingStates can attach state machines to regular Swing
widgets to extend or redefine their behavior. This example
(Fig. 4) modifies the behavior of Swing buttons so they
are selected by crossing rather than clicking. When
attached to a button widget, the state machine activates
the button as soon as the cursor finishes crossing the
widget with the mouse button depressed. Note that several
buttons can be activated in a single stroke, as in CrossY
[1]. Other crossing interactions, such as CrossY’s

3

scrollbars, could be implemented as well in a single state
machine by using the class names of the widgets as tags.
In order to control the state explosion problem, they could
also be implemented as separate state machines.

1 JStateMachine cross = new JStateMachine() {
2 public State out = new State() {
3 Transition enter = new EnterOnTag
 ("javax.swing.JButton", "in") { };
4 };
5 public State in = new State() {
6 Transition leave = new Leave("out") {
7 public void action() {
8 ((JButton)getComponent()).doClick();
9 }
10 };
11 };
// attach this state machine to the quit button of Fig. 2
12 cross.attachJComponent(quitButton);

Figure 4: A crossing interface for Swing buttons.

One problem with the above implementation is the lack of
an ink trail. SwingStates can attach a state machine to the
glasspane, a feature of Swing that creates an overlay
plane above the widgets in a window, in order to draw the
ink and erase it when the pen is up. Fig. 5 shows another
example that uses the glasspane to enter a numeric value
in an entry field using a joystick-like interaction.

 Figure 5: A joystick style of interaction for text entry.

A Canvas Widget
While some interaction techniques can be added to
existing widgets, as shown above, many require novel
widgets. Swing does not have a Canvas widget similar to
that of Tk [12] so the programmer has to use the lower-
level Java2D library to create new widgets. SwingStates
includes a Canvas widget [2] inspired by an extended
version of the Tk canvas widget called GmlCanvas [4].
Each canvas holds a display list of shapes, including
simple or arbitrary paths, text strings, images and even
Swing widgets. Each shape can have a geometric
transform, a parent shape and a clipping shape. Shapes
can be tagged and state machines can be attached to a
canvas, to individual shapes, and even to tags. Several
state machines can be active at once, running in parallel.

We used an earlier version of SwingStates’ Canvas [2] in
a Master’s level computer science course where students
implemented a wide variety of interaction techniques,
including toolglasses, magnetic guidelines and side views.
Unlike our attempts in previous years with other toolkits,
all students completed their projects with little or no help,
demonstrating the power and simplicity of the canvas and
state machines to implement advanced interactions.

Swing Pie Menu
Figures 7 and 8 show how to implement a pie menu (Fig.
6) using a canvas, the glasspane and two state machines.

Figure 6: A pie menu that changes the color of other
arbitrary Swing widgets: button, checkbox, text field.

A canvas containing the pie menu runs in the glasspane
over the content pane that contains arbitrary Swing
widgets (button, checkbox, etc.). The smMenu state
machine (Fig. 7) is attached to the canvas. It controls
menu invocation (show/hide menu, lines 11 and 25) and
selection of an item (line 18). When an item is selected, it
sends a color event (line 21) to the smWidget state
machine, which is attached to the content pane. smWidget
(Fig. 8) selects a widget when a button is pressed (line 4,
Fig. 8) and changes the background color of the selected
widget when it receives a color event (line 10, Fig. 8).

// ColorTag are designed to be added to each menu item.
1 class ColorTag extends CExtensionalTag {
2 Color color;
3 ... // constructor
4 }

// Color events are sent by smMenu to smWidget.
5 class ColorEvent extends VirtualEvent {
6 Color color;
7 ... // constructor
8 }

// The state machine that manages the pie menu
9 smMenu = new CStateMachine(canvas) {
10 public State menuOff = new State() {
11 Transition show = new Press(BUTTON1,"menuOn"){
12 public void action() {
13 showMenu(getPoint());
14 }
15 };
16 };
17 public State menuOn = new State() {
18 Transition command = new ReleaseOnTag
 (ColorTag.class, BUTTON1, "menuOff") {
19 public void action() {
20 Color c = ((ColorTag)getTag()).color;
21 smWidgets.processEvent(new ColorEvent(c));
22 hideMenu();
23 }
24 };
25 Transition hide = new Release
 (BUTTON1, "menuOff") {
26 public void action() {
27 hideMenu();
28 }
29 };
30 };
31 };

Figure 7: Invoking the pie menu and selecting items.

4

This example illustrates the use of two communicating
state machines: smMenu handles the pie menu while
smWidgets handles the target objects. It makes it easy to
replace the pie menu by, e.g., a toolglass, or, conversely,
to use the pie menu with other graphical objects. This
approach cleanly separates the interaction technique from
the objects of interest, in the spirit of instrumental
interaction [3]. Running state machines in parallel also
reduces the state explosion problem without resorting to
more complex or more general models such as
hierarchical state machines [5] or PPS [11].

// "colorable" widgets must be attached to this state machine
1 smWidgets = new JStateMachine() {
2 JComponent picked;
3 public State noSelection = new State() {
4 Transition select = new PressOnComponent() {
5 public void action() {picked = getComponent();}
6 };
7 } ;
8 public State selection = new State() {
9 Transition deselect
 = new Event("cancel", "noSelection") {} ;
10 Transition color
 = new Event("color", "noSelection") {
11 public void action() {
12 ColorEvent e = (ColorEvent)getVirtualEvent();
13 if (selected) picked.setBackground(e.color);
14 }
15 };
16 };
17 };

Figure 8: Selecting and coloring the widgets.

IMPLEMENTATION
SwingStates has 7250 lines of source code (excluding
comments and documentation); the library is 144 Kb. We
have not observed any significant performance overhead
when compared with plain Swing applications.

While we could have implemented a graphical editor for
state machines, we have observed that such tools are
rarely used by programmers who prefer compact, textual
constructs. SwingStates builds on programmers' existing
skills and Java's features to condenses the complete state
machine into one block of code that can readily be run
and debugged. By contrast, a graphical form would
require the actions' code to be separate from the graphics,
as well as specific tools for execution, debugging, and
storage of state machines.

CONCLUSION AND FUTURE WORK
SwingStates (http://insitu.lri.fr/SwingStates) is a novel way
to use state machines to program advanced interaction
techniques with the popular Java Swing toolkit. The tight
integration between the state machines, the Java
programming language and the Swing toolkit combines
power and simplicity, eliciting a programming style where
multiple state machines can work independently or in
combination to create rich interactions. We used

SwingS ta te s successfully to teach graduate and
undergraduate students and within our group to explore
novel interaction techniques. We now plan to support
bimanual interaction, explore distributed interfaces and
apply a similar approach to other contexts.

ACKNOWLEDGMENTS
We thank Wendy Mackay for improving the readability of
this article and our students for putting up with earlier
versions of SwingStates during their project assignment.

REFERENCES
1. Apitz, G. & Guimbretière, F. (2004) CrossY: a crossing-

based drawing application. In Proc. ACM Symposium on
User Interface Software and Technology, UIST '04. ACM
Press, pp 3-12.

2. Appert, C. & Beaudouin-Lafon, M. (2006) SMCanvas:
augmenter la boîte à outils Java Swing pour prototyper des
techniques d'interaction avancées. in Proc. Conférence
Francophone sur l'Interaction Homme-Machine, IHM '06.
ACM ICPS, pp 99-106.

3. Beaudouin-Lafon, M. (2000) Instrumental interaction: an
interaction model for designing post-WIMP user interfaces.
In Proc. ACM Conference on Human Factors in Computing
Systems. CHI '00. ACM Press, pp 446-453.

4. Bérard, F. GmlCanvas. http://iihm.imag.fr/projects/gml

5. Blanch, R. & Beaudouin-Lafon M. (2006). Programming
interaction with hierarchical state machines. In Proc. ACM
Conf. on Advanced Visual Interfaces. AVI'06. pp 51-58.

6. Hudson, S. E., Mankoff, J., and Smith, I. (2005) Extensible
input handling in the subArctic toolkit. In Proc. ACM
Conference on Human Factors in Computing Systems.
CHI '05. ACM Press, pp 381-390.

7. Jacob, R.J., Deligiannidis, L., and Morrison, S. (1999) A
software model and specification language for non-WIMP
user interfaces. ACM Trans. Computer-Human Interaction,
6(1):1-46.

8. Myers, B.A. (1991) Separating application code from
toolkits: eliminating the spaghetti of call-backs. In Proc.
ACM Symposium on User interface Software and
Technology. UIST '91. ACM Press, pp 211-220.

9. Myers B.A. (1990) A New Model for Handling Input. In
ACM Trans. on Information Systems, 8(3):289-320.

10. Newman, W. M. (1998) A system for interactive graphical
programming. In Seminal Graphics: Pioneering Efforts that
Shaped the Field. ACM Press, pp 409-416.

11. Olsen, D. R. (1990) Propositional production systems for
dialog description. In Proc. ACM Conf. on Human Factors
in Computing Systems. CHI '90. ACM Press, pp 57-64.

12. Ousterhout, J. K. (1994) Tcl and the Tk Toolkit. Addison-
Wesley.

13. Wellner, P. (1989) Statemaster: A UIMS based on statechart
for prototyping and target implementation. In Proc. ACM
Conference on Human Factors in Computing Systems. CHI
'89. ACM Press, pp 177-182.

