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Abstract. In this article, we propose a Coq formalization of the re-
lational data model which underlies relational database systems. More
precisely, we present and formalize the data definition part of the model
including integrity constraints. We model two different query language
formalisms: relational algebra and conjunctive queries. We also present
logical query optimization and prove the main “database theorems”: al-
gebraic equivalences, the homomorphism theorem and conjunctive query
minimization.

1 Introduction

Current data management applications and systems involve increasingly mas-
sive data volumes. Surprisingly, while the amount of data stored and managed
by data engines has drastically increased, little attention has been devoted to
ensure that those are reliable. Obtaining strong guarantees requires the use of
formal methods and mature tools. A very promising approach consists in using
proof assistants such as Coq [10]. Among such systems, relational database man-
agement systems (RDBMS) are the most widespread, motivating our choice to
focus on the formalization of the relational data model.

The relational model serves different related purposes: it allows to represent
information through relations, to refine the represented information by further
restricting it through integrity constraints. It also provides ways to extract in-
formation through query languages based on either algebra (relational algebra
queries) or first-order logic (conjunctive queries). Two different equivalent ver-
sions of the relational model exist: the unnamed and the named ones. In the
unnamed setting, the specific attributes of a relation are ignored: only the arity
(i.e., the number of attributes) of a relation is available to query languages. In
the named setting, attributes are viewed as an explicit part of a database and
are used by query languages and integrity constraints. In practice, systems such
as Oracle, DB2, PostgreSQL or Microsoft Access, rely on the named version of
the model. They do it for several reasons. First, because for modeling purposes,
names carry much more semantics than column numbers. Second, query opti-
mizers do exploit auxiliary data structures such as indexes natively based on
attributes names for physical optimization purposes (exploiting different algo-
rithms and/or indexes). We thus chose to formalize this version.
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1.1 Related Work

The first attempt in that direction is found in Gonzalia [5, 6]. This work inves-
tigates different formalizations of the unnamed version of the model and only
addresses data definition and relational algebra aspects. A more recent formal-
ization is found in Malecha et al., [8] which addresses the problem of designing
a fully verified, lightweight implementation of a relational database system. The
authors prove that their implementation meets the specification, all the proofs
being written and verified in the Ynot [3] extension of Coq. However, they imple-
mented only a single-user database system. Both works chose a very unrealistic
data model, the unnamed version, and gave only a partial modeling, insofar
as conjunctive queries, serious optimization techniques, as well as integrity con-
straint aspects, are left for future work. Any modeling aiming at being a realistic
full-fledged specification of the relational model has to include all of them.

1.2 Contributions

Our long term purpose is to prove that existing systems conform to their specifi-
cations and to verify that programs that make intensive use of database queries
are correct and not to implement a RDBMS in Coq. So, the first essential step is
to formalize the relational model of data. We first formalize the data definition
part of the model, relational algebra and conjunctive queries. Since the latter
play a central role in optimization, as they admit an exact equivalent optimized
form, we provide both a formal specification and a certified version of the al-
gorithm that translates relational algebra queries into conjunctive queries. We
then present logical query optimization, for both query formalisms, and prove
the main “databases theorems”: algebraic equivalences, the homomorphism the-
orem and conjunctive query minimization. We also provide a certified algorithm
for such a minimization. As integrity constraints are central to database tech-
nology at the design level, to build relation structures (called schemas in the
database dialect) enjoying good properties, and at the compiler and optimizer
levels, to generate optimizations, we thus specify the integrity constraints part
of the relational model. We model functional and general dependencies which
are considered by the database community as the most important constraints.
We then deal with the problem of implication, i.e., inferring all logically implied
constraints from a given set. Inferring all constraints is important, as these are
intensively used for design and optimization purposes, and since, in the absence
of some of them, the compiler could miss further optimizations. We provide a
formal Coq proof that the inference system for functional dependencies, a.k.a.,
Armstrong’s system, is sound, complete and terminating. We formalize and prove
the correctness of the procedure for deducing new general dependencies, a.k.a.,
the chase. The informal presentation of all concepts is directly taken from refer-
ence textbooks on the topic [1, 11, 9]. Our formalization achieves a high degree
of abstraction and modularity and is, to our knowledge, the most realistic mech-
anization of classic database theory to date. A last but not least contribution
is that through this formalization process, we also bring insight both to the
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database and to the Coq communities. To this extent, we emphasize, through-
out this article, the subtleties, which were hidden (or even missing) in textbooks.
Finally, we would like to stress that this formalization step is not a mere Coq
exercise of style but a needed phase in the realistic verification of full fledged
database management systems, and there is no way around it.

1.3 Organization

In Section 2, we present and formalize the named version of the relational model,
in Section 3, we model relational algebra, and conjunctive queries, we formal-
ize and extract an algorithm translating algebra queries into conjunctive ones.
In Section 4, we present the logical query optimization and prove the main
“database theorems”: algebraic equivalences, tableaux query minimization and
the homomorphism theorem. We discuss and formalize the constraint part of the
model in Section 5. We conclude by drawing lessons and giving perspectives in
Section 6.

2 Data Representation

Intuitively, in the relational model, data is represented by tables (relations) con-
sisting of rows (tuples), with uniform structure and intended meaning, each of
which gives information about a specific entity. For example, assuming we want
to describe movies, we can represent each movie by a tuple, whose fields (at-
tributes) could be the movie title, its director and one of its actors. Note that
we will have as many rows as there are actors for a given movie. Then, assuming
that movies are screened in specific locations, these could be described by a the-
ater name, an address and a phone number. Last, one should be able to find in
the Pariscope journal3 which theater features which movie on which schedule.

2.1 Attributes, Domains, Values

Quoting [1], a set attribute of (names for) attributes is fixed and equipped with
a total order ≤att. When different attributes should have distinct domains (or
types), a mapping, dom, from attribute to domain is assumed. Further, an infinite
set value is fixed. Usually, the set of attributes is assumed to be countably infinite
but in our formal development this assumption was not needed. We also assume
several distinct domain names (e.g., “string”, “integer”), which belong to set
domain. In the database context, domain corresponds to the Coq notion of type.
In order to have a decidable equality, we rather used our own type : Type. In our
setting, dom is called type–of–attribute. Each value has a formal type (obtained
by the function type–of–value) which belongs to type. All these assumptions are
gathered in a Coq record Tuple.Rcd, whose contents will be enriched throughout
this section.

3 The Pariscope is a Parisian journal for advertising cultural events.
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Module Tuple.
Record Rcd : Type :=
mk– R {
(∗ Basic ingredients,
attributes, types and values ∗)

attribute : Type;

type : Type;
value : Type;
(∗ Typing attributes and values. ∗)
type– of– attribute : attribute →

type;
type– of– value : value → type;

(∗ Default Values. ∗)
default– value : type → value;
... }.
End Tuple.

We illustrate these definitions with our running movie example. Recall that our
purpose is not to store an actual database schema or instance in Coq, rather the
following example is intended to be a proof of concept.

Inductive attribute :=
| Title | Director | Actor | Theater
| Address | Phone | Schedule.

Inductive type :=
| type– string | type– nat | type– Z.

Inductive value :=
| Value– string : string → value
| Value– nat : nat → value

| Value– Z : Z → value.
Definition type– of– attribute x :=
match x with
| Title | Director | Actor | Theater
| Address | Phone ⇒ type– string
| Schedule ⇒ type– nat

end.

Definition type– of– value v :=
match v with
| Value– string –⇒ type– string
| Value– nat –⇒ type– nat
| Value– Z –⇒ type– Z
end.

There is also a more generic modeling for attributes, and in that case, for
the sake of readability, we could use the Coq notations shown in [2].

2.2 Tuples

In the named perspective, tuples are characterized by their relevant attributes
(for example {Title, Director, Actor} for movies). We call this the tuple’s support.
Following textbooks, we naturally model support’s by finite sets. To this end,
we mainly used Letouzey’s MSet library [7]. To be as modular as possible, we
still dissociate the specification of finite sets from the implementation. The spec-
ification is given by a record Fset.Rcd parametrized by the elements’ type and
contains a comparison function elt–compare. From now on, we use the notation

set
=

to denote set equivalence, which is actually the usual mathematical extensional
equality for sets: ∀s s′, s set

= s′ ⇐⇒ (∀e, e ∈ s ⇐⇒ e ∈ s′). For the sake of
readability, the usual sets operators will be denoted with their usual mathemati-
cal notations (∩ , ∪ , \, ∈ ,...). Extending the record Tuple.Rcd, we further assume:

Module Tuple.
Record Rcd : Type := mk– R {
(∗∗ Basic ingredients,

attributes, domains and values ∗)
...
A : Fset.Rcd attribute;
(∗∗ tuples ∗)
tuple : Type;
support : tuple → set A;
dot : tuple → attribute → value;
mk– tuple : set A → (attribute → value) → tuple;

support– mk– tuple– ok :

∀V f, support (mk– tuple V f)
set
= V;

dot– mk– tuple– ok :
∀ a V f, a ∈V → dot (mk– tuple V f) a = f a;

FTuple : Fset.Rcd tuple;
tuple– eq– ok : ∀ t1 t2 : tuple,

(Fset.elt– compare FTuple t1 t2 = Eq) ←→
(support t1

set
= support t2

∧
∀ a, a ∈ (support t1) → dot t1 a = dot t2 a)

}

where A models finite sets of attribute’s. We still keep the type of tuples abstract
and assume the existence of two functions: support, returning the relevant tu-
ple attributes, and dot, the associated field extraction. These functions allow to
characterize tuple equivalence (tuple–eq–ok) since a tuple t behaves as the pair
(support t, dot t). Further, we assume the existence of the mk– tuple function which
builds tuples. This and the previous modeling of attribute induce a notion of tuple
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well-typedness. A tuple t is well-typed if and only if for any attribute a in its
support the type of the value t.a is the type of attribute a:

Definition well– typed– tuple (t : tuple) := ∀ a, a ∈ (support t) → type– of– value (dot t a) = type– of– attribute a.

However and surprisingly, such a notion was useless to prove all the results stated
in theoretical textbooks. This is an a posteriori justification of the relevance of
the assumption that it suffices to use a unique domain for values. The previously
presented record Tuple.Rcd captures exactly the abstract behavior of tuples i.e.,
the needed properties for proving all the theorems presented hereafter. To illus-
trate the generality and flexibility of our specification, we give, in [2], different
possible implementations for tuples. All of them satisfy the required proper-
ties and are orthogonal to the implementation of attributes. Among others, one
implements tuples as pairs containing a set of attributes and a function, and
sticks to the abstract definition. For instance, another one implements tuples as
association lists between attributes and values.

2.3 Relations, Schemas and Instances

A distinction is made between the database schema, which specifies the structure
of the database, and the database instance, which specifies its actual content:
sets of tuples. In textbooks, each table is called a relation and has a name. A set
relname of relation names, equipped with a suitable comparison function specified
by ORN, is thus assumed. The structure of a table is given by a relation name
and a finite set of attributes: its sort. The relation name, together with its sort, is
called the relation schema. A database schema is a non-empty finite set of relation
schemas. We choose to model database schemas with a function basesort which
associates to each relname its sort. We adopted this representation because it is
the most abstract and makes no further choices on any concrete implementation
(e.g., association lists or finite maps or even functions) of function basesort.

Module DatabaseSchema.
Record Rcd attribute (A : Fset.Rcd attribute) : Type :=
mk– R { (∗∗ names for relations ∗) relname : Type; ORN : Oset.Rcd relname; basesort : relname → set A}.
End DatabaseSchema.

More precisely, the basesort function will be used to relate the support of tuples
(in the instance they belong to) and the structure of the corresponding relation
name.

Definition well– sorted– instance (I : relname → setT) :=

∀ (r : relname) (t : tuple), t ∈ (I r) → support t
set
= basesort r.

It is important to mention that, in all our further development, the notion of
well-sorted instance resulted central to the correctness of many theorems.

3 Queries

Queries allow the extraction of information from tables. The result of a query is
also a table or a collection of tables. Information extraction is usually performed
by a query language, the standard being SQL or QBE. All these languages rely
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on a more formal basis: relational algebra or first-order logic. Both formalisms
are based on the notion of tuples. Thus, we assume the existence of a record
T of type Tuple.Rcd, for representing tuples, as well as of a record DBS of type
DatabaseSchema.Rcd, for representing base relations. Moreover, we assume that
T and DBS use the same representation, A, for finite sets of attributes. This is
achieved by parameterizing DBS by (A T). For the sake of readability, we shall
omit all extra (implicit) record arguments and denote by setA and setT finite sets
of attributes and tuples respectively.

3.1 Relational Algebra

Relational algebra consists of a set of (algebraic) operators with relations as
operands. The algebra we shall consider in this article is the SPJRU(ID), where
S stands for selection, P for projection, J for natural join, R for renaming and
last U for union. Though intersection (I) and difference (D) are not part of the
SPJRU minimal algebra, we decided to include them at this point, as they are
usually part of commercial query languages. In the context of the named version,
the natural way to combine relations is the natural join, whereas in the unnamed
one it is the Cartesian product. The complete definition of queries is given in
Figure 1. In our development, we chose, as far as possible, not to embed proofs
in types. Hence, types are much more concise and readable.

Inductive query : Type :=
| Query– Basename : relname → query
| Query– Sigma : formula → query → query
| Query– Pi : setA → query → query
| Query– NaturalJoin : query → query → query
| Query– Rename : renaming → query → query
| Query– Union : query → query → query
| Query– Inter : query → query → query
| Query– Diff : query → query → query

with variable : Type :=
| Var : query → varname → variable

with term : Type :=
| Term– Constant : value → term

| Term– Dot : variable → attribute → term
with atom : Type :=
| Atom– Eq : term → term → atom
| Atom– Le : term → term → atom

with formula : Type :=
| Formula– Atom : atom → formula
| Formula– And : formula → formula → formula
| Formula– Or : formula → formula → formula
| Formula– Not : formula → formula
| Formula– Forall : variable → formula → formula
| Formula– Exists : variable → formula → formula.

Fig. 1. Queries

Syntax Base relations are queries. Concerning the selection operator, in text-
books, it has the form σA=a or σA=B , where A,B ∈ attribute and a ∈ value.
The notation A = a (A = B resp.,) is improper and corresponds to x.A = a
(x.A = x.B resp.,) where x is a free variable. Given a set of tuples I, with
the same support S, we shall call S the sort of I. The selection applies to any
set of tuples I of sort S, (with A,B ∈ S) and yields an output of sort S. The
semantics of the operator is σf (I) = {t | t ∈ I ∧ f{x → t}} where f{x → t}
stands for “t satisfies formula f”, x being the only free variable of f . Formula
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satisfaction is based on the standard underlying interpretation. Since, in another
context (database program verification) we use general first-order formulas, we
chose to model selection’s (filtering) conditions with them, rather than restrict-
ing ourselves to the simpler case found in textbooks. We first introduce names
for variables:

Inductive varname : Set := VarN : N → varname.

Then formulas are built in the standard way from equality and inequality atoms
which compare either constants or tuples’ field extractions. However, one should
notice that variables are used to denote tuples in the output of specific queries,
therefore containing information about the query itself. For example variable x

below is intended to represent any tuple in the Movies relation while formula f

corresponds to x ∈ Movies⇒ x.Director = ”Fellini”.

Notation x := (Var (Query– Basename Movies) (VarN 0)).
Definition f := (∗ x ∈Movies ⇒ x.Director = ”Fellini” ∗)
(Formula– Atom (Atom– Eq (Term– Dot x Director) (Term– Constant (Coq– string ”Fellini”)))).

The projection operator has the form π{A1,...,An}, n ≥ 0 and operates on all in-
puts, I, whose sort contains the subset of attributes W = {A1, . . . , An} and pro-
duces an output of sort W . The semantics of projection is πW (I) = {t|W | t ∈ I}
where the notation t|W represents the tuple obtained from t by keeping only
the attributes in W . Remember that setA denotes finite sets of attributes and
embeds as an implicit argument (A T), the record representing all types and
operations on finite sets. Depending on the actual implementation of sets, this
definition may contain some proofs in the setA data type. For instance the proof
that a set is an AVL tree may be part of the type. The natural join operator,
denoted ./, takes arbitrary inputs I1 and I2 having sorts V and W , respec-
tively, and produces an output with sort equal to V ∪ W . The semantics is,
I1 ./ I2 = {t | ∃v ∈ I1,∃w ∈ I2, t|V = v ∧ t|W = w}. When sort(I1) = sort(I2),
then I1 ./ I2 = I1 ∩ I2 , and when sort(I1) ∩ sort(I2) = ∅, then I1 ./ I2

is the cross-product of I1 and I2. The join operator is associative and com-
mutative. An attribute renaming for a finite set V of attributes is a one-one
mapping from V to attribute. In textbooks, an attribute renaming g for V is
specified by the set of pairs (a, g(a)), where g(a) 6= a; this is usually written as
a1a2 . . . an → b1b2 . . . bn to indicate that g(ai) = bi for each i ∈ [1, n], n ≥ 0.
A renaming operator for inputs over V is an expression ρg, where g is an at-
tribute renaming for V ; this maps to outputs over g[V ]. Precisely, for I over
V , ρg(I) = {v | ∃u ∈ I,∀a ∈ V, v(g(a)) = u(a)}. We made a different more
abstract choice to model this operator. To avoid proofs in types, we made no
assumptions on the “renaming” function except for its type attribute → attribute

in the inductive definition. However, the one-to-one assumption will explicitly
appear as an hypothesis for some theorems. Set operators can be applied over
sets of tuples, I1, I2, with the same sort. As standard in mathematics, I1 ∪ I2

(resp. I1 ∩ I2, I1 \ I2) is the set having this same sort and containing the union
(resp., intersection, difference) of the two sets of tuples. Sort compatibility con-
straints are absent in our modeling so as to avoid proofs and will be enforced in
the semantics part.
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Semantics We present our Coq modeling of query evaluation. We, hence, have
to explicitly describe constraints about sorts, which were, deliberately, left out
of the query syntax. For base queries, the sort corresponds to the basesort of the
relation name, for selections, the sort is left unchanged and for joins, the sort is
as expected the union of sorts. The cases which are of interest are projections,
renaming and set theoretic operators. For projections, rather than imposing that
the set W of attributes on which we project, be a subset of the sort of q1, we
chose to define the sort of Query–Pi W q1 as their intersection (W ∩ sort q1). For
renaming, we check that the corresponding function rho behaves as expected,
i.e., that it is a one-to-one mapping over attributes in q1; otherwise the sort of
the query is empty. Last, for set theoretic operators, if the input’s sorts are not
compatible, the sort of the query is empty. This is formally defined by:

Fixpoint sort (q : query) : setA := match q with
| Query– Basename r ⇒ basesort r
| Query– Sigma – q1 ⇒ sort q1
| Query– Pi W q1 ⇒W ∩ sort q1
| Query– Join q1 q2 ⇒ sort q1 ∪ sort q2
| Query– Rename rho q1 ⇒

let sort– q1 := sort q1 in
if one– to– one– renaming– bool sort– q1 rho
then fset– map A A rho sort– q1

else ∅
| Query– Union q1 q2 | Query– Inter q1 q2
| Query– Diff q1 q2 ⇒

let sort– q1 := sort q1 in

if sort– q1
set
=? sort q2

then sort– q1
else ∅

end.

At this point we are ready to interpret queries. We first assume an interpretation
for base relations. When we shall prove the usual structural equivalence theo-
rems (Section 4) for query optimization, we shall impose that queries’ results are
well-sorted. This means that all tuples in an instance or query evaluation must
have the same support which is the sort of the query. This property is inherited
from base instances as stated below:

Lemma well– sorted– query : ∀ (I : relname → setT), well– sorted– instance I →
∀ (q : query) (t : tuple), t ∈ (eval– query I q) → support t

set
= sort q.

Query evaluation is inductively defined from a given interpretation I for base
relations. We sketch its structure (the complete definition of eval–query is given
in [2]) in order to emphasize the fact that the same tests as for sorts, are per-
formed. For example, for renaming, if the corresponding function is not suitable,
the query evaluates to the empty set of tuples.

Fixpoint eval– query I (q : query) : setT := match q with
| Query– Basename r ⇒ I r
| Query– Sigma f q1 ⇒ ...
| Query– Pi W q1 ⇒ ...
| Query– Join q1 q2 ⇒ ...
| Query– Rename rho q1 ⇒

let sort– q1 := sort q1 in
if one– to– one– renaming– bool sort– q1 rho
then ...
else ∅

| Query– Union q1 q2 ⇒
if sort q1

set
=? sort q2

then (eval– query I q1) ∪ (eval– query I q2)
else ∅

| Query– Inter q1 q2 ⇒ if sort q1
set
=? sort q2 ...

| Query– Diff q1 q2 ⇒ if sort q1
set
=? sort q2 ...

end.

Our definition enjoys the standard properties stated in all database textbooks
which are expressed in our framework by the following lemmas. We only present
some of them ; the full list, as well as the complete code, is given in [2]. In
particular, the way terms, atoms and formulas are interpreted is detailed. For

the sake of readability we used some syntactic sugar, such as
I
= , ∈I , as well as

f {x → t}, for the interpretation of formula f under assignment x → t.

8



Notation query– eq q1 q2 := (eval– query I q1
set
= eval– query I q2).

Infix ”
I
= ” := query– eq.

Notation ”t ’∈I ’ q” := t ∈ (eval– query I q).
Lemma mem– Basename : ∀ I r t, t ∈I (Query– Basename r) ←→ t ∈ (I r).

Lemma mem– Inter : ∀ I q1 q2, sort q1
set
= sort q2 → ∀ t, t ∈I (Query– Inter q1 q2) ←→ (t ∈I q1

∧
t ∈I q2).

Lemma mem– Sigma : ∀ I, well– sorted– instance I → ∀ f x q t, set– of– attributes– f f ⊆ sort q →
Fset.elements FV (free– variables– f f) = x :: nil →
(t ∈I (Query– Sigma f q) ←→ (t ∈I q

∧
f {x → t} = true)).

Lemma mem– Pi : ∀ I, well– sorted– instance I →
∀W q t, t ∈I Query– Pi W q ←→ ∃t’, (t’ ∈I q

∧
t

t
= mk– tuple (W ∩ sort q) (dot t’)).

Lemma mem– Join : ∀ I, well– sorted– instance I → ∀ q1 q2 t,
t ∈I Query– Join q1 q2 ←→
∃t1, ∃t2, (t1 ∈I q1

∧
t2 ∈I q2

∧
(∀ a, a ∈ sort q1 ∩ sort q2 → dot t1 a = dot t2 a)

∧
t

t
= mk– tuple (sort q1 ∪ sort q2) (fun a ⇒ if a ∈? (sort q1) then dot t1 a else dot t2 a)).

Lemma mem– Rename : ∀ I, well– sorted– instance I → ∀ rho q, one– to– one– renaming (sort q) rho →
∀ t, t ∈I (Query– Rename rho q) ←→ (∃ t’, t’ ∈I q

∧
t

t
= rename– tuple rho t’).

Lemma NaturalJoin– Inter : ∀ I, well– sorted– instance I → ∀ q1 q2, sort q1
set
= sort q2 →

Query– NaturalJoin q1 q2
I
= Query– Inter q1 q2.

Those lemmas highlight the heterogeneous nature of relational operators. In
order to prove that they enjoy their usual semantics, on the one hand, the purely
set theoretic ones, only need sort compatibility conditions, on the other hand, the
database ones need well-sortedness. Interestingly, the lemma, NaturalJoin– Inter,
bridging both worlds, needs both.

3.2 Conjunctive Queries

In this context, the query language is slightly different. Rather than relying
on algebraic operators, queries are expressed by logical formulas of the form
{(a1, . . . , an) | ∃b1, . . .∃bm, P1∧ . . .∧Pk}, where the ai, bi denote variables which
will be interpreted by values and where Pi’s denote either equalities or member-
ship to a base relation. For example the query: “Which of “Fellini” ’s movies are
played at the cinema “Action Christine” ?” expressed by the following relational
algebra expression:

π{Title, Director, Actor}(σ x.Director=”Fellini”∧
x.Theater = ”Action Christine”

(Movies ./ Pariscope))

will be: {
(t, d, a) | ∃th,∃t

′,∃s, Movies(t, d, a) ∧ Pariscope(th, t′, s)
∧t = t′ ∧ d = ”Fellini” ∧ th = ”Action Christine”

}
Quoting [1], “if we blur the difference between a variable and a constant,

the body of a conjunctive query can be seen as an instance with additional
constraints”. This leads to the notion of extended tuples mapping attributes to
either constants or variables. Hence, a tableau over a schema is defined exactly as
was the notion of an instance over this schema, except that it contains extended
tuples. A conjunctive query is simply a pair (T, s) where T is a tableau and
s, an extended tuple called the summary of the query. Variables occurring in
s are called distinguished variables or distinguished symbols in textbooks. The
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summary s in query (T, s) represents the answer to the query which consists of
all tuples for which the pattern described by T is found in the database. This
formulation of queries is closest to the QBE visual form. Equality conditions are
embedded in the tableau itself as shown by the following example:

Title Director Actor Theater Schedule

t ‘‘Fellini’’ a Movies

t ‘‘Action Christine’’ s Pariscope

t d a summary

Syntax The formal way to “blur” the differences between variables and con-
stants (value’s in our modeling) is achieved by embedding them in a single Coq
type tvar.

Inductive tvar : Type := Tvar : nat → tvar | Tval : value → tvar.
Inductive trow : Type := Trow : relname → (attribute → tvar) → trow.

Notice that a row, modeled by type trow, is tagged by a relation name (its first
argument) and gathers variables and constants thanks to its second argument.
For instance the first row of the above query is:

Trow Movies (fun a : attribute ⇒match a with | Title ⇒Tvar 0 | Director ⇒Tval ‘‘Fellini’’ | ... end)

A tableau is a set of trow’s. This set is built using a comparison function similar
to the one for tuples. Next a summary is tagged by a set of relevant attributes
and maps attribute’s to tvar’s. Last a conjunctive query consists of a tableau and
a summary.

Notation setR := (Fset.set (Ftrow T DBS)).
Definition tableau := SetR.
Inductive summary : Type := Summary : setA → (attribute → tvar) → summary.
Definition tableau– query := (tableau ∗ summary)

Semantics Let us grasp, through our former example, the semantics of such
queries. This query is expressed by the summary

Summary (mk– set A (Title :: Director :: Actor :: nil))
(fun a : attribute ⇒match a with | Title ⇒Tvar 0 | Director ⇒Tvar 1 | ... end)

and its result consists in the set of movies

mk– set A ((mk– movie ”Casanova” ”Fellini” ”Donald Sutherland”) ::
(mk– movie ”La strada” ”Fellini” ”Giulietta Masini”) :: nil)

This set is computed by composing the summary function with some mappings
from variables in the tableau rows to values, hence mapping summaries to tu-
ples. Thus, we first need to define the notion of valuation which, as usual, maps
variables to values. More precisely, in our case, as we embedded variables and
constants in a single abstract type tvar, and because variables are characterized
by their nat identifier, the type of valuation is nat→ value. Hence applying a val-
uation (thanks to apply–valuation) on constants consists in applying the identity
function.

Definition valuation := nat → value.
Definition apply– valuation (ν : valuation) (x : tvar) : value := match x with | Tvar n ⇒ ν n | Tval c ⇒ c end.
Notation ”ν ’[[’ x ’]]’” := (apply– valuation ν x).
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Valuations naturally extend to trow’s and summary’s, yielding tuples, and to ta-
bleaux, yielding sets of tuples.

Definition apply– valuation– t (ν : valuation) (x : trow) : tuple :=
match x with Trow r f ⇒mk– tuple (basesort r) (fun a ⇒ ν [[f a]]) end.

Notation ”ν ’[[’ x ’]]t’” := (apply– valuation– t ν x).
Definition apply– valuation– s (ν : valuation) (x : summary) : tuple :=

match x with Summary V f ⇒mk– tuple V (fun a ⇒ ν [[f a]]) end.
Notation ”ν ’[[’ x ’]]s’” := (apply– valuation– s ν x).

Given a query (T, s), its result on instance I is given by {t | ∃ν, ν(T ) ⊆ I ∧ t = ν(s)}
where ν is a valuation. In our development, we characterize this set by the pred-
icate is–a– solution I (T, s), where

t
= denotes the equivalence of tuples.

Inductive is– a– solution (I : relname → setT) : tableau– query → tuple → Prop :=
| Extract : ∀ (ST : tableau) (s : summary) (ν : valuation),

(∀ (r : relname) (f : attribute → tvar), (Trow r f) ∈ ST → ν [[Trow r f]]t ∈I (Query– Basename r)) →
∀ (t : tuple), t

t
= ν [[s]]s → is– a– solution I (ST, s) t.

3.3 From Algebra Queries to Conjunctive Queries

The two formalisms presented are not exactly equivalent except in the case
where relational queries are only built with selections, projections and joins.
In this case there is an apparently straightforward way to construct the corre-
sponding conjunctive query. We give hereafter the algorithm found in [11] as it
is presented. If we try to apply this algorithm on the following relational ex-

Given an SPJ algebraic expression, a con-

junctive query equivalent to this expression

is inductively constructed using the following

rules. The base case consists in a relation

r(A1, . . . , An) the corresponding tableau con-

sists in a single row and summary which are

exactly the same with one variable for each Ai.

Assume that we have an expression of the form

πW (E) and that we have constructed (T, s) for

E, then to reflect the projection, all the distin-

guished variables that are not in W are deleted

from s. For selections σf (E) where f is either

of the form A = B or A = c, in the former

case, the distinguished symbols for columns A

and B in the summary and the tableau are iden-

tified, in the latter, the distinguished variable

for A is replaced by c. For joins E1 ./ E2, it is

assumed without loss of generality that if both

(T1, s1) and (T2, s2) have distinguished symbols

in the summary column for attribute A then

those symbols are the same, but that otherwise

(T1, s1) and (T2, s2) have no symbols in com-

mon. Then the tableau for E1 ./ E2 has a sum-

mary in which a column has a distinguished

symbol a if a appears as a distinguished symbol

in that column of s1 or s2 or both. The new

tableau has as rows all the rows of T1 and T2.

Fig. 2. Ullman’s book algorithm presentation

pression σA=B(r) ./ σB=C(r), we obtain for E1 and E2 the following tableaux:
x1 x1 x2 r
x1 x1 x2

and
y1 y2 y2 r
y1 y2 y2

. Given those two tableaux whatever renaming we

choose to apply to the second one as stated in [11] there is no way to be in
the situation described by the algorithm, i.e., if both (T1, s1) and (T2, s2) have
distinguished symbols in the summary column for attribute A then those sym-
bols are the same. We fixed this source of incompleteness by using unification
instead of renaming. If we unify the two summaries of our example, we obtain
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x2 7→ x1; y1 7→ x1; y2 7→ x1 yielding the tableau
x1 x1 x1 r
x1 x1 x1

which indeed

corresponds to what is expected in terms of semantics. The unify function, given
in [2], is readable but the proofs of its soundness (the result of unify is a uni-
fier) and completeness (whenever there is a unifier, unify finds it) took more
than 4000 lines of code. Thanks to it we are able to express the translation
algorithm, also given in [2], which is sound and complete and handles all SPJ
queries. If the selection condition is a conjunction of equalities, a preprocess-
ing step, expand–query, transforms it into a sequence of selections whose condi-
tions are equalities. The translation yields either an equivalent query, EmptyRel

when the original query has no solution or NoTranslation when the input query
is not SPJ. The translation algorithm relies on several auxiliary functions. The
first one, fresh– row n r, is used for the base case and generates a row, Trow r fr,
tagged by relation name r. Function fr maps attributes to fresh variables starting
from index n. The second one rename t1 t2 is used for selections with condition
t1 = t2 and returns either None if t1 and t2 are distinct constants or Some rho

where rho is a substitution which replaces one of the t1 and t2 by the other
one, avoiding to replace a constant by a variable. In that case rho is applied
to the whole tableau. The only case where unify is needed is for joins. In this
case the translation is applied to both operands and then compatibility on com-
mon attributes is ensured by applying the resulting substitution to the whole
query. The following lemma states that the algorithm behaves as expected.

Our formalization helped us in
making precise the exact behavior
of the translation algorithm. In the
informal presentation taken from
textbooks, an underlying assump-
tion is made about freshness of

Lemma algebra– to– tableau– expand– is– complete :
∀ (q : query) (n : nat) (I : relname → setT),

well– sorted– instance I →
match algebra– to– tableau (S n) (expand– query q) with
| TQ – Ts ⇒
∀ t, is– a– solution I Ts t ←→ t ∈ (eval– query I q)

| EmptyRel ⇒∀ t, t ∈ (eval– query I q) → False
| NoTranslation ⇒ translatable– q q = false

end.

variables for the base case, which is quite tedious to handle at the formal level.
To our knowledge our algorithm is the first one for such a translation which is
formally specified and fully proved.

4 Logical Optimization

4.1 Optimizing Relational Algebra Queries

Query optimization exploits algebraic equivalences. Such equivalences are found
in all textbooks and in particular in [9]. We list the most classical ones hereafter.

σf1∧f2(q) ≡ σf1(σf2(q)) (1)

σf1(σf2(q)) ≡ σf2(σf1(q)) (2)

(q1 ./ q2) ./ q3 ≡ q1 ./ (q2 ./ q3) (3)

q1 ./ q2 ≡ q2 ./ q1 (4)

πW1(πW2(q)) ≡ πW1(q) if W1 ⊆ W2 (5)

πW (σf (q)) ≡ σf (πW (q)) if Att(f) ⊆ W (6)

σf (q1 ./ q2) ≡ σf (q1) ./ q2 if Att(f) ⊆ sort(q1)(7)

σf (q1∇q2) ≡ σf (q1)∇σf (q2)where ∇ is ∪,∩ or \(8)

All these have been formally proved and their formal statements are given in [2].
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Although not technically involved, all the proofs relied on the assumption that
instances are well sorted. To illustrate this, we give the formal statement of (7).

Lemma Sigma– NaturalJoin– comm : ∀ I, well– sorted– instance I → ∀ f q1 q2, set– of– attributes– f f ⊆ sort q1 →

Query– Sigma f (Query– NaturalJoin q1 q2)
I
= Query– NaturalJoin (Query– Sigma f q1) q2.

4.2 Optimizing Conjunctive Queries

For the algebraic queries that are expressible by a conjunctive query, there ex-
ists an exact optimization technique. In this case, query optimization is based
on the following consideration: the number of lines in the tableau corresponds
to the number of joins (plus one) in the relational expression. Therefore, the
optimization consists in reducing this number of lines. This is achieved through
the notions of tableaux containment and equivalence and finally through a min-
imality condition. More precisely, let (T1, s1) and (T2, s2) be two conjunctive
queries, (T1, s1) is contained in (T2, s2) written (T1, s1) ⊆ (T2, s2) iff (T1, s1) and
(T2, s2) have the same set of attributes, and, for all relations’ instances, solutions
of (T1, s1) are included in the set of solutions of (T2, s2). This inclusion relation
naturally induces an equivalence. (T1, s1) ≡ (T2, s2) iff (T1, s1) ⊆ (T2, s2) and
(T2, s2) ⊆ (T1, s1). This is formalized in Coq by:

Definition is– contained– instance I Ts1 Ts2 := ∀ (t : tuple), is– a– solution I Ts1 t → is– a– solution I Ts2 t.
Definition is– contained Ts1 Ts2 := ∀ I, is– contained– instance I Ts1 Ts2.
Definition are– equivalent Ts1 Ts2 := is– contained Ts1 Ts2

∧
is– contained Ts2 Ts1.

These semantical notions can be checked syntactically relying on tableaux’s sub-
stitutions. A (tableau) substitution θ is a mapping from variables to variables
or constants. The following database theorem expresses this syntactical charac-
terization of containment.

Theorem 1 (Tableaux Homomorphism). If (T1, s1) and (T2, s2) are con-
junctive queries, (T1, s1) ⊆ (T2, s2) iff there exists a substitution tableau θ such
that for all line t tagged by relation name r in T2, θ(t) occurs tagged by r in T1,
and θ(s2) = s1. θ is called a tableau homomorphism from (T2, s2) to (T1, s1).

We first give the definition of substitution in our setting and then formally define
the application of a substitution to a variable. This notion extends to trow’s and
summary’s. Then we provide the formal definition of tableau homomorphism and
state the homomorphism theorem.

Definition substitution := nat → tvar.
Definition apply– subst– tvar (θ : substitution) (x : tvar) := match x with Tvar n ⇒ θ n | Tval –⇒ x end.
Notation ”θ ’[’ x ’]– v’” := (apply– subst– tvar θ x).
Definition tableau– homomorphism (θ : substitution) Ts2 Ts1 :=

match Ts1, Ts2 with (T1, s1), (T2, s2) ⇒ (fset– map Ftrow Ftrow (fun t ⇒ θ [t]– t) T2) ⊆T1
∧
θ [s2]– s

s
= s1

end.
Theorem Homomorphism– theorem :
∀Ts1 Ts2, (∃ θ , tableau– homomorphism θ Ts2 Ts1) ←→ is– contained Ts1 Ts2.

We briefly sketch the proof of the homomorphism theorem. Interestingly in text-
books a lot of material is hidden. Namely, the notion of fresh constants is central
to the proof in order to be able to define a list of such distinct fresh constants
for each variable present in the query. We assume therefore
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Hypothesis fresh : (Fset.set Ftvar) → value.
Hypothesis fresh– is– fresh : ∀ lval, (Tval (fresh lval)) ∈ lval → False.

This implies that domains are infinite. Based on fresh constants we define a
variable assignment µ from variables to new fresh abstract constants on (T1, s1).
We then show that µ is a solution of (T1, s1) w.r.t. the interpretation I which
contains exactly µ(T1). Thanks to the definition of tableaux containment, µ is a
solution of (T2, s2) w.r.t. I. Hence there is an assignment ν which corresponds
to a solution of (T2, s2), ν(s2) = µ(s1) ∧ (∀t2 r, t2 : r ∈ T2 ⇒ ν(t2) ∈ I(r)), that
is ν(s2) = µ(s1) ∧ (∀ t2 r, t2 : r ∈ T2 ⇒ ∃ t1, t1 : r ∈ T1 ∧ ν(t2) = µ(t1)). By
construction µ admits an inverse function defined over the variables of (T1, s1).
What remains to show is that x 7→ µ−1(ν(x)) is an homomorphism from (T2, s2)
to (T1, s1). The main difficulties encountered in Coq were to properly define the
notion of query solution, to build the variable assignment µ as a function from
the fresh function and to prove that µ is injective.

At this point, based on the homomorphism theorem, given a conjunctive
query, we shall explicitly construct an equivalent minimal one. Indeed another,
well known, database theorem states that for each conjunctive query there exists
a minimal equivalent query among its sub-queries. A sub-query of (T, s) is simply
(T ′, s) such that T ′ ⊆ T . Hence, the optimization process consists in inspecting
all equivalent sub-tableaux and among those keeping a minimal one.

Definition min– tableau Ts Ms :=
are– equivalent Ts Ms

∧
(∀ Ts’, are– equivalent Ts Ts’ → cardinal (fst Ms) ≤ cardinal (fst Ts’)).

Lemma tableaux– optimisation : ∀T s, {T’ | min– tableau (T, s) (T’, s)}.

More precisely, the corner stone of the algorithm is to find an homomorphism
from the initial tableau to a given sub-tableau. To do so we used a function
abstract–matching. All further details are given in [2]. Not only do we prove this
result but we also provide a certified algorithm to build this minimal tableau
both in Coq and by extraction from tableaux–optimization in OCaml.

5 Integrity Constraints

Constraints are captured by the theory of dependencies which deal with the
semantics of data. For example, returning to our running example, we may know
that there is only one director associated with each movie title. Such properties
are called functional dependencies because the values of some attributes of a
tuple uniquely determine the values of other attributes of that tuple. Let us
further assume that we have another relation: Showings(Theater, Screen, Title,
Snack) which contains tuples (th, sc, ti, sn) if the theater th is showing the movie
ti on the screen sc and if the theater th offers snack sn. Intuitively, one would
expect a certain independence between the Screen-Title attributes, on the one
hand, and the Snack attribute, on the other, for a given value of Theater. For
example, if (Action Christine, 1, Casanova, Coffee) and (Action Christine, 2, M,
Tea) are in Showings, we also expect (Action Christine, 1, Casanova, Tea) and
(Action Christine, 2, M, Coffee) to be present. Such dependencies are called
tuple generating dependencies. Functional and tuple generating dependencies
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fall under the wider class of general dependencies which we model and that also
capture inclusion dependencies which correspond to foreign key constraints in
real systems. First we introduce functional dependencies, then we present the
class of general dependencies. An important problem concerning dependencies
is that of the so called logical implication: given a set of constraints, what other
constraints could be inferred ? Armstrong’s system that allows to deduce, in the
functional case, all dependencies implied by a given set, is sound, complete and
terminating. We then detail the chase, a procedure that allows to infer general
dependencies, and prove its soundness.

5.1 Functional Dependencies

A functional dependency (fd) expresses a constraint between schema attribute
sets. Specifically, given a database schema R, an instance r of R and attribute
sets V and W (in the sort of R), a functional dependency V ↪→W over r, denoted
r |= V ↪→W , holds if ∀t1 t2, t1 ∈ r ⇒ t2 ∈ r ⇒ t1|V = t2|V ⇒ t1|W = t2|W .

Let F be a set of functional dependencies over a given schema R. A functional
dependency d = X ↪→ Y is semantically implied by F , denoted F |= d, if ∀r :
R, (r |= F ⇒ r |= d). This is formally defined in Coq by:

Inductive fd : Type := FD : setA → setA → fd.
Notation ”V ’↪→’ W” := (FD V W).
Definition fd– sem (ST : setT) (d : fd) := match d with | V ↪→W ⇒
∀ t1 t2, t1 ∈ ST → t2 ∈ ST → (∀ x, x ∈V → dot T t1 x = dot T t2 x)

→ ∀ y, y ∈W → dot T t1 y = dot T t2 y
end.

Armstrong’s inference system A is modeled via the dtree inductive definition,
representing a derivation tree, whose branches are the axioms above and the D–ax

rule, for deriving dependencies already in the context and where setF denotes the
type of sets of dependencies.

Inductive dtree (F : setF) : fd → Type :=
| D– Ax : ∀X Y, (X ↪→Y) ∈ F → dtree F (X ↪→Y)
| D– Refl : ∀X Y, Y ⊆X → dtree F (X ↪→Y)

| D– Aug : ∀X Y Z XZ YZ, XZ
set
= (X ∪ Z) → YZ

set
= (Y ∪ Z) → dtree F (X ↪→Y) → dtree F (XZ ↪→YZ)

| D– Trans : ∀X Y Y’ Z, Y
set
= Y’ → dtree F (X ↪→Y) → dtree F (Y’ ↪→Z) → dtree F (X ↪→Z).

Theorem Armstrong– soundness : ∀ F d (t : dtree F d) ST, (∀ f, f ∈ F → fd– sem ST f) → fd– sem ST d.

This theorem is formally proven by an easy induction on the derivation tree.
The completeness proof borrows from [11] the central idea of building a model M.
Given a set of dependencies F and a set of attributes X, M consists of two tuples
t0 and t1, which only agree on the closure attribute set [X]+F . The constructive
proof of completeness is simply based on the fact that if F |= X ↪→ Y , since M
is a model of F , then M is a model of X ↪→ Y .

Lemma Armstrong– completeness : ∀U F X Y, X ⊆U → Y ⊆U → (∀ ST, (∀ t, t ∈ ST → support T t
set
= U)

→ (∀ f, f ∈ F → fd– sem ST f) → fd– sem ST (X ↪→Y)) → (dtree F (X ↪→Y)).

Interestingly, while for soundness the hypotheses did not make any assumption
on the finiteness of the attribute universe, for the completeness, this assumption
was needed. All intermediate lemmas are given in [2] and the main theorem
explicitly mentions the fact that all sets of attributes are included in the finite
universe U and that the values zero and one are distinct.
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5.2 General Dependencies

Constraints described in textbooks (functional, join or inclusion dependencies)
are first-order logic sentences of the form

∀x1 . . . ∀xn(φ(x1, . . . , xn)⇒ ∃z1 . . . ∃zkψ(x1, . . . , xn, z1, . . . , zk)),

where φ is a (possibly empty) conjunction of atoms and ψ an atom. In both φ
and ψ, one finds relation atoms of the form r(w1, . . . , wl) and equality atoms
of the form w = w′, where each of the w,w′, w1, . . . , wl is a variable or a con-
stant. Inclusion dependencies can be expressed by ∀x1 . . . ∀xn(r1(x1, . . . , xn)⇒
r2(x1, . . . , xn)). According to textbooks, the semantics of such formulas is the
natural one. There is a strong relationship between general dependencies and
tableaux which provides a convenient notation for expressing and working with
dependencies. For example the functional dependencyA ↪→ B on relation r(A,B),
is represented by the following formula ∀v, v1, v2 r(v, v1) ∧ r(v, v2) ⇒ v1 = v2

and conjunctive query

A B
v v1 r
v v2 r

v1 = v2 . When the right part of the implication is a

relation predicate, the last line is a summary and such dependencies are referred
as “tuple generating” while the other ones are referred as “equality generating”.
We model this by the following inductive definition of gd, according to whether
φ is a relation predicate or an equality, we use two constructors TupleGen or
EqGen.

Notation ”s1 ’
r
= ’ s2” := (∗∗ equivalence of rows ∗∗) (Fset.elt– compare Ftrow s1 s2 = Eq).

Inductive gd := TupleGen : setR → trow → gd | EqGen : setR → tvar → tvar → gd.

The natural semantics is provided by:

Inductive gd– sem : gd → setT → Prop :=
| TupleGenSem : ∀ (SR : setR) (s : trow) (ST : setT), (∀ (ν : valuation), (∀ x, x ∈ SR → (ν [[x]]t) ∈ ST) →
∃νe , (∀ x, x ∈ variables– tableau SR → νe [[x]] = ν [[x]])

∧
νe [[s]]t ∈ ST) → gd– sem (TupleGen SR s) ST

| EqGenSem : ∀ (SR : setR) x1 x2 (ST : setT),
(∀ (ν : valuation), (∀ x, x ∈ SR → ν [[x]]t ∈ ST) → ν [[x1]] = ν [[x2]]) → gd– sem (EqGen SR x1 x2) ST.

The only subtle point in this definition is that it is stated for tableaux, but
corresponds exactly to the semantics of logical formulas. Due to the particular
form of the latter, given a valuation ν assigning values to the x’s we extend it
by νe over the existentially quantified z’s.

5.3 The Chase

We present the so-called chase a procedure for reasoning about dependencies
and used to determine logical implication between sets of dependencies. More
precisely, given a set D of dependencies and a dependency d over a given schema,
the chase allows to decide whether D |= d. The intuition is that the chase starts
assuming that the tableau part of d is satisfied and consists in applying all
dependencies in D. If the conclusion of d is inferred then we have a proof that
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A B C D
a1 b1 c1 d1
a1 b2 c2 d2
a1 b1 c2 d3

tg1

A B C D
a2 b3 c3 d4
a3 b3 c4 d5
d4 = d5

eg2

A B C D
a4 b4 c5 d6
a4 b5 c6 d7
a4 b6 c5 d7

tg

A B C D
a4 b4 c5 d6
a4 b5 c6 d7

(i)

A B C D
a4 b4 c5 d6
a4 b5 c6 d7
a4 b5 c5 d8

(ii)

A B C D
a4 b4 c5 d6
a4 b5 c6 d7
a4 b5 c5 d7

(iii)

Fig. 3. Applying Dependencies

D |= d. The main result stated in the literature is that, any instance of the
schema, satisfying d′ and chase(d, d′) (the dependency obtained by applying
d′ to d), also satisfies d. All the magic resides in the definition of “applying a
dependency”. Assume that we want to prove that dependencies tg1 and eg2 in
Figure 3 imply dependency tg, where we omit to tag the rows as a single relation
name r is assumed. To do so, we apply them to instance (i) (indeed the tableau
part of tg). More precisely, applying tg1 to (i) consists in finding a mapping ν
such that {ν(a1, b1, c1, d1), ν(a1, b2, c2, d2)} ⊆ (i). For instance in this case we
can choose, among other mappings, ν(a1) = a4, ν(b1) = b5, ν(c1) = c6, ν(d1) =
d7, ν(b2) = b4, ν(c2) = c5, ν(d2) = d6. Tuple ν(a1, b1, c2, d3) is then added to
(i) yielding (ii). There is a subtlety: as d3 appears only in the summary, d3 is
existentially quantified therefore ν(d3) is a fresh variable (d8). Then applying
eg2 to (ii) makes d7 and d8 equal in (iii). Again, as b6 is existentially quantified
in tg, it can be instantiated by b5 and allows to conclude that since the tuple to
be generated in tg occurs in (iii), tg is implied.

We tried to formalize what is very informally provided by textbooks with the
following inference rules. Let d and d′ be respectively ∀~x, φ(~x)⇒ ∃~z, ψ(~x ∪ ~z)
and ∀~x′, φ′(~x′) ⇒ ∃~z′, ψ′(~x′ ∪ ~z′). For applying d′ to d we first need to find

a mapping ν such that ν(φ′(~x′)) seen as a set of atoms is a subset of φ(~x).
Depending on the form of ψ′, we get

1. if ψ′ ≡ y′1 = y′2 then let ρ be the renaming: {ν(y′2) 7→ ν(y′1)} and chase(d, d′)
is ∀~x, ρ(φ(~x)⇒ ∃~z, ψ(~x ∪ ~z)).

2. if ψ′ ≡ r′(~y′) then chase(d, d′) is ∀~x, φ(~x) ∧ ν(r′(~y′))⇒ ∃~z, ψ(~x ∪ ~z).

However the above version is faulty due to variable’s capture for ν(r′(~y′)) by
∀~x which naturally arose in the second case as shown by the following counter-
example. Let d be ∀y z, r(y, y, z) ⇒ r(y, y, y) and d′ be ∀x y, r(x, x, y) ⇒
∃z, r(x, z, x). With mapping ν = {x 7→ y, y 7→ z}, the above definition yields:

chase(d, d′) ≡ ∀y z, r(y, y, z) ∧ r(y, z, y)⇒ r(y, y, y).

Consider the instance I = {(a, a, b), (a, c, a)}. We have I |= d′, and I |=
chase(d, d′) since there is no µ such that µ(y, y, z) ∈ I ∧ µ(y, z, y) ∈ I. But
I 6|= d as shown by µ1 = {y 7→ a, z 7→ b} since µ1(y, y, z) = (a, a, b) ∈ I and
µ1(y, y, y) = (a, a, a) /∈ I. This counter-example does not affect the essence of the
theorem but emphasizes the fact that humans naturally perform α-conversion
in order to avoid capture; therefore when defining the chase in Coq we had to
seriously take this into account.
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Since variables (in the gd’s) are indexed by integers, in order to avoid cap-
tures, we generate fresh variables for renaming, starting from the maximum
index of all variables in the constraints which is computed thanks to the func-
tion max–var–chase. Then, avoid–capture– trow max–n phi’ psi’ computes a renaming
for the variables which are in psi’ and not in phi’. The chase may yield three
different results: the first one is when there is at least one ν producing a new
constraint, the second captures the fact that no such mappings exist, then the
third one corresponds to the fact that the current dependency tries to identify
two distinct constants. There is one further subtle point to detail. Given a pair
of dependencies, there may exist several mapping ν’s, thus, in order to avoid
the design of a lazy matching function, we chose to apply them at once. The
first case applies an equality generating dependency EqGen SR x1 x2. It consists
in iterating the replacement of ν x1 by ν x2 for all such ν’s. The second case ap-
plies a tuple generating dependency TupleGen SR s. In that case we simply add
all ν s to current tableau. The only point is to avoid capture for existential vari-
ables and also to avoid interference between the different mappings. This has
the unfortunate consequence that the chase step given in [2] as well as sound-
ness proofs are intricate. As the chase terminates only for a specific class of
dependencies (the one with no existential quantifiers), we defined a kind of “for
loop” in order to iterate the application of a set of dependencies over d a fixed
number of times. At this point the algorithm stops with a (potentially) new de-
pendency. If this dependency is trivial (i.e., either of the form ∀~x, φ(~x)⇒ y = y
or ∀~x, φ(~x)⇒ ∃~z, ψ(~x∪ ~z) where there exists a substitution σ for z’s such that

ψ(~x ∪ ~σ(z)) is an atom of φ(~x)) then the initial set of dependencies implies d.
Last the result that the chase procedure is sound is established by

Inductive res : Type := Res : gd → res | NoProgress | Fail.
...
Definition var– in– query x SR := match x with Tvar –⇒ x ∈ variables– gd SR | Tval –⇒True end.
Lemma chase– is– sound :
∀ ST n D d d’, chase n d D = Res d’ →

match d with TupleGen – –⇒True | EqGen SR1 x1 x2 ⇒ var– in– query x1 SR1
∧

var– in– query x2 SR1 end
→ (∀ gd, List.In gd D → gd– sem gd ST) → gd– sem d’ ST → gd– sem d ST.

Doing the proof, the main subtle point was to avoid variables’ capture through
iteration. Again, it was during this proof step that we discovered that the text-
books were imprecise not to say faulty. The needed functions and technical lem-
mas are given in [2].

6 Conclusion, Lessons and Perspectives

This article provides a specification of the relational model, a first, unavoidable,
step towards verifying relational database management systems with the Coq
proof assistant. Our specification is the first that covers the named version of
the relational model, both algebra and conjunctive queries, logical optimization
for both languages, and, finally, dependencies (both functional and general). The
whole development consists of 21,000 loc. It makes a clear distinction between
specification and implementation, achieved thanks to a parametrization of the
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data definition part of the model – attributes, tuples, relations and constraints
– by modules whose interface is independent from the concrete implementation
(e.g., Letouzey’s finite sets). This allowed us to reach a very modular and reusable
library. From the data definition point of view, our modeling is very close to the
one found in textbooks as well as in real systems and is expressive and versatile
enough to allow us to express the main algorithms and to prove the database
theorems. In particular, we gave a completely certified version of the algorithm
that translates an SPJ query into a conjunctive one, a proof of the main relational
structural equivalences, a proof of the homomorphism theorem and based on this
proof a certified version of the tableaux minimization algorithm, its extraction in
OCaml and finally we modeled and certified Armstrong’s system for functional
dependencies and the chase procedure for which we also extracted an OCaml
algorithm.

We learned several lessons both from the database and Coq sides. There
are two different aspects in our work: one concerns modeling, the second is
about proving properties and algorithms’ correctness. On the side of proofs, the
article does not bring very new insights except expliciting technical points such
as freshness, unification in the translation, avoiding variables’ capture. This is
not new for Coq users or even the functional programming community. However
it is worth precising that for the database theoreticians and practitioners as
well. Such aspects are never mentioned in text books nor appear explicitly in
implementations (usually written in C). The real challenge was to model. Our
contribution, unlike, [8, 6], is almost complete. We were able to model all these
various aspects because our very first choices for attributes, tuples were adequate.
Such choices were not trivial nor immediate and neither [8] nor [5] made them
hence they never reached the generality we achieved. Obviously once the right
choices are done, the whole seems simple.

In a first version of our development, we heavily used dependent types and
proofs in types. In particular, they expressed that tuples and queries were well-
typed by construction. But, we experienced a lot of problems with type con-
version in proofs. In all algorithms given in the article, it is crucial to check
equality (or congruence). In Coq one can only check equality between two terms
which belong to the same Type. With dependent types, there are two possibil-
ities: either to use type conversion or John Major equality (fortunately we fall
in the decidable case). Both are very cumbersome. Moreover, in order to debug
we needed to run the algorithms with well-typed terms (i.e., with hand-written
proofs embedded in types). The benefits of our approach are three (i) with it,
it is easier and lighter to write algorithms and perform case analysis in proofs
(ii) it is closer to main stream programming languages in which real systems are
encoded (iii) it precisely allows to locate where well-typedness is needed. Surpris-
ingly, we discovered that types, in the usual sense, were not useful, rather, the
notion of well-sortedness was indeed crucial. This is an a posteriori justification
of the fact that in all theoretical books values range in a unique domain. Specify-
ing the main algorithms and proving the “database theorems” for tableaux and
the chase led us to thoroughly make explicit some notions or definitions which
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were either unclear or at least very sloppy. For example, freshness or variables’
capture are almost completely left aside in textbooks. However, such notions are
central to the correctness of the results, as shown by our counter-example.

The long term goal of our work is to verify data intensive systems with
the Coq proof assistant and the Why3 [4] program verification suite. We shall
extend our work in several directions. First for the specification part we shall
capture other data models such as JSon, XML etc to mechanize the semantics
of languages such as JAQL or Pig. Then, we shall model all the relational nor-
malization theory for logical schema design. Based on our library, another line
of research will consist in verifying an SQL compiler and optimizer against our
specification. SQL compilers not only transform queries into relational algebra
(as far as possible) yielding an AST whose nodes are labeled by relational opera-
tors and leaves are base relations, but, they also choose the ”best” access method
to evaluate the query. To do so they rely on the fact that different algorithms
for joins or selections do exist (sort-merge joins, hash-based, nested loops) and
on different access paths to actual data (for example indexes). They generate so
called query evaluation plans and choose, according to a cost model, the most
efficient one. We plan to verify those algorithms using our formalization and
Why3. We shall also handle transactions and concurrency control, updates and
database triggers as well as security and privacy aspects.
Acknowledgements We are very grateful to Arthur Charguéraud for his helpful comments.
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