
Semanti subtyping: dealing set-theoretiallywith union, intersetion, and negation typesAlain FrishINRIA Roquenourt Giuseppe CastagnaÉole Normale Supérieure de ParisVéronique BenzakenLRI - Université Paris SudAbstratSubtyping relations are usually de�ned either syntatially by a for-mal system or semantially by an interpretation of types into an untypeddenotational model. This work shows how to de�ne a subtyping rela-tion semantially in the presene of Boolean onnetives, funtional typesand dynami dispath on types, without the omplexity of denotationalmodels, and how to derive a omplete subtyping algorithm.1 IntrodutionMany reent type systems rely on a subtyping relation. Its de�nition generallydepends on the type algebra, and on its intended use. We an distinguish twomain approahes for de�ning subtyping: the syntati approah and the seman-ti one. The syntati approah�by far the more used�onsists in de�ningthe subtyping relation by axiomatising it in a formal dedution system (a set ofindutive or o-indutive rules); in the semanti approah (for instane, [1, 12℄),instead, one starts with a model of the language and an interpretation of typesas subsets of the model, then de�nes the subtyping relation as the inlusion ofdenoted sets, and, �nally, when the relation is deidable, derives a subtypingalgorithm from the semanti de�nition.The semanti approah has several advantages but it is also more onstrain-ing. Finding an interpretation in whih types an be interpreted as subsets ofa model may be a hard task. A solution to this problem was given by HaruoHosoya and Benjamin Piere [20, 18, 21℄ with the work on XDue. The keyidea is that in order to de�ne the subtyping relation semantially one does notneed to start from a model of the whole language: a model of the types su�es.In partiular Hosoya and Piere take as model of types the set of values of thelanguage. Their notion of model annot apture funtional values. On the onehand, the resulting type system is poor sine it laks funtion types. On theother hand, it manages to integrate union, produt and reursive types and still1

keep the presentation of the subtyping relation and of the whole type systemquite simple.In a previous work [16, 14℄ we extended the work on XDue and re-framedit in a more general setting: we show a tehnique to de�ne semanti subtypingin the presene of a rih type system inluding funtion types, but also arbi-trary Boolean ombinations (union, intersetion, and negation types) and in thepresene of lately bound overloaded funtions and type-based pattern mathing.The aim of [16, 14℄ was to provide a theoretial foundation on the top of whih tobuild the language CDue [4℄, an XML-oriented transformation language. Thekey theoretial ontribution of the work is a new approah to de�ne semantisubtyping when straightforward set-theoreti interpretation does not work, inpartiular for arrow types. Here we fous and expand on this aspet of the workand we get rid of many features (e.g. pattern mathing and pattern variabletype inferene) whih are not diretly related to the treatment of subtyping.The desription of a general tehnique to extend semanti subtyping to gen-eral types systems with arrow and omplete Boolean ombinator types is justone way to read our work, and it is the one we deided to emphasise in thispresentation. However it is worth mentioning that there exist at least two otherreadings for the results and tehniques presented here.A �rst alternative reading is to onsider this work as a researh on the de�-nition of a general purpose higher-order XML transformation language: indeed,this was the initial motivation of [16, 14℄ and the theoretial work done thereonstitutes the fundamental basis for the de�nition and the implementation ofthe XML transformation language CDue.A seond way of understanding this work is as a quest for the generalisa-tion of lately bound overloaded funtions to intersetions types. The intuitionthat overloaded funtions should be typed by intersetion types was always feltbut never fully formalised or understood. On the one hand we had the long-standing researh on intersetion types with the seminal works by the Turinresearh group on typed lambda alulus [3, 11℄. However funtions with inter-setion types had a uniform behaviour, in the sense that even if they workedon arguments of di�erent types they always exeuted the same ode on all ofthese types1. So funtions with intersetions types looked loser to parametripolymorphism (in whih we enumerate the possible domains) rather than over-loaded funtions whih are able to disriminate on the type of the argument andexeute a di�erent ode for eah di�erent type. On the other hand there wasthe researh on overloaded funtions as used in programming languages whihaounted for funtions formed by di�erent piees of ode seleted aording tothe type of the argument the funtion is applied to. However, even if the typesof these funtions are apparently lose to intersetion types, they never had theset theoreti intuition of intersetions. So for example in the λ&-alulus [8℄overloaded funtions have types that are haraterised by the same subtypingrelation as intersetion types, but they di�er from the latter by the need of spe-1A notable exeption to this is John Reynolds work on the oherent overloading and thelanguage Forsythe [22, 23℄. 2

ial formation rules that have no reasonable ounterpart in intersetion types.The overloaded funtions de�ned here and, even more, those de�ned in [16℄ �-nally reonile the two approahes: they are typed by intersetion types (with alassial/set-theoreti interpretation) and their de�nitions may intermingle odeshared by all possible input types with piees of ode that are spei� to onlysome partiular input types. Therefore they niely integrate the two styles ofprogramming.Finally it is important to stress that although here we deploy our onstru-tion for a λ-alulus with higher-order funtions, the tehnique is quite generaland an be used mostly unhanged for quite di�erent paradigms, as for instaneit is done in [9℄ for the π-alulus.Plan of the artile. The presentation is strutured in three parts:1. In the �rst part (Setion 2) we lengthy disuss the main ideas, the under-lying intuitions, and the logial entailment of the whole approah.2. In the seond part (Setions 3�5) we suintly and preisely de�ne thesystem: the alulus and its typing relation (Setion 3), the subtypingrelation (Setion 4), and their properties (Setion 5).3. The last part (Setion 6) presents the tehnial details of the propertiesstated in the seond part.Setion 7 onludes our presentation.2 Overview of the approahWhen dealing with syntati subtyping one usually proeeds as follows. First,one de�nes a language, then, somewhat independently, the set of (syntati)types and a subtyping relation on this set. This relation is de�ned axiomatially,in an indutive (or o-indutive, in ase of reursive types) way. The typesystem, onsisting of the set of types and of the subtyping relation, is oupledto the language by a typing relation, usually de�ned via some typing rules byindution on the terms of the language and possibly a subsumption rule thataounts for subtyping. The meaning of types is only given by the rules de�ningthe subtyping and the typing relations.The semanti subtyping approah desribed here diverges from the aboveonly for the de�nition of the subtyping relation. Instead of using a set of de-dution rules, this relation is de�ned semantially: we do it by de�ning a set-theoreti model of the types and by stating that one type is subtype of anotherif the interpretation of the former is a subset of the interpretation of the latter.As for syntati subtyping, the de�nition is parametri in the set of base typesand their subtyping relation (in our ase, their interpretation).
3

2.1 A �ve steps reipeIn priniple, the proess of de�ning semanti subtyping an be roughly sum-marised in the following �ve steps:1. Take a bunh of type onstrutors (e.g., →, ×, h , . . .) and extend thetype algebra with the following Boolean ombinators : union∨∨∨, intersetion
∧∧∧, and negation ¬¬¬, yielding a type algebra T .2. Give a set-theoreti model of the type algebra, namely de�ne a funtion
J KD : T → P(D), for some domain D (where P(D) denotes the power-set of D). In suh a model, the ombinators must be interpreted in aset-theoreti way (that is, Js∧∧∧tKD = JsKD ∩ JtKD, Js∨∨∨tKD = JsKD ∪ JtKD,and J¬¬¬tKD = D \ JtKD), and the de�nition of the model must apture theessene of the type onstrutors.There might be several models, and eah of them indues a spei� sub-typing relation on the type algebra. We only need to prove that thereexists at least one model and then pik one that we all the bootstrapmodel . If its assoiated interpretation funtion is J K

B
, then it indues thefollowing subtyping relation:

s ≤B t
def
⇐⇒ JsK

B
⊆ JtK

B
(1)3. Now that we de�ned a subtyping relation for our types, �nd a subtypingalgorithm that deides (or semi-deides) the relation. This step is notmandatory but highly advisable if we want to use our types in pratie.4. Now that we have a (hopefully) suitable subtyping relation available, wean fous on the language itself, onsider its typing rules, use the newsubtyping relation to type the terms of the language, and dedue Γ ⊢B e :

t. In partiular this means to use in the subsumption rule the bootstrapsubtyping relation ≤B we de�ned in step 2.5. The typing judgement for the language now allows us to de�ne a new nat-ural set-theoreti interpretation of types, the one based on values JtK
V

=
{v ∈ V | ⊢B v : t}, and then de�ne a �new� subtyping relation as wedid in (1), namely s ≤V t

def
⇔ JsK

V
⊆ JtK

V
. The new relation ≤V mightbe di�erent from ≤B we started from. However, if the de�nitions of themodel, of the language, and of the typing rules have been arefully hosen,then the two subtyping relations oinide

s ≤B t ⇐⇒ s ≤V tand this loses the irularity. Then, the rest of the story is standard (re-dution relation, subjet redution, type-heking algorithm, et . . .).While the �ve steps above outline a nie framework in whih to �t and under-stand what follows, in pratie, however, the starting point never is the model oftypes but the alulus: in partiular one always starts from the alulus and its4

values, and tries to slightly modify these so that the values outline some modelthat an then be formalised. This is what we also do here: while we followthe �ve-steps proesses above to give, in the rest of this setion, an overview ofthe approah, in Setion 3 we introdue a λ-alulus with overloaded funtionsand dynami dispath, in Setion 4 we introdue a model to semantially de-�ne a subtyping relation inspired from the previous alulus, and in Setion 5disuss the main results, namely, the soundness of the typing relation, the or-respondene between the values of Setion 3 and the model of Setion 4, andthe deidability of the various relations.2.2 Advantages of semanti subtypingThe semanti approah is more tehnial and onstraining, and this may explainwhy it has obtained less attention than syntati subtyping. However it presentsseveral advantages:1. When type onstrutors have a natural interpretation in the model, thesubtyping relation is by de�nition omplete with respet to its intuitiveinterpretation as set inlusion: when t ≤ s does not hold, it is possibleto exhibit an element of the model whih is in the interpretation of t andnot of s, even in presene of arrow types (this property is used in CDueto return informative error messages to the programmer); in the syntatiapproah one an just say that the formal system does not prove t ≤ s, andthere may be no lear riterion to assert that some meaningful additionalrules would not allow the system to prove it. This argument is partiularlyimportant with a rih type algebra, where type onstrutors interat innon trivial ways; for instane, when onsidering arrow, intersetion andunion types, one must take into aount �i.e., introdue rules for� manydistributivity relations suh as, for instane2, (t1 ∨ t2) → s ≃ (t1 →
s) ∧ (t2 → s). Forgetting any of these rules yields a type system that,although sound, does not math (that is, it is not omplete with respetto) the intuitive semantis of types.2. In the syntati approah deriving a subtyping algorithm requires a strongintuition of the relation de�ned by the formal system, while in the semantiapproah it is a simple matter of �arithmeti�: it simply su�es to use theinterpretation of types and well-know Boolean algebra laws to deomposesubtyping on simpler types (as we show in Setion 6.2). Furthermore, asmost of the formal e�ort is done with the semanti de�nition of subtyping,studying variations of the algorithm (e.g., optimisations or di�erent rules)turns out to be muh simpler (this is ommon pratise in database theorywhere, for example, optimisations are derived diretly from the algebraimodel of data).3. While the syntati approah requires tedious and error-prone proofs offormal properties, in the semanti approah many of them ome for free:2We write s ≃ t as a shorthand for s ≤ t and s ≥ t.5

for instane, the transitivity of the subtyping relation is trivial (as set-ontainment is transitive), and this makes proofs suh as ut eliminationor transitivity admissibility pointless. Other examples of properties thatome easily from a semanti de�nition are the variane of type onstru-tors, and distributivity laws (e.g. t1×××(t2∨∨∨t3) ≃ (t1×××t2)∨∨∨(t1×××t3)).Although these properties look quite appealing, the tehnial details of the ap-proah hinder its development: in the semanti approah, one must be very are-ful not to introdue any irularity in the de�nitions. For instane, if the typesystem depends on the subtyping relation�as this is generally the ase�oneannot use it to de�ne the semanti interpretation whih must thus be untyped;also, usually the model orresponds to an untyped denotational semantis, andtypes are interpreted as ideals and this preludes the set-theoreti interpretationof negative types (as the omplement of ideals is not an ideal). For these reasonsall the semanti approahes to subtyping previous to our work presented somelimitations: no higher-order funtions, no omplement types, and so on. Themain ontribution of our work is the development of a formal framework thatoveromes these limitations.Exursus. The reader should not onfuse our researh with thelong-standing researh on set-theoreti models of subtyping. In thatase one starts from a syntatially (i.e. axiomatially) de�ned sub-typing relation and seeks a set-theoreti model where this relationis interpreted as inlusion. Our approah is the opposite: instead ofstarting from a subtyping relation to arrive to a model, we start byde�ning a model in order to arrive to a subtyping relation. Thus inour approah types have a strong substane even before introduingthe typing relation.2.3 A model of typesTo de�ne semanti subtyping we need a set-theoreti model of types. Thesoure of most of (if not all) the problems omes from the fat that this modelis usually de�ned by starting from a model of the terms of the language. That is,we onsider a denotational interpretation funtion that maps eah term of thelanguage into an element of a semanti domain and we use this interpretationto de�ne the interpretation of the types (typially�but not neessary, e.g. PERmodels [2℄�as the image of the interpretation of all terms of a given type). If weonsider funtional types then in order to interpret funtional term appliationwe have to interpret the duality of funtions as terms and as funtions on terms.This yields the need to solve ompliated reursive domain equations that hardlyombines with a set-theoreti interpretation of types, whene the introdutionof restritions in the de�nition of semanti subtyping (e.g. no funtion types, nonegation types, et . . .).Note however that in order to de�ne semanti subtyping all we need is aset-theoreti model of types . The onstrution works even if we do not have a6

model of terms. To push it to the extreme, in order to de�ne subtyping we donot need terms at all, sine we ould imagine to de�ne type inlusion for typesindependently from the language we want to use these types for. More plainly,the de�nition of a semanti subtyping relation needs neither an interpretation forappliations (that is an appliative model) nor, thus, the solution of ompliateddomain equations.The key idea to generalise semanti subtyping is then to dissoiate the modelof types from the model of terms and de�ne the former independently from thelatter. In other words, the interpretation of types must not foredly be basedon, or related to an interpretation of terms (and atually in the some onreteexamples we will give we interpret types in strutures that annot be used for aninterpretation of terms), and as a matter of fat we do not need an interpretationof terms even to exist for the semanti subtyping onstrution to go through3.2.4 Types as sets of valuesNevertheless, to ensure type safety (i.e. well-typed programs annot go wrong)the meaning of types has to be somewhat orrelated with the language. Alassial solution, that belongs to the types folklore4 is to interpret types assets of values , that is, as the results of well-typed omputations in the language.More formally, the values of a typed language are all the terms that are well-typed, losed, and in normal form. So the idea is that in order to provide aninterpretation of types we do not need an interpretation of all terms of thelanguage (or of just the well-typed ones): the interpretation of the values of thelanguage su�es to de�ne an interpretation of types. This is muh an easiertask: sine a losed appliation usually denotes a redex, then by restriting tothe sole values we avoid the need to interpret appliation and, therefore, alsothe need to solve ompliated domain equations. This is the solution adoptedby XDue, where values are XML douments and types are sets of douments(more preisely, regular languages of douments).But if we onsider a language with arrow types, that is a language withhigher order funtions, then the appliations ome bak again: arrow typesmust be interpreted as sets of funtion values, that is, as sets of well-typedlosed lambda abstrations, and appliations may our in the body of theseabstrations. Here is where XDue stops and it is the reason why it does notinlude arrow types.3As Pierre-Louis Curien suggested, the onstrution we propose is a pied de nez to (it oksa snook at) denotational semantis, as it uses a semanti onstrution to de�ne a languagefor whih, possibly, no denotational semantis is known.4A survey on the �Types� mailing list traes this solution bak to Bertrand Russell andAlfred Whitehead's Prinipia Mathematia. Closer to our interests it seems that the ideaindependently appeared in the late sixties early seventies and later bak again in seminal worksby Roger Hindley, Per Martin-Löf, Ed Lowry, John Reynolds, Niklaus Wirth and probablyothers (many thanks to the many �typers� who answered to our survey).
7

2.5 A irularity to breakIntroduing arrow types is then problemati beause it slips appliations bakagain in the interpretation of types. However this does not mean that we needa semanti interpretation for appliation, it just implies that we must de�nehow appliation is typed . Indeed, funtional values are well-typed lambda ab-strations, so to interpret funtional types we must be able to type lambdaabstrations and in partiular to type the appliations that our in their body.Now this is not an easy task in our ontext: in the absene of higher orderfuntions the set of values of type onstrutors suh as produts or reords anbe indutively de�ned from basi types without resorting to any typing rela-tion (this is why the XDue approah works smoothly). With the arrow typeonstrutor, instead, this an be done only by using a typing relation, and thisyields to the irularity we hinted at in the introdution and that is shown inFigure 1: in order to de�ne the subtyping relation we need an interpretation ofthe types of the language; for this we have to de�ne whih are the values of anarrow type; this needs that we de�ne the typing relation for appliations, whihin turns needs the de�nition of the subtyping relation.
Typing
relationvalues

Well−typed

Subtyping
relation

Figure 1: Cirularity
Thus, if we want to de�ne the semanti subtyping ofarrow types we must �nd a way the avoid this iru-larity. The simplest way to avoid it is to break it, andthe development we did so far learly suggests whereto break it. We always said that to de�ne (semanti)subtyping we must have a model of types; it is alsolear that the typing relation must use subtyping;on the ontrary it is not stritly neessary for ourmodel to be based on the interpretation of values,this is just onvenient as it ties the types with thelanguage the types are intended for. This is there-fore the weakest link and we an break it. So theidea is to start from a model (of the types) de�nedindependently (but not too muh) from the languagethe types are intended for (and therefore independently from its values), andthen from that de�ne the rest: subtyping, typing, set of values. We will thenshow how to relate the initial model to the obtained language and reover theinitial �types as set of values� interpretation: namely, we will �lose the irle�.2.6 Set-theoreti modelsLet us then show more in details how we shall proeed. We do not need to de�nea partiular language, the de�nition of types will su�e. Here, we assume thattypes are de�ned by the following syntax:

t ::= 0 | 1 | t→→→t | t×××t | ¬¬¬t | t∨∨∨t | t∧∧∧twhere 0 and 1 respetively orrespond to the empty and universal types (theseare sometimes denoted by the pair ⊥, ⊤ or Bottom, Top). The formal de�ni-8

tion of the type algebra, whih inludes reursive types and basi types, will begiven in Setion 3.1.The seond step is to de�ne preisely what a set-theoreti model for thesetypes is. As Hindley and Longo [17℄ give some general onditions that har-aterise models of λ-alulus, so here we want to give the onditions that aninterpretation funtion must satisfy in order to haraterise a set-theoreti modelof our types. So let T be the set of types, D some set, and J_K an interpretationfuntion from T to P(D). The onditions that J_K must satisfy to de�ne aset-theoreti model are mostly straightforward, namely:1. Jt1∨∨∨t2K = Jt1K ∪ Jt2K2. Jt1∧∧∧t2K = Jt1K ∩ Jt2K3. J¬¬¬tK = D\JtK4. J1K = D5. J0K = ∅6. Jt×××sK = JtK × JsK7∗. Jt→→→sK = ???The �rst six onditions onvey the intuition that our model is set theoreti:so the intersetion of types must be interpreted as set intersetion, the unionof types as set-theoreti union and so on (the sixth ondition requires somelosure properties on D but we prefer not to enter in suh a level of detail atthis point of our presentation). But the de�nition is not omplete yet as westill have to establish the seventh ondition (highlighted by a ∗) that onstrainsthe interpretation of arrow types. This ondition is more ompliated. Again itmust onvey the intuition that the interpretation is set theoreti, but while the�rst six onditions are language independent, this onditions strongly dependson the language and in partiular on the kind of funtions we want to implementin our language. We give detailed examples about this in [14℄. The set theoretiintuition we have of funtion spaes is that a funtion is of type t→→→s if wheneverapplied to a value of type t it returns a result of type s. Intuitively, if weinterpret funtions as binary relations on D, then Jt→→→sK is the set of binaryrelations in whih if the �rst projetion is in (the interpretation of) t then theseond projetion is in s, namely {f ⊆ D2 | ∀(d1, d2) ∈ f. d1 ∈ JtK ⇒ d2 ∈ JsK }.Note that this set an also be written P(JtK × JsK), where the overline denotesset omplement. If the language is expressive enough, we an do as if everybinary relation in this set was an element of Jt→→→sK; thus, we would like to saythat the seventh ondition is:
Jt→→→sK = P(JtK × JsK) (2)But this is ompletely meaningless. First, tehnially, this would imply that

P(D2) ⊆ D, whih is impossible for ardinality reasons. Also, remember that9

we want eventually to re-interpret types as sets of values of the language, andfuntions in the language are not binary relations (they are syntati objets).However what really matters is not the exat mathematial nature of the ele-ments of D, but only the relations they reate between types. The idea then isto do as if the above ondition held.Sine this point is entral to our model, let us explain it di�erently. Reallthat the only reason why we want to aurately state what set-theoreti modelof types is, is to preisely de�ne the subtyping relation for syntati types. Inother words, we do not de�ne an interpretation of types in order to formallyand mathematially state what the syntati types mean but, more simply, wede�ne it in order to state how they are related. So, even if we would like to saythat a type t→→→s must be interpreted in the model as P(JtK × JsK) as stated by(2), for what it onerns the goal we are aiming at, it is enough to require thata model must interpret funtional types so as the indued subtyping relation isthe same as the one the ondition (2) would indue, that is:
Jt1→→→s1K ⊆ Jt2→→→s2K ⇐⇒ P(Jt1K × Js1K) ⊆ P(Jt2K × Js2K)and similarly for any Boolean ombination of arrow types.Formally, we assoiate (see De�nition 4 in Setion 4.2) to J_K an extensionalinterpretation E(_) that behaves as J_K exept for arrow types, for whih weuse the ondition above as de�nition:E(t→→→s) = P(JtK × JsK)Note that we use J_K in the right-hand side of this equation, that is, we onlyre-interpret top-level arrow types. Now we an express the fat that J_K behaves(from the point of view of subtyping) as if funtions were binary relations. Thisis obtained by writing the missing seventh ondition, not in the form of 7∗, butas follows:7. JtK = ∅ ⇐⇒ E(t) = ∅or, equivalently, Jt1K ⊆ Jt2K ⇐⇒ E(t1) ⊆ E(t2).5To put it otherwise, if we wanted an interpretation J_K of the types thatwere faithful with respet to the semantis of the language, then we shouldrequire for all t that JtK = E(t). But for ardinality reasons this is impossible ina set-theoreti framework. However we do not need suh a strong onstraint onthe de�nition of J_K sine all we ask to J_K is to haraterise the ontainmentof types, and to that end it su�es to haraterise the zeros of J_K, sine
s ≤ t ⇐⇒ JsK ⊆ JtK ⇐⇒ JsK ∩ JtK = ∅ ⇐⇒ Js∧∧∧¬¬¬tK = ∅Therefore, instead of asking that J_K and E(_) oinide on all points, we requirea weaker onstraint, namely that they have the same zeros:

JtK = ∅ ⇐⇒ E(t) = ∅5Indeed, Jt1K ⊆ Jt2K ⇐⇒ Jt1K \ Jt2K = ∅ ⇐⇒ Jt1∧∧∧¬¬¬t2K = ∅ ⇐⇒ E(t1∧∧∧¬¬¬t2) = ∅ ⇐⇒E(t1) \ E(t2) = ∅ ⇐⇒ E(t1) ⊆ E(t2). 10

This is the essene of our de�nition of models of the type algebra (De�nition 5in Setion 4.2).We said that the above seventh ondition (atually, the de�nition of theextensional interpretation) depends on the language the type system is intendedfor. Previous work [14℄ shows di�erent variations of this onditions to mathdi�erent sets of de�nable transformations. However, we an already see thatthe ondition above aounts for languages in whih funtions possibly are1. Non-deterministi: sine the ondition does not prevent the interpretationof a funtion spae to ontain a relation with two pairs (d, d1) and (d, d2)with d1 6= d2.2. Non-terminating : sine the ondition does not fore a relation in Jt→→→sKto have as �rst projetion the whole JtK. A di�erent reason for this is thatevery arrow type is inhabited (note indeed that the empty set belongs tothe interpretation of every arrow type), so in partiular are all the typesof the form t→→→0; now, all the funtions in suh types must be always non-terminating on their domain (if they returned a value this would inhabit0).3. Overloaded : this is subtler than the two previous ases as it is a onse-quene of the fat that ondition does not fore J(t1∨∨∨t2)→→→(s1∧∧∧s2)K to beequal to J(t1→→→s1)∧∧∧(t2→→→s2)K, but just the former to be inluded in thelatter. Imagine indeed that the language at issue does not allow the pro-grammer to de�ne overloaded funtions. So it may be not possible tode�ne funtions that distinguish the types of their argument, and in par-tiular to have a funtion that when applied to an argument of type t1returns a result in s1 while returns a (possibly di�erent) s2 result for t2arguments. Therefore the only funtions in (t1→→→s1)∧∧∧(t2→→→s2) are those in
(t1∨∨∨t2)→→→(s1∧∧∧s2) (this point is disussed thoroughly in Setion 4.5 of ourrelated survey [5℄).2.7 Bootstrapping the de�nitionNow that we have de�ned what a set-theoreti model for our types is, we anhoose a partiular one that we use to de�ne the rest of the system. Supposethat there exists at least one pair (D, JK) that satis�es the onditions of set-theoreti model, and hoose any of them, no matter the one. Let us all thismodel the bootstrap model . This bootstrap model de�nes a partiular subtypingrelation on our set of types T :

s ≤ t ⇐⇒ JsK ⊆ JtKWe an then pik any language that uses the types in T (and whose semantisonforms with the intuition underlying the model ondition on funtion types),de�ne its typing rules and use in the subsumption rule the subtyping relation
≤ we have just de�ned. We write Γ ⊢ e : t for the typing judgement of the11

language. In this paper, we will onsider a λ-alulus with overloaded funtionsand dynami type-dispath. See Setion 3.1 for the syntax of the alulus,Setion 3.3 for its type system and Setion 3.2 for its semantis (whih dependson the type system beause of the dynami type-dispath onstrution).2.8 Closing the irleIn order to obtain type-safety for our alulus, we want the type system to enjoyproperties suh as subjet redution (Theorem 8) and progress (Theorem 9)stated in Setion 5.1. Beause of the subsumption rule in the type system, thisan only be obtained if our de�nition of set-theoreti models is meaningful withrespet to the semantis of our alulus. This is a �rst sanity-hek for ournotion of model.But there is another important question: what are the relations betweenthe bootstrap model and the alulus? And in partiular, what is the relationbetween the bootstrap model and the values of the alulus? Have we lost allthe intuition underlying the �types as sets of values� interpretation?To answer these questions, we onsider a new interpretation of types as setsof values in the alulus:
JtK

V
= {v | ⊢ v : t}A seond sanity-hek for our notion of model is then to require that thisinterpretation J_K

V
is a model. If this is the ase, we an use it to de�ne a newsubtyping relation on T :

s ≤V t ⇐⇒ JsK
V

⊆ JtK
VWe ould imagine to start again the proess, that is to use this subtyping relationin the subsumption rule of our language, and use the resulting sets of values tode�ne yet another subtyping relation and so on. But this is not neessary asthe proess has already onverged. This is stated by one of the entral resultsof our work (Theorem 12 in Setion 5.2):

s ≤ t ⇐⇒ s ≤V tthat is, the subtyping relation indued by the bootstrap model already de�nesthe subtyping relation of the �types as sets of values� model of the resultingalulus. We have losed the irle we broke.3 The alulusIn this setion, we de�ne formally the syntax of types and expression in ouralulus (Setion 3.1), the semantis (Setion 3.2) and the type system (Se-tion 3.3). The semantis atually depends on the type-system, whih in turndepends on a subtyping relation to be de�ned (next setion). As a onsequene,we onsider here the subtyping relation as a parameter of the de�nitions of thetype system and of the semantis. 12

3.1 SyntaxExpressions To de�ne the alulus, we hoose a set of onstants C rangedby the meta-variable c (they will be elements of basi types).The terms of the alulus are alled expressions and are de�ned by the fol-lowing grammar.
e ::= c onstant

| (e, e) pair
| µf(t→→→t; . . . ; t→→→t).λx.e abstration
| x variable
| e e appliation
| (x = e ∈ t ? e|e) dynami type dispath
| πi(e) projetion (i ∈ {1, 2})
| rnd(t) non-deterministi hoiewhere t ranges over types, de�ned in the next paragraph.We write E for the set of expressions. The syntax for the alulus deservesa few omments. We introdue an expliit onstrution for reursive funtions,whih ombines λ-abstration and a �x-point operator. The reason is that wewant to express non-terminating expressions, but still restriting reursion onlyto funtions. The identi�ers f and x at as binders in the body of the funtion.The λ-abstration omes with an non-empty sequene of funtion types (weall it the interfae of the funtion): if more than one type is given, we are inpresene of an overloaded funtion.The non-deterministi hoie onstrution rnd(t) piks an arbitrary expres-sion of type t. We introdued this operator in the alulus in order to demon-strate subtle typing issues oming from non-determinism.Types Types are essentially those introdued in Setion 2.6 (modulo booleanequivalene) to whih we add basi types (the types of onstant expressions).In order to simplify the presentation of reursive types, we are going to onsiderpotentially in�nite regular terms produed by the following signature:

t ::= b basi type
| t×××t produt type
| t→→→t funtion type
| t∨∨∨t union type
| ¬¬¬t omplement type
| 0 empty typeBy regular, we mean that terms have only but a �nite number of di�erentsub-terms. The meta-variable b ranges over a �xed set of basi types. We write

t1\\\t2 as an abbreviation for t1∧∧∧¬¬¬t2, t1∧∧∧t2 as an abbrevation for ¬¬¬(¬¬¬t1 ∨ ¬¬¬t2),and 1 as an abbreviation for ¬¬¬0. We will all atom the immediate appliationsof type onstrutors: basi types, produt types, funtion types (these are the�atoms� for boolean ombinators). Sine we want types to denote sets, we need13

to impose some onstraints to avoid ill-formed types suh as a solution to t = t∨∨∨t(whih does not arry any information about the set denoted by the type) or to
t = ¬¬¬t (whih annot represent any set). Namely, we say that a term is a typeif it doesn't ontain any in�nite branh without an atom. Let's all T the setof types.The onditions above says that the binary relation ⊲ ⊆ T 2 de�ned by t1∨∨∨t2⊲
ti, ¬¬¬t ⊲ t in noetherian. This gives an indution priniple on T that we will usewithout any further expliit referene to the relation ⊲.3.2 SemantisBeause of the dynami type dispath, the semantis of the alulus depends onits type system. For now, we simply assume that a relation between expressionsand types, written ⊢ e : t is given. It will be de�ned in the next setion.De�nition 1 An expression e is a value if it is losed (no free variable), well-typed (⊢ e : t for some type t), and produed by the following grammar:

v ::= c | (v, v) | µf(. . .).λx.eWe write V for the set of all values.We de�ne a small-step operational all-by-value semantis; for the alulus.There are four basi redution rules (we write e[x1 := e1; x2 := e2; . . .] for theexpression obtained from e by a apture-avoiding substitution of xi by ei):
ev ; e[f := e′; x := v] if e = µf(. . .).λx.e′

(x = v ∈ t ? e1|e2) ;

{

e1[x := v] if ⊢ v : t
e2[x := v] if ⊢ v : ¬¬¬t

πi(v1, v2) ; virnd(t) ; e if ⊢ e : tThe relation ; is further extended by an indutive ontext rule:
C[e] ; C[e′] if e ; e′where the notion of (immediate) ontext is de�ned by:

C[] ::= ([], e) | (e, [])
| []e | e[]
| (x = [] ∈ t ? e|e) | (x = e ∈ t ? []|e) | (x = e ∈ t ? e|[])
| πi([])
| µf(. . .).λx.[]As usual, a type safety result will be obtained by a ombination of twolemmas: subjet redution (or type preservation) and progress (losed and well-typed expressions whih are not values an be redued).The redution rule for appliation requires the argument to be a value(all-by-value). In order to understand why, let us onsider the appliation14

(µf(t → t×××t; s → s×××s).λx.(x, x))(rnd(t∨∨∨s)). The type system will assign tothe abstration the type (t→→→t×××t)∧∧∧(s→→→s×××s). A set-theoreti reasoning showsthat this type is a subtype of (t∨∨∨s) → ((t×××t)∨∨∨(s×××s)). The type system alsoassigns to the argument rnd(t∨∨∨s) the type t∨∨∨s. It will thus also assign thetype (t×××t)∨∨∨(s×××s) to the appliation. If the semantis permits to redue thisappliation, we would get as a result the expression (rnd(t∨∨∨s), rnd(t∨∨∨s)) whosemost preise stati type is (t∨∨∨s)×××(t∨∨∨s). Clearly, this type is (in general) a stritsupertype of (t×××t)∨∨∨(s×××s). So, if the semantis does not fore the argument tobe a value in order to redue an appliation, we ould not obtain the subjetredution lemma.Similarly, the redution rule for projetion requires its argument to be avalue. To understand why, onsider the expression e = π1(e1, e2) where e1 isan expression of type e1 and e2 is a looping expression of type 0 (e.g. (µf(1 →0).λx.fx)c). The type system will assign the type t1×××0 to e, but in our system
t1×××0 is an empty type beause, intuitively, a set-theoreti Cartesian produtwith an empty omponent is itself empty. If e ould be redued to e1, it wouldbe a violation of type preservation.The same argument applies to the dynami type dispath. If we allowed toredue (x = e ∈ t ? e1|e2) to e1[x := e] when ⊢ e : t, even if e is not a value,we ould break type preservation. Consider for instane the ase where ⊢ e : 0.In this ase, the type system does not hek anything about the branhes e1and e2 (the reason for this is explained in details later on) and so e1 ould beill-typed. Note that when e is a value, then the dynami type dispath analways be redued. Indeed, beause our type onnetives will be interpreted ina set-theoreti way, we always have ⊢ v : t or ⊢ v : ¬¬¬t (for any value v and anytype t).3.3 Type systemThe semantis we just introdued depends on the typing judgment Γ ⊢ e : twhere Γ is a �nite mapping from variables to types (we write ⊢ e : t when Γis empty). This judgment, in turn, depends on a subtyping relation ≤ betweentypes that we are going to introdue later on. For now, we assume it is aparameter of the type system.For eah onstant c, we assume given a basi type bc. The rules are:

Γ ⊢ e : t1 t1 ≤ t2
Γ ⊢ e : t2

(subsum)
Γ ⊢ c : bc

(const)
Γ ⊢ x : Γ(x)

(var)

Γ ⊢ e : t1×××t2
Γ ⊢ πi(e) : ti

(proj)
Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t1

Γ ⊢ e1e2 : t2
(appl)

t =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j) 6≃ 0
∀i = 1..n.Γ, (f : t), (x : ti) ⊢ e : si

Γ ⊢ µf(t1→→→s1; . . . ; tn→→→sn).λx.e : t
(abstr)15

Γ ⊢ e : t0

{

t0 6≤ ¬¬¬t ⇒ Γ, (x : t0∧∧∧t) ⊢ e1 : s
t0 6≤ t ⇒ Γ, (x : t0\\\t) ⊢ e2 : s

Γ ⊢ (x = e ∈ t ? e1|e2) : s
(case)The rule (subsum) auses the type system to depend on the subtyping re-lation to be de�ned. The rules (const), (pair), (var), (proj), (rnd), and (appl)are standard or straightforward.The rule (abstr) is a little bit triky. Eah arrow type ti→→→si in the funtioninterfae is interpreted as a onstraint to be heked. The body of the abstra-tion is thus type-heked one for eah suh funtion. When onsidering thetype ti→→→si, the variable x is assumed to have type ti and the body is hekedto have type si. Also, the variable f is assumed to have type t, whih is alsothe type given to the whole funtion. Quite intuitively, this type is obtainedby taking the intersetion of all the types ti→→→si. But we also add to this in-tersetion any �nite number of omplement of arrow types, provided the type tdoes not beome empty. This might sound surprising, but the reason is atuallysimple: we want types to be interpreted as sets of values in suh a way thatboolean onnetives behave as their set-theoreti ounterpart. In partiular, theunion of t and ¬¬¬t must always be equivalent to 1, that is, we need to have thefollowing property: ∀v.∀t.(⊢ v : t) or (⊢ v : ¬¬¬t). In partiular, sine a (losedand well-typed) abstration is value, it must have type (t→→→s) or type ¬¬¬(t→→→s)for any hoie of t and s. If (t→→→s) is a supertype of the intersetion ∧ ti→→→si,the abstration is known, thanks to the subsumption rule, to have type (t→→→s).Otherwise, we need to provide a way to prove it has type ¬¬¬(t→→→s). This is whywe introdue suh omplements of arrow types in the rule (abstr).The rule (case) is easier to read. First, we need to �nd a type t0 for theexpression whose result will be dynamially type-heked. If this type has anon-empty intersetion with t (t0 6≤ ¬¬¬t), then the �rst branh might be used.In this ase, in order for the whole expression to have type s, we need to hekthat e1 has also type s, assuming that x has type t∧∧∧t0. Indeed, at runtime, thevariable x will be bound to a value resulting from the evaluation of e0. Beauseof subjet redution, this value is neessarily of type t0. But in order to type-hek e1, we an also assume that the value has type t. If t0 ≤ ¬¬¬t, then the�rst branh annot be used, and we don't need to type-hek e1. Similarly for

e2, replaing t with ¬¬¬t. The ability to ignore e1 and/or e2 when omputing thetype for (e ∈ t ? e1 | e2) is important to type-hek overloaded funtion. As anexample, onsider the abstration µf(b1→→→b1; b2→→→b2).λx.(x ∈ b1 ? c1 | c2) where
b1 and b2 are two non-interseting basi types and c1 (resp. c2) is a onstant oftype b1 (resp. b2). The rule (abstr), when it onsiders the arrow type b1→→→b1,heks that the body has type b1 assuming that x has type b1. Clearly, thetyping rule for the dynami type dispath must disard in this ase the type ofthe seond branh.As an aside note that the use of the ex falso quodlibet rule yields a simpler16

formulation of the ase rule:
Γ, x : 0 ⊢ e : t

(efq)
Γ ⊢ e : t0 Γ, (x : t0∧∧∧t) ⊢ e1 : s Γ, (x : t0\\\t) ⊢ e2 : s

Γ ⊢ (x = e ∈ t ? e1|e2) : s
(case)The reason why we preferred the previous formulation is that it permits astronger and simpler substitution lemma. A seond reason to prefer the previ-ous formulation is that simpler (ase) rule above does not easily extend to thefull version of CDue with general pattern mathing, sine it would need speialtreatment for patterns without any free variable (sine these would not produeany x : 0 hypothesis in the environment).4 SubtypingAt this point, we have given the alulus a semantis whih depends on its typesystem, whih, in turn, depends on a subtyping relation still to be de�ned.The last missing step to omplete the de�nition of our system is the sub-typing relation. This will be de�ned by formalizing the ideas we outlined inSetions 2.6-2.8.4.1 Set-theoreti interpretations of typesDe�nition 2 A set-theoreti interpretation of T is given by a set D and a fun-tion J_K : T → P(D) suh that, for any types t1, t2, t:

• Jt1∨∨∨t2K = Jt1K ∪ Jt2K

• J¬¬¬tK = D\JtK

• J0K = ∅(A onsequene of the onditions is that Jt1∧∧∧t2K = Jt1K ∩ Jt2K, Jt1\\\t2K =
Jt1K\Jt2K, and J1K = D.)This de�nition does not say anything about the interpretation of atoms.Atually, using an indution on types, we see that set-theoreti interpretationswith domain D orrespond univoally to funtions from atoms to P(D).A set-theoreti interpretation J_K : T → P(D) indues a binary relation
≤JK⊆ T 2 de�ned by:

t ≤JK s ⇐⇒ JtK ⊆ JsKThis relation atually only depends on the set of empty types. Indeed, wehave: Jt1K ⊆ Jt2K ⇐⇒ Jt1K ∩ (D\Jt2K) = ∅ ⇐⇒ Jt1∧∧∧¬¬¬t2K = ∅. We alsoget properties of the relation ≤JK � for free �, suh as its transitivity, or themonotoniity of the ∨∨∨ and ∧∧∧ onstrutors, and so on.
17

4.2 Models of typesWe are going to de�ne a notion of model of the type algebra. Intuitively, a modelis a set-theoreti interpretation suh that type onstrutors are interpreted insuh as way that the indued relation ≤JK apture their essene (in the typesystem of the alulus), at least as long as subtyping is onerned.As we explained in Setion 2.6, the way to formalize it onsists in assoiatingto the interpretation J_K another interpretation E(_), alled extensional, andthen to require, for J_K to be a model, that J_K and E(_) behave the same forwhat onerns subtyping (that is: JtK ⊆ JsK ⇐⇒ E(t) ⊆ E(s) or, equivalently,
JtK = ∅ ⇐⇒ E(t) = ∅).For any basi type b, we assume given a set of onstants BJbK ⊆ C whoseelements are alled onstants of type b. Note that for two basi types b1, b2, thesets BJbiK an have a non-empty intersetion. For any onstant c, we assumethat the type bc is a singleton: BJbcK = {c}.A produt type t1×××t2 will of ourse be interpreted extensionally as the Carte-sian produt Jt1K×××Jt2K.Things are more ompliated for a funtion type t1→→→t2. Its extensionalinterpretation should be the set of set-theoreti funtions (that is, funtionalgraphs) f suh that ∀d. d ∈ Jt1K ⇒ f(d) ∈ Jt2K. However, the alulus we havein mind an express non-terminating and/or non-deterministi funtions as well.This suggests to onsider arbitrary binary relations instead of just funtionalgraphs. Also, the alulus has a notion of type error: it is not possible toapply an arbitrary funtion to an arbitrary value. We are going to take Ωas a speial element to denote this type error. Following this disussion, weinterpret the funtion type t1→→→t2 as the set of binary relations f ⊆ D × DΩ(where DΩ = D + {Ω}) suh that ∀(d, d′) ∈ f. d ∈ Jt1K ⇒ d′ ∈ Jt2K.De�nition 3 If D is a set and X, Y are subsets of D, we write DΩ for D+{Ω}and de�ne X → Y as:

X → Y = {f ⊆ D × DΩ | ∀(d, d′) ∈ f. d ∈ X ⇒ d′ ∈ Y }Note that if we replae DΩ with D in this de�nition, then X → Y is always asubset of D → D. As we will see shortly, this would imply that any arrow typeis a subtype of 1→→→1. Thanks to the subsumption rule, the appliation of anywell-typed funtion to any well-typed argument would then be itself well-typed.Clearly, this would break type-safety of the alulus. With De�nition 3, instead,we have X → Y ⊆ D → D if and only if D = X .We an now give the formal de�nition of the extensional interpretation as-soiated to a set-theoreti interpretation.De�nition 4 Let J_K : T → P(D) be a set-theoreti interpretation. We de�neits assoiated extensional interpretation as the unique set-theoreti interpretationE(_) : T → P(ED) (where ED = C + D2 + P(D × DΩ)) suh that:E(b) = BJbK ⊆ CE(t1×××t2) = Jt1K × Jt2K ⊆ D2E(t1→→→t2) = Jt1K → Jt2K ⊆ P(D × DΩ)18

Finally, we an formalize the fat that a set-theoreti interpretation induesthe same subtyping relation as if the type onstrutors were interpreted in anextensional way.De�nition 5 A set-theoreti interpretation J_K : T → P(D) is a model if itindues the same subtyping relation as its assoiated extensional interpretation:
∀t1, t2 ∈ T . Jt1K ⊆ Jt2K ⇐⇒ E(t1) ⊆ E(t2)Thanks to a remark in Setion 4.1, the ondition for a set-theoreti interpreta-tion to be a model an be redued to:

∀t ∈ T . JtK = ∅ ⇐⇒ E(t) = ∅At this point, we an derive many properties about ≤ whih diretly followfrom the fat that it is indued by a model. For instane, the o-/ontra-varianeof the arrow type onstrutor, and equivalenes suh as (t1→→→s)∧∧∧(t2→→→s) ≃
(t1∨∨∨t2)→→→s, an be immediately derived from the de�nition of the extensionalinterpretation. The meta-theoreti study of the system relies in a ruial wayon many of suh properties. With a more axiomati approah for de�ning thesubtyping relation, e.g. by a system of indutive or oindutive rules, we wouldprobably need muh more work to establish these properties, and we would nothave the same level of trust that we did not forget any rule.4.3 Well-foundednessThe notion of model aptures the intended loal behavior of type onstrutorswith respet to subtyping. However, it fails to apture a global property of thealulus, namely that values are �nite binary trees (where leaves are eitheronstants or abstrations). For instane, let us onsider the reursive type
t = t×××t. Intuitively, a value v has this type if and only if it is a pair (v1, v2) where
v1 and v2 also have type t. To build suh a value, we would need to onsider anin�nite tree, whih is ruled out. As a onsequene, the type t ontains no value.We will introdue a new riterion to apture this property of �nite deom-position of pairs.De�nition 6 A set-theoreti interpretation J_K : T → P(D) is strutural if:

• D2 ⊆ D

• for any types t1,t2: Jt1×××t2K = Jt1K × Jt2K

• The binary relation on D indued by (d1, d2) ⊲ di is noetherian.De�nition 7 A model J_K : T → P(D) is well-founded if it indues the samesubtyping relation as a strutural set-theoreti interpretation.19

5 Main resultsLet us �x an arbitrarymodel J_K : T → P(D), whih we all the bootstrap model.It indues a subtyping relation, whih we simply write ≤. In turn, this subtyp-ing relation de�nes a typing judgment Γ ⊢ e : t for the alulus and thus also anotion of value and a redution relation e ; e′. We an now state four groups oftheoretial results about our system. This �rst group (Setion 5.1) expresses thefat that our notion of models implies that the type system and the semantisare mutually oherent. The seond group (Setion 5.2) justi�es our approahfor de�ning the subtyping relation with a detour through the notion of models:indeed, we an in �ne re-interpret types as sets of values, and this reates a newmodel equivalent to the bootstrap model (if it is well-founded). The third groupof results (Setion 5.3) shows that the notion of model is not void, by express-ing the existene of (several di�erent) models satisfying the various onditions.Finally, we fous (Setion 5.4) on the e�etiveness of the subtyping and typingrelations and devise simple subtyping algorithms.5.1 Type soundnessAs announed earlier, we have the two lassial lemmas whih entail type sound-ness.Theorem 8 (Subjet redution) Let e be an expression and t a type. If
(Γ ⊢ e : t) and (e ; e′), then (Γ ⊢ e′ : t).Theorem 9 (Progress) Let e be a well-typed losed expression. If e is not avalue, then there exists an expression e′ suh that e ; e′.It is worth notiing that the proof of Theorem 9 (given in Setion 6.6) doesnot use redutions under abstrations or inside the branhes of dynami typedispath, thus the result holds true also in that ase. Of ourse, subjet re-dution holds also if these redutions are disallowed. This means that a weakredution strategy (as implemented typially in programming languages) enjoystype soundness, too. In the setting of programming languages, proving the sub-jet redution property also for a semantis that inludes strong redution rulesis useful beause these rules orrespond to possible ompile-time optimizations.Theorem 10 For every types t and t1 suh that t ≤ t1→→→1, there exists a type
t2 suh that, for every value v:

⊢ v : t2 ⇐⇒ ∃vf , vx. (vfvx
⋆
; v) ∧ (⊢ vf : t) ∧ (⊢ vx : t1)This type is the smallest solution to the equation t ≤ t1→→→s.The type s in the statement of the theorem above represents exatly all thepossible results (i.e. is the set of all values that) we may get when applyinga losed expression e1 of type t1 to a losed expression e2 of type t2. Sine

t1 ≤ t2→→→s, the type system allows us to derive type s for the appliation e1e2.In other words, the typing rule (appl) is loally exat: it does not introdue anynew approximation to those already made when typing its arguments.20

5.2 Closing the loopThe type system naturally de�nes a new interpretation of types as sets of values:
J_K

V
: T → P(V), t 7→ {v | ⊢ v : t}It turns out that this interpretation satis�es the onditions of De�nitions 2and 6:Theorem 11 The funtion J_K

V
is a strutural set-theoreti interpretation.A natural question is whether this set-theoreti interpretation is a model. Ifthis is the ase, we would like to ompare the subtyping relation it indues withthe one used to de�ne the type system (whih was indued by the bootstrapmodel). The following theorem answers both questions.Theorem 12 The following properties are equivalent:1. The interpretation J_K

V
is a model.2. The interpretation J_K

V
and J_K indue the same subtyping relation.3. The bootstrap model J_K is well-founded.When the interpretation J_K
V
is a model, we ould use it as a new bootstrapmodel, de�ne a new type system, and so one. The theorem says that it isuseless, beause the old and the new bootstrap model indue the same subtypingrelation.Note that the type soundness results does not depend on the fat that theinterpretation J_K

V
is a model. It holds even if the bootstrap model is notwell-founded.5.3 Constrution of modelsAll the results above would be void if we ould not build a model. In this setion,we atually build models with spei� properties. Models an be ompared bythe amount of subtyping they allow. If J_K1 and J_K2 are two models, we write

J_K1 � J_K2 if:
∀t, s ∈ T .JtK1 ≤ JsK1 ⇒ JtK2 ≤ JsK2A model J_K2 is universal if J_K1 � J_K2 for any other model J_K1. Clearly, twouniversal models indue the same subtyping relation.Theorem 13 There exists a well-founded and universal model.The next theorem shows that the notions of universality and well-foundednessare not automati.Theorem 14 There exists a model whih is not well-founded. There exists awell-founded model whih is not universal.21

5.4 Deidability resultsFinally, our system would be of little pratial use if we were not able to deidethe subtyping and typing relations. Fortunately, the deidability of the inlusionof basi types implies the following theorem.Theorem 15 The subtyping relation indued by universal models is deidable.The proof of deidability (Setion 6.9) essentially relies on three omponents: (i)the regularity of types, (ii) some algebrai properties of universal models, and
(iii) the equivalene between subtyping and type emptiness problems (rememberthat s ≤ t ⇐⇒ s\t ≃ 0.). The algebrai properties of the model an be used todeompose a type t into a set of types ti's suh that: (i) t ≃ 0 if and only if all
ti ≃ 0 and (ii) the ti's are boolean ombinations of sub-terms of t (Setion 6.2).We also introdue the onept of simulation (Setion 25) whih haraterizessets of types that are losed with respet to the previous deomposition. Byonstrution a type is equivalent to 0 if and only if there exists a simulationontaining it (the simulation representing a o-indutive proof of its emptiness).A regular type has only a �nite number of sub-terms, therefore it su�es toenumerate all the possible sets of boolean ombinations of its sub-terms andtest whether any of them is a simulation (whih is deidable for �nite sets).Deidability of subtyping does not immediately yield deidability of the typ-ing relation, the problem being that the use of the negated arrows in the typingrule (abstr) makes the minimum typing property fail. Therefore we need tointrodue a new syntati ategory, type shemes: a type-sheme represents theset of all the types of a well typed expression (Setion 6.12). This tehnialonstrution allows us to state the deidability of the type-heking problem.Theorem 16 When the subtyping relation is deidable, the type heking prob-lem (deiding whether Γ ⊢ e : t for given Γ, e, t) is deidable.6 Formal developmentIn this setion, we establish the theorems stated in the previous setion andother intermediate lemmas.6.1 Disjuntive normal forms for typesWe write A for atoms and we use the meta-variable a to range over atoms.There are three kinds of atoms (and values), whih we denote by the meta-variable u ranging over the set U = {prod, fun,basi}.We write Afun for atoms of the form t1→→→t2, Aprod for atoms of the form
t1×××t2, and Abasi for basi types. We have A = Afun + Aprod + Abasi. Forwhat onerns values, their kinding too is straightforward: values of the form
c, (v1, v2), and µf(. . .).λx.e have respetively kind basi,prod, and fun.Every type an be seen as a �nite boolean ombination of atoms. It isonvenient to work with disjuntive normal forms.22

De�nition 17 A (disjuntive) normal formal τ is a �nite set of pairs of �nitesets of atoms, that is, an element of Pf (Pf (A) × Pf (A)) (where Pf denotesthe �nite powerset).If J_K : T → P(D) is an arbitrary set-theoreti interpretation and τ anormal form, we de�ne JτK as:
JτK =

⋃

(P,N)∈τ

⋂

a∈P

JaK ∩
⋂

a∈N

(D\JaK)(Note that, with the onvention that an intersetion over an empty set is takento be D, JτK ⊆ D.)Lemma 18 For every type t ∈ T , it is possible to ompute a normal form
N (t) suh that for every set-theoreti interpretation J_K, JtK = JN (t)K.Proof: We will atually de�ne two funtions N and N ′, both from types to

Pf (Pf (A) × Pf (A)), by mutual indution over types.
N (0) = ∅

N (a) = {({a}, ∅)}
N (t1∨∨∨t2) = N (t1) ∪ N (t2)
N (¬¬¬t) = N ′(t)
N ′(0) = {(∅, ∅)}
N ′(a) = {(∅, {a})}
N ′(t1∨∨∨t2) = {(P1 ∪ P2, N1 ∪ N2) | (P1, N1) ∈ N ′(t1), (P2, N2) ∈ N ′(t2)}
N ′(¬¬¬t) = N (t)We hek by indution over the type t the following property:

JtK = JN (t)K = D\JN ′(t)K

2As an example, onsider the type t = a1∧∧∧(a2∨∨∨¬¬¬a3) where a1, a2, a3 are threeatoms. Then N (t) = {({a1, a2}, ∅), ({a1}, {a3})}. This orresponds to the fatthat t and (a1∧∧∧a2)∨∨∨(a1∧∧∧¬¬¬a3) have the same interpretation for any set-theoretiinterpretation of the type algebra.Note that the onverse result is true as well: for any normal form τ , we an�nd a type t suh that JtK = JτK for any set-theoreti interpretation. Normalforms are thus simply a di�erent, but handy, syntax for types. In partiular,we an rephrase in De�nition 5 the ondition for a set-theoreti interpretationto be a model as: for any normal form τ , JτK = ∅ ⇐⇒ E(τ) = ∅.For these reason heneforth will will often onfound the notions of typesand normal form, and we will often speak of the type τ , taking the latter as aanonial representative of all the types in N −1(τ).23

6.2 Study of the subtyping relationDe�nition 5 is rather intensional. In this setion, we establish a more extensionalriterion for a set-theoreti interpretation to be a model.Let J_K be a set-theoreti interpretation. We are interested in omparingthe assertions E(τ) = ∅ and JτK = ∅, for a normal form τ . Clearly, E(τ) = ∅is equivalent to:
∀(P, N) ∈ τ.

⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) (3)Let us write EbasiD = C , EprodD = D2, Efun = P(D × DΩ). We haveED =
⋃

u∈U EuD where U = {prod, fun,basi}. We an thus rewrite (3) as:
∀u ∈ U.∀(P, N) ∈ τ.

⋂

a∈P

(E(a) ∩ EuD) ⊆
⋃

a∈N

(E(a) ∩ EuD) (4)Sine JaK∩EuD = ∅ if a 6∈ Au and JaK∩EuD = JaK if a ∈ Au, we an rewrite (4)as:
∀u ∈ U.∀(P, N) ∈ τ.(P ⊆ Au) ⇒

(

⋂

a∈P

E(a) ⊆
⋃

a∈N∩Au

E(a)

) (5)(where the intersetion is taken to be EuD when P = ∅.)To further deompose these prediates, we will rely on two set-theoreti fats,one for produt types, one for arrow types. Let us introdue some new notationand then start with produt types.Notation 19 Let S1, S2 denote two sets suh that S1 ⊆ S2. We use S1
S2 todenote the omplement of S1 with respet to S2, that is S2\S1.Lemma 20 Let (Xi)i∈P , (Xi)i∈N (resp. (Yi)i∈P , (Yi)i∈N) be two families ofsubsets of D1 (resp. D2). Then:

(

⋂

i∈P

Xi × Yi

)

\

(

⋃

i∈N

Xi × Yi

)

=
⋃

N ′⊆N

(

⋂

i∈P

Xi\
⋃

i∈N ′

Xi

)

×

⋂

i∈P

Yi\
⋃

i∈N\N ′

Yi

(with the onventions: ⋂i∈∅
Xi × Yi = D1 ×D2; ⋂i∈∅

Xi = D1 and ⋂i∈∅
Yi =

D2)Proof: First, we notie that:
Xi × Yi

D1×D2

=
(

Xi
D1

× D2

)

∪
(

D1 × Yi
D2

)From that we get:
⋂

i∈N

Xi × Yi
D1×D2

=

⋃

N ′⊆N

⋂

i∈N ′

(

Xi
D1

× D2

)

∩
⋂

i∈N\N ′

(

D1 × Yi
D2

)

 =

⋃

N ′⊆N

⋂

i∈N ′

Xi
D1

×
⋂

i∈N\N ′

Yi
D2

24

And �nally:
(

⋂

i∈P

Xi × Yi

)

∩

(

⋂

i∈N

Xi × Yi
D1×D2

)

=

⋃

N ′⊆N

(

⋂

i∈P

Xi ∩
⋂

i∈N ′

Xi
D1

)

×

⋂

i∈P

Yi ∩
⋂

i∈N\N ′

Yi
D2

We get the expeted result by applying De Morgan laws. 2We get an immediate orollary.Lemma 21 Let P, N be two �nite subsets of Aprod. We have:
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) ⇐⇒

∀N ′ ⊆ N.

t
∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

|
= ∅ ∨

u
v ∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2

}
~ = ∅(with the onvention ⋂a∈∅

E(a) = EprodD).We will now establish a similar result for arrow types. We �rst deompose theset-theoreti→ operator (De�nition 3) into more primitive operators: powerset,omplement, Cartesian produt.Lemma 22 Let X, Y ⊆ D. Then:
X → Y = P

(

X × Y
DΩ

D×DΩ
)Proof: The result omes from a simple omputation:

X → Y = {f ⊆ D × DΩ | ∀(x, y) ∈ f. ¬(x ∈ X ∧ y 6∈ Y)}

= {f ⊆ D × DΩ | f ∩ X × Y
DΩ

= ∅}

= {f ⊆ D × DΩ | f ⊆ X × Y
DΩ

D×DΩ

}

2Lemma 23 Let (Xi)i∈P and (Xi)i∈N be two families of subsets of D. Then:
⋂

i∈P

P(Xi) ⊆
⋃

i∈N

P(Xi) ⇐⇒ ∃io ∈ N.
⋂

i∈P

Xi ⊆ Xi025

Proof: The ⇐ impliation is trivial. Let us prove the opposite diretion. Weassume that ⋂i∈P P(Xi) ⊆
⋃

i∈N P(Xi). The set ⋂i∈P Xi belongs to allthe P(Xi) for i ∈ P . It is thus in the union of all the P(Xi) for i ∈ N . Wean thus �nd some i0 ∈ N suh that ⋂i∈P Xi ∈ P(Xi0), whih onludes theproof. 2Lemma 24 Let P and N be two �nite subsets of Afun. Then:
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)

⇐⇒

∃(t0→→→s0) ∈ N. ∀P ′ ⊆ P.

t
t0\\\

(

∨∨∨

t→→→s∈P ′

t

)|
= ∅ ∨

P 6= P ′
u
v

∧∧∧

t→→→s∈P\P ′

s

\\\s0

}
~ = ∅(with the onvention ⋂a∈∅

E(a) = EfunD).Proof: The result follows from Lemmas 22, 23, and 20, by notiing that in theondition ⋂t→→→s∈P\P ′ JsK ⊆ Js0K whih appears, the onvention is to interpretthe intersetion as being DΩ if P = P ′, whih makes the inlusion impossible.
2Lemmas 21 and 24, together with the property (5) suggest the followingde�nition and give immediatly the result of Theorem 26 below.De�nition 25 (Simulation) Let S be an arbitrary set of normal forms. Wede�ne another set of normal forms ES by:ES = {τ | ∀u ∈ U.∀(P, N) ∈ τ. (P ⊆ Au ⇒ CP,N∩Au

u)}

26

where:
CP,Nbasi ::= C ∩

⋂

b∈P

BJbK ⊆
⋃

b∈N

BJbK

CP,Nprod ::= ∀N ′ ⊆ N.

N

(

∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

)

∈ S

∨

N

∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2

 ∈ S

CP,Nfun ::= ∃t0→→→s0 ∈ N. ∀P ′ ⊆ P.

N

(

t0∧∧∧
∧∧∧

t→→→s∈P ′

¬¬¬t

)

∈ S

∨

P 6= P ′

N

(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P\P ′

s

 ∈ SWe say that S is a simulation if:
S ⊆ ESThe intuition is that if we onsider the statements of Lemmas 21 and 24 as ifthey were rewriting rules (from right to left), then ES ontains all the typesthat we an dedue in one step redution to be empty when we suppose that thetypes in S are empty. A simulation is thus a set that is already saturated w.r.t.suh a rewriting. In partiular, if we onsider the statements of Lemmas 21and 24 as inferene rules for determining when a type is equal to 0, then ESis the set of immediate onsequenes of S , and a simulation is a self-justifyingset, that is a o-indutive proof of the fat that all its elements are equal to 0.Of ourse this latter property will play a ruial role to deide the subtypingrelation (see Setion 6.9).Theorem 26 Let J_K : T → P(D) be a set-theoreti interpretation. We de�nea set of normal forms S by:

S = {τ | JτK = ∅}Then: ES = {τ | E(τ) = ∅}Corollary 27 Let J_K be a set-theoreti intepretation of types and S = {τ | JτK =
∅}. Then J_K is a model if and only if S = ES .This Corollary implies that the ondition for a set-theoreti interpretation tobe a model depends only on the subtyping relation it indues.27

Corollary 28 Let J_K1 : T → P(D1) be a model and J_K2 : T → P(D2) bea set-theoreti interpretation. Then the following assertions are equivalent:
• J_K2 is a model and it indues the same subtyping relation as J_K1.
• for any type t, JtK1 = ∅ ⇐⇒ JtK2 = ∅.The following lemma, whih is an immediate orollary of Lemma 24 givesseveral properties about subtyping between arrow types in a model, whih willbe needed for to study the meta-theory of the type system.Lemma 29 (Strong disjuntion for arrows) Let ≤ be the subtyping rela-tion indued by a model, and P ,N two �nite sets of arrow types. Then:

∧∧∧

a∈P

a ≤
∨∨∨

a∈N

a ⇐⇒ ∃a0 ∈ N.
∧∧∧

a∈P

a ≤ a0If P ,N are �nite sets of arrow types and if a0 is an arrow type, then:

∧∧∧

a∈P

a 6≤
∨∨∨

a∈N

a

∧∧∧

a∈P

a ≤
∨∨∨

a∈N∪{a0}

a
=⇒

∧∧∧

a∈P

a ≤ a0If P ,N1,N2 are �nite sets of arrow types, then:

∧∧∧

a∈P

a 6≤
∨∨∨

a∈N1

a

∧∧∧

a∈P

a 6≤
∨∨∨

a∈N2

a
⇐⇒

∧∧∧

a∈P

a 6≤
∨∨∨

a∈N1∪N2

a6.3 Syntatial meta-theory of the type systemIn this setion and in the following one, we �x a bootstrap model J_K : T →
P(D), we write ≤ for the indued subtyping relation and ≃ for the assoiatedequivalene relation, and we study the resulting typing judgment Γ ⊢ e : t.Lemma 30 (Strengthening) Let Γ1 and Γ2 be two typing environments suhthat for any x in the domain of Γ1, we have Γ2(x) ≤ Γ1(x). If Γ1 ⊢ e : t, then
Γ2 ⊢ e : t.Proof: Indution on the derivation of Γ1 ⊢ e : t. We simply introdue aninstane of the subsumption rule below eah instane of the (var) rule. 2Lemma 31 (Admissiblity of the intersetion rule) If Γ ⊢ e : t1 and Γ ⊢
e : t2, then Γ ⊢ e : t1∧∧∧t2. 28

Proof: By indution on the struture of the two typing derivations.Let us �rst onsider the ase when the last rule applied to one of the twoderivations is (subsum), say:
. . .

Γ ⊢ e : s1 s1 ≤ t1
Γ ⊢ e : t1

. . .
Γ ⊢ e : t2The indution hypothesis gives Γ ⊢ e : s1∧∧∧t2. But s1∧∧∧t2 ≤ t1∧∧∧t2 beause

s1 ≤ t1, and a new appliation of (subsum) gives Γ ⊢ e : t1∧∧∧t2 as expeted.In all the remaining ases, the two derivations ends with an instane of thesame rule (whih depends on the toplevel onstrutor of e).Rules (const), (var), (rnd): Those rules give only one possible type t for e,and t∧∧∧t ≃ t.Rule (appl): The situation is as follows:
. . .

Γ ⊢ e1 : t1→→→t2

. . .
Γ ⊢ e2 : t1

Γ ⊢ e1e2 : t2

. . .
Γ ⊢ e1 : t′1→→→t′2

. . .
Γ ⊢ e2 : t′1

Γ ⊢ e1e2 : t′2The indution hypothesis gives Γ ⊢ e1 : (t1→→→t2)∧∧∧(t′1→→→t′2) and Γ ⊢ e2 : t1→→→t′1.To onlude, it is enough to hek that (t1→→→t2)∧∧∧(t′1→→→t′2) ≤ (t1∧∧∧t′1)→→→(t2∧∧∧t′2),whih an be proved as follows:E((t1→→→t2)∧∧∧(t′1→→→t′2))
= (Jt1K → Jt2K) ∩ (Jt′1K → Jt′2K)
= {f ∈ EfunD | ∀(x, y) ∈ f.(x ∈ Jt1K ⇒ y ∈ Jt2K) ∧ (x ∈ Jt′1K ⇒ y ∈ Jt′2K)}
⊆ {f ∈ EfunD | ∀(x, y) ∈ f.(x ∈ Jt1K ∩ Jt′1K ⇒ y ∈ (Jt2K ∩ Jt′2K)}
= E((t1∧∧∧t′1)→→→(t2∧∧∧t′2))Rule (pair): The situation is as follows:

. . .
Γ ⊢ e1 : t1

. . .
Γ ⊢ e2 : t2

Γ ⊢ (e1, e2) : t1×××t2

. . .
Γ ⊢ e1 : t′1

. . .
Γ ⊢ e2 : t′2

Γ ⊢ (e1, e2) : t′1×××t′2Let t′′1 = t1∧∧∧t′1 and t′′2 = t2∧∧∧t′2. By applying the indution hypothesis twie,we get Γ ⊢ e1 : t′′1 et Γ ⊢ e2 : t′′2 . The rule (pair) gives Γ ⊢ (e1, e2) : t′′1×××t′′2 . Toonlude, it is enough to see that t′′1×××t′′2 ≃ (t1×××t2)∧∧∧(t′1×××t′2). Indeed:E(t′′1×××t′′2) = (Jt1K∩Jt′1K)×(Jt2K∩Jt′2K) = Jt1∧∧∧t2K∩Jt′1∧∧∧t′2K = E((t1×××t2)∧∧∧(t′1×××t′2))Rule (case): Let us onsider this situation:
. . .

Γ ⊢ e : t0

. . .
(x : ti), Γ ⊢ ei : s

Γ ⊢ (x = e ∈ t ? e1|e2) : s

. . .
Γ ⊢ e : t′0

. . .
(x : t′i), Γ ⊢ ei : s′

Γ ⊢ (x = e ∈ t ? e1|e2) : s′with t1 = t0∧∧∧t, t2 = t0\\\t, t′1 = t′0∧∧∧t, t′2 = t′0\\\t. The indution hypothesisgives: Γ ⊢ e : t′′0 with t′′0 = t0∧∧∧t′0. Let us de�ne t′′1 = t′′0∧∧∧t and t′′2 = t′′0\\\t. Let29

i ∈ {1, 2}. We have t′′i ≤ ti and thus, aording to Lemma 30, (x : t′′i), Γ ⊢
ei : s. Similarly, we get (x : t′′i), Γ ⊢ ei : s′, and thus, applying again theindution hypothesis (x : t′′i), Γ ⊢ ei : s′′ where s′′ = s∧∧∧s′. Then, with the
(case) rule, we establish Γ ⊢ (x = e ∈ t ? e1|e2) : s′′ as expeted.The speial ases (where ti ≃ 0 or t′i ≃ 0) are similar.Rule (abstr): Let us onsider two appliations of the rule (abstr) to the sameabstration µf(t1→→→s1; . . . ; tn→→→sn).λx.e with the following types:

t =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j)

t′ =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=m+1..m′

¬¬¬(t′j→→→s′j)where t 6≃ 0 and t′ 6≃ 0. We de�ne:
t′′ =

∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m′

¬¬¬(t′j→→→s′j)We have t′′ ≃ t∧∧∧t′. We only need to verify that some instane of the rule
(abstr) allows us to dedue the type t′′ for the abstration. For i = 1..n,we have, by hypothesis (f : t), (x : ti), Γ ⊢ e : si, and thus, aording toLemma 30, (f : t′′), (x : ti), Γ ⊢ e : si. Then, we hek that t′′ 6≃ 0, whih re-sults immediatly from Lemma 29. In this ase, we have not used the indutionhypothesis. 2Corollary 32 Let Γ be a typing environment and e an expression whih is well-typed under Γ. Then the set {t ∈ T | (Γ ⊢ e : t) ∨ (Γ ⊢ e : ¬¬¬t)} ontains 0 andis stable under ∨∨∨ and ¬¬¬ (and thus ∧∧∧).Proof: Let E be the set introdued in the statement. It is learly stable under
¬¬¬ and invariant under the equivalene ≃. We have Γ ⊢ e : 1 = ¬¬¬0 beause ofthe subsumption rule, and thus 0 ∈ E. What remains is to prove that E isstable under ∨∨∨. So let us take two elements t1 and t2 in E. If Γ 6⊢ e : t1∨∨∨t2,then beause of (subsum), we get Γ 6⊢ e : t1 and Γ 6⊢ e : t2. Beause t1 and
t2 are in E, we thus have Γ ⊢ e : ¬¬¬t1 and Γ ⊢ e : ¬¬¬t2. Lemma 31 thengives Γ ⊢ e : ¬¬¬t1∧∧∧¬¬¬t2. And ¬¬¬t1∧∧∧¬¬¬t2 ≃ ¬¬¬(t1∨∨∨t2). We have thus proved that
Γ ⊢ e : t1∨∨∨t2 or Γ ⊢ e : ¬¬¬(t1∨∨∨t2). 2Lemma 33 (Substitution) Let e, e1, . . . , en be expressions, x1, . . . , xn dis-tint variables, t, t1, . . . , tn types, and Γ a typing environment. Then:
{

(x1 : t1), . . . , (xn : tn), Γ ⊢ e : t
∀i = 1..n. Γ ⊢ ei : ti

⇒ Γ ⊢ e[x1 := e1; . . . ; xn := en] : t30

Proof: By indution on the typing derivation for (x1 : t1), . . . , (xn : tn), Γ ⊢
e : t. We simply �plug� a opy of the derivation for Γ ⊢ ei : ti wherever therule (var) is used for variable xi. 26.4 Interpreting types as sets of valuesThe syntatial properties obtained in the previous setion are used here toprove some properties about the interpretation of types as sets of values, asde�ned in Setion 5.2: JtK

V
= {v | ⊢ v : t}Lemma 34 If t ≤ s, then JtK

V
⊆ JsK

V
. In partiular, if t ≃ s, then JtK

V
=

JsK
V
.Proof: Consequene of the subsumption rule. 2Lemma 35 J0K

V
= ∅.Proof: We prove that (⊢ v : t) ⇒ t 6= 0 by indution on the typing deriva-tion. There are four ases to onsider (one per value onstrutor, one for thesubsumption rule). All of them are trivial. 2Lemma 36 Jt1∧∧∧t2KV

= Jt1KV
∩ Jt2KV

.Proof: Lemma 34 gives Jt1∧∧∧t2KV
⊆ JtiKV

for i ∈ {1, 2}, and thus Jt1∧∧∧t2KV
⊆

Jt1KV
∩ Jt2KV

. Lemma 31 gives the opposite inlusion. 2Lemma 37 (Inversion)
Jt1×××t2KV

= {(v1, v2) | ⊢ v1 : t1,⊢ v2 : t2}
JbK

V
= {c | bc ≤ b}

Jt→→→sK
V

= {(µf(t1→→→s1; . . . ; tn→→→sn).λx.e) ∈ V . |
∧∧∧

i=1..n

ti→→→si ≤ t→→→s}Moreover, if v is a value and a is an atom of a di�erent kind, then ⊢ v : ¬¬¬a.Proof: For the three equalities, the ⊇ inlusion is straightforward.To prove the three opposite inlusion, let us start with a general remark.A derivation for ⊢ v : t an always be desribed as an instane of the ruleorresponding to the kind of v (rule (const) for onstants, (pair) for pairs,and (abstr) for abstrations), followed by zero or more instane of (subsum).31

That is, we an always �nd another type t′ ≤ t suh that ⊢ v : t is obtainedby a diret appliation of the typing rule orresponding to v. If t is an atom
a, then v is neessarily of the same kind as a. Indeed, if v is a pair, then t′is a produt type; if v is a onstant, t′ is a basi type; if v is an abstration,
t′ is an intersetion of one or more arrow types (and maybe of zero or morenegation of arrow types). In all ases, t′ ∩ a ≃ 0 if a and v does not have thesame kind, but sine t′ ≤ a, this means that t′ ≃ 0, whih is impossible. Wealso have proved the �nal remark in the statement of the Lemma (beause if
a and v does not have the same kind, then t′ ≤ ¬¬¬a, and thus ⊢ v : ¬¬¬a).Case ⊢ v : t1×××t2:. The value is neessarily a pair (v1, v2) suh that ⊢ v1 : t′1,
⊢ v2 : t′2, and t′1×××t′2 ≤ t1×××t2. But t′1 6≃ 0 and t′2 6≃ 0 beause of Lemma 35,and thus t′1 ≤ t1 and t′2 ≤ t2. By subsumption, we get ⊢ v1 : t1 and ⊢ v2 : t2.Case ⊢ v : b: The value is neessarily a onstant c suh that bc ≤ b.Case ⊢ v : t→→→s: The value is neessarily an abstration
µf(t1→→→s1; . . . ; tn→→→sn).λx.e. Here, the type t′ has the form:

∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j)with t′ 6≃ 0 and t′ ≤ t→→→s. Lemma 29 thus gives:
∧∧∧

i=1..n

(ti→→→si) ≤ t→→→s

2Lemma 38 J¬¬¬tK
V

= V \JtK
V
.Proof:We have (t∧∧∧¬¬¬t) ≃ 0 and, thus, JtK

V
∩ J¬¬¬tK

V
= Jt∧∧∧¬¬¬tK

V
= J0K

V
= ∅. So itremains to prove that JtK

V
∪ J¬¬¬tK

V
= V , that is:

∀v.∀t. (⊢ v : t) ∨ (⊢ v : ¬¬¬t)We proeed by indution over the pair (v, t). Thanks to Lemma 32, we anassume that t is an atom a. Lemma 37 gives ⊢ v : ¬¬¬a if a and v do not havethe same kind. Now, we assume they have the same kind.Case v = c: We have ⊢ c : bc. The set E(bc) is a singleton (namely {c}),and thus E(bc) ⊆ E(a) or E(bc) ⊆ E(¬¬¬a), that is: bc ≤ a or bc ≤ ¬¬¬a. Bysubsumption, we get ⊢ bc : a or ⊢ bc : ¬¬¬a.Case v = (v1, v2), a = t1×××t2: If ⊢ v1 : t1 and ⊢ v2 : t2, we get ⊢ v : a.Otherwise, say 6⊢ v1 : t1, we get ⊢ v1 : ¬¬¬t1 by the indution hypothesis, and
⊢ v2 : 1 always holds, and thus we get ⊢ v : (¬¬¬t1)×××1. We onlude this aseby the observation that (¬¬¬t1)×××1 ≤ ¬¬¬(t1×××t2).Case v = µf(t1→→→s1; . . . ; tn→→→sn).λx.e, a = t→→→s: It is easy to see that ⊢ v : aif ∧∧∧i=1..n ti→→→si ≤ a and ⊢ v : ¬¬¬a otherwise. 232

Lemma 39 Jt1∨∨∨t2KV
= Jt1KV

∪ Jt2KV
.Proof: Using Lemmas 38, 36 and 34, we get: Jt1∨∨∨t2KV

=
J¬¬¬((¬¬¬t1)∧∧∧(¬¬¬t2))KV

= V \(J¬¬¬t1KV
∩ J¬¬¬t2KV

) = V \(V \Jt1KV
\Jt2KV

) = Jt1KV
∪

Jt2KV
. 2From Lemmas 38, 39 and 35, we get that J_K

V
is a set-theoreti interpreta-tion.To onlude the proof of Theorem 11, we need to hek that it is strutural.Clearly V 2 ⊆ V and Lemma 37 gives Jt1×××t2KV
= Jt1KV

× Jt2KV
. Also, therelation indued by (v1, v2) ⊲ vi is learly noetherian.6.5 Closing the loopLemma 40 For every non-empty and �nite family of arrow types t1→→→s1, . . . , tn→→→sn,the expression µf(t1→→→s1; . . . ; tn→→→sn).λx.fx is a value.Proof: Diret appliation of the typing rules. 2Lemma 41 In every model, JtK = ∅ ⇐⇒ J1 → tK ⊆ J1 → 0K holds true.Lemma 42 The set-theoreti interpretation J_K

V
is a model if and only if itindues the same subtyping relation as J_K.Proof: The ⇐ impliation is given by Corollary 28. Let us assume that J_K

Vis a model and prove that JtK
V

= ∅ ⇐⇒ t ≃ 0 for any type t. The ⇐impliation is given by Lemma 35. Let t be a type suh that JtK
V

= ∅.Beause J_K
V

is a model, Lemma 41 gives: J1 → tK
V

⊆ J1 → 0K
V
. Now weonsider the expression v = µf(1 → t).λx.fx. Aording to Lemma 40, it is avalue. Aording to Lemma 37, it is an element of J1 → tK

V
, and thus also of

J1 → 0K
V
, whih means that 1 → t ≤ 1 → 0 (again Lemma 37), and �nallythat t ≃ 0 (Lemma 41 for the model J_K). 2Lemma 43 If the bootstrap model is well-founded, then J_K

V
is a model.Proof: Sine the type system, and thus J_K

V
, depends only on the subtypingrelation indued by the bootstrap model, we an assume that it is not onlywell-founded, but also strutural. We will use the noetherian relation ⊲ fromDe�nition 6. 33

We need to prove that, for every type t, JtK
V

= ∅ ⇐⇒ t ≃ 0. The ⇐impliation is given by Lemma 35. We atually prove by indution (using the
⊲ relation) that for all d ∈ D, the following property holds: (∀t ∈ T . d ∈
JtK ⇒ JtK

V
6= ∅).Consider a type t suh that d ∈ JtK. If d = (d1, d2) ∈ D2, then it is in the set

JtK ∩ D2 =
⋃

(P,N)∈N (t)

(

D2 ∩
⋂

a∈P

JaK\
⋃

a∈N

JaK
)We an thus �nd (P, N) ∈ N (t) suh that d ∈ D2 ∩

⋂

a∈P JaK\⋃a∈N JaK.Note that if a is an atom whih is not a produt type, then D2 ∩ JaK =
J1×××1K ∩ JaK = ∅, beause E(1×××1) ∩ E(a) = ∅. We an thus assume that
P ⊆ Aprod, and we have d ∈

⋂

t1×××t2∈P (Jt1K × Jt2K)\
⋃

t1×××t2∈N (Jt1K× Jt2K). Ifwe write d = (d1, d2), then Lemma 20 gives some N ′ ⊆ N suh that d1 ∈ Js1Kand d2 ∈ Js2K for:

s1 =
∧∧∧

t1×××t2∈P

t1\\\
∨∨∨

t1×××t2∈N ′

t1

s2 =
∧∧∧

t1×××t2∈P

t2\\\
∨∨∨

t1×××t2∈N\N ′

t2The indution hypothesis applied to d1 and d2 gives Js1KV
6= ∅ and Js2KV

6=
∅, and thus Js1×××s2KV

6= ∅. To onlude this ase, we observe that s1×××s2 ≤ t,using again Lemma 20.Now, we assume that d 6∈ D2 = J1×××1K. We thus have d ∈ Jt\\\1×××1K, whihimplies that t\\\1×××1 6≃ 0. As a onsequene E(t\\\1×××1) 6= ∅, and thus E(t) ∩
(ED\EprodD) 6= ∅. We are in at least one of the two ases:E(t) ∩ C 6= ∅: let c ∈ E(t)∩C . We have E(bc) = {c} ⊆ E(t), and thus bc ≤ t.We onlude that ⊢ c : t.E(t) ∩ EfunD 6= ∅: we have:E(t) ∩ EfunD =

⋃

(P,N)∈N (t) | P⊆Afun(EfunD ∩
⋂

a∈P

E(a)\
⋃

a∈N

E(a)

)This set is not empty. We an thus �nd an element (P, N) in N (t) suhthat P = {t1→→→s1, . . . , tn→→→sn}, N ∩ Afun = {t′1→→→s′1, . . . , t
′
m→→→s′m}, and

t′ =
∧∧∧

i=1..n ti→→→si\\\
∨∨∨

j=1..m t′j→→→s′j 6≃ 0. We have t′ ≤ t and the value
v = µf(t1→→→s1; . . . ; tn→→→sn).λx.fx has type t′. By subsumption, we get ⊢ v : t.

2Lemmas 43 and 42 entail Theorem 12.34

6.6 Type soundnessHere is the proof of the subjet redution property, Theorem 8 in Setion 5.Proof: If (Γ ⊢ e : t), then we prove by indution on the derivation for Γ ⊢ e : tthat ∀e′.(e ; e′) ⇒ (Γ ⊢ e′ : t). We onsider the last rule used in thederivation of Γ ⊢ e : t.Rule (subsum): we have Γ ⊢ e : s ≤ t and e ; e′. The indution hypothesisgives Γ ⊢ e′ : s, and by subsumption we get Γ ⊢ e′ : t.Rules (const),(var): the expression e is a onstant or a variable. It annot beredued.Rule (proj): we have e = πi(e0), t = ti, Γ ⊢ e0 : t1×××t2. If e′ is obtainedby reduing e0, that is, e0 ; e′0 and e′ = πi(e
′
0), we get, by the indutionhypothesis: Γ ⊢ e′0 : t1×××t2 and thus Γ ⊢ e′ : ti. If e′ is obtained by reduingthe toplevel πi in e, then neessarily e0 is a value (v1, v2) (and thus, byLemma 37: Γ ⊢ vi : ti), and e′ = vi. We get Γ ⊢ e′ : ti.Rule (rnd): we have e = rnd(t). The redution rule for this expression gives

⊢ e′ : t, whih implies Γ ⊢ e′ : t by Lemma 30.Rule (pair): we have e = (e1, e2), t = t1×××t2, and Γ ⊢ ei : ti for i = 1..2. Theonly possible way to redue e is to redue one of the ei, say e′ = (e′1, e2) where
e1 ; e′1. The indution hypothesis gives Γ ⊢ e′1 : t1, and we get Γ ⊢ e′ : t1×××t2.Rule (appl): we have e = e1e2, Γ ⊢ e1 : s → t and Γ ⊢ e2 : s. If e′is obtained by reduing e1 or e2, we proeed as in the ase for the (pair)rule. Otherwise, we have neessarily e1 = µf(s1→→→t1; . . . ; sn→→→tn).λx.e0, e′ =
e0[f := e1; x := e2] and e2 is a value v2. We have ∧∧∧i∈I si→→→ti ≤ s → t, where
I = {1, . . . , n}. Aording to Lemma 24, this means that s ≤

∨∨∨

i∈I si andthat for any non-empty I ′ ⊆ I suh that s 6≤
∨∨∨

i∈I\I′ si, we have ∧∧∧i∈I′ ti ≤ t.We take I ′ = {i ∈ I | ⊢ v2 : si}. This set is not empty. Indeed, sine ⊢ v2 : sand s ≤
∨∨∨

i∈I si, we have at least one i suh that ⊢ v2 : si (Lemma 39). Now,we laim that s 6≤
∨∨∨

i∈I\I′ si. Otherwise, we would �nd some i 6∈ I ′ suh that
⊢ v2 : si, whih ontradits the de�nition for I ′. As a onsequene, we get
∧∧∧

i∈I′ ti ≤ t. We laim that Γ ⊢ e′ :
∧∧∧

i∈I′ ti (whih by subsumption yields
Γ ⊢ e′ : t i.e. the result). To prove our laim we show that for every i ∈ I ′we have Γ ⊢ e′ : ti, whih thanks to Lemma 31 yields our laim. So, letus onsider any i ∈ I ′, that is, any i suh that ⊢ v2 : si. The abstration
e1 is well-typed under Γ therefore in its derivation there is an instane ofthe (abstr) rule (possibly followed by several appliations of the subsumptionrule) whih infers for e1 a type t′ under Γ. One of the premises of this ruleis (f : t′), (x : ti), Γ ⊢ e0 : ti. We also have Γ ⊢ e1 : t′ and Γ ⊢ v2 : si(Lemma 30), and thus Γ ⊢ e′ : ti (Lemma 33) as expeted.Rule (abstr): the expression e is an abstration, and the redution an onlyour within its body. We proeed as in the ase for the (pair) rule.Rule (case): we have e = (x = e0 ∈ s ? e1 | e2). If the redution ourswithin one of the sub-expressions e0,e1,e2, we proeed as in the ase for the
(pair) rule. Otherwise, the expression e0 is neessarily a value v, and we haveeither (⊢ v : s) ∧ (e′ = e1[x := v]) or (⊢ v : ¬¬¬s) ∧ (e′ = e2[x := v]). Let us35

onsider for instane the �rst ase. The typing rule gives: Γ ⊢ v : s0. Thanksto Lemma 31, we get Γ ⊢ v : s0∧∧∧s. Beause of Lemma 35, we know that
s0∧∧∧s 6≃ 0, that is s0 6≤ ¬¬¬s. So the typing rule (case) under onsideration hasa premise for e1, namely (x : s0∧∧∧s), Γ ⊢ e1 : t. Lemma 33 gives Γ ⊢ e′ : t asexpeted. 2And here is the proof of the progress property, Theorem 9 in Setion 5.Proof: We write e 6; if e annot be redued (6 ∃e′.e ; e′). Suppose that
⊢ e : t; we prove on indution on the derivation of ⊢ e : t that either e is avalue or it an be redued. We onsider the last rule used in this derivation.Rule (subsum): straightforward appliation of the indution hypothesis.Rule (var): a variable annot be well-typed in an empty environment. Thisase is thus impossible.Rule (const): the expression e is a onstant. It is thus a value.Rule (abstr): the expression e is an abstration whih is well-typed under theempty environment. It is thus a value.Rule (proj): we have e = πi(e0), t = ti, ⊢ e0 : t1×××t2. If e0 an be redued to,say, e′0, then e ; πi(e

′
0). Otherwise, if e0 6;, then by the indution hypothesis

e0 is a value. By Lemma 37, we get e0 = (v1, v2), and thus e ; vi.Rule (rnd): we have e = rnd(t) and thus e ; e′ for any e′ of type t (forinstane, we an take for e′ an expression of type 0, whih exists).Rule (pair): we have e = (e1, e2), t = t1×××t2, and ⊢ ei : ti for i = 1..2. Ifone of the ei an be redued, then e an also be redued. Otherwise, by theindution hypothesis, we obtain that both e1 and e2 are values, and so is e.Rule (appl): we have e = e1e2, ⊢ e1 : s → t and ⊢ e2 : s. If one of the
ei an be redued, then e an also be redued. Otherwise, by the indutionhypothesis, we obtain that both e1 and e2 are values. By Lemma 37, we get
e1 = µf(s1→→→t1; . . . ; sn→→→tn).λx.e0. Then e ; e0[f := e1; x := e2].Rule (case): we have e = (x = e0 ∈ s ? e1 | e2). If e0 an be redued, then ean also be redued. Otherwise, by the indution hypthesis, we obtain that
e0 is a value v. Beause of Lemma 39, we have ⊢ v : s or ⊢ v : ¬¬¬s, and thus
e ; e1[x := v] or e ; e2[x := v]. 26.7 Constrution of modelsA naive idea to build a model would be to look for an interpretation domain

D suh that D = ED. Of ourse suh a set annot exist, sine the ardinalityof EfunD, and thus of ED, is strily larger than the ardinality of D. Thisardinality problem an be avoided by onsidering only �nite graphs to interpretfuntions.For any set D, we write EfD = C + D2 + Pf (D × DΩ) where Pf denotesthe restrition of the powerset to �nite subsets.36

De�nition 44 A set-theoreti interpretation J_K : T → P(D) is �nitely extensionalif: 1. D = EfD2. JaK = E(a) ∩ D for any atom a.Lemma 45 If J_K is a �nitely extensional set-theoreti interpretation, then
JtK = E(t) ∩ D for any type t, and JτK = E(τ) ∩ D for any normal formal τ .Proof: Indution on t. 2The next lemma shows that taking �nite sets as extensional models for fun-tions does not hange the subtyping relation between arrow types (ompare itwith Lemma 23).Lemma 46 Let (Xi)i∈P and (Xi)i∈N be two �nite families of subsets of D.Then:

⋂

i∈P

Pf (Xi) ⊆
⋃

i∈N

Pf (Xi) ⇐⇒ ∃io ∈ N.
⋂

i∈P

Xi ⊆ Xi0Proof: The ⇐ impliation is straightforward. Let us prove ⇒. We assumethat any �nite subset of X =
⋂

i∈P Xi is a subset of one of the Xi0 with
i0 ∈ N . We need to prove that the same holds for X itself. Otherwise, weould �nd for eah i0 ∈ N an element xi0 ∈ X\Xi0 and we would obtain aontradition by onsidering the �nite set {xi0 | i0 ∈ N}. 2Lemma 47 Let P, N two �nite sets of arrow types and J_K an arbitratry set-theoreti interpretation. Then:

⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) ⇐⇒ Pf (D × DΩ) ∩
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)(By onvention ⋂a∈∅
E(a) = P(D × DΩ).)Proof: Consequene of Lemmas 23, 46, and 22. 2It is, then, not surprising that �nitely extensional interpretations are models.Lemma 48 Every �nitely extensional interpretation is a model.

37

Proof: Sine JτK = E(τ) ∩ D, we need to prove thatE(τ) = ∅ ⇐⇒ E(τ) ∩ D = ∅for any normal form τ . We write:E(τ) =
⋃

u∈U

⋃

(P,N)∈τ

(EuD ∩
⋂

a∈P

E(a)\
⋃

a∈N

E(a)

)So we need to prove that for any u ∈ U and (P, N) two �nite sets of atoms,we have:EuD ∩
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) ⇐⇒ D ∩ EuD ∩
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)If u 6= fun, then EuD ⊆ D, and the equivalene is thus trivial. The ase
u = fun omes from Lemma 47. 26.8 A universal modelIn this setion, we de�ne a strutural and �nitely extensional model and thenshow that it is universal and, in the next setion, that the subtyping relationindued by this model is deidable.We need to build a set D0 suh that D0 = EfD0, that is, a solution to theequation D0 = C +D0×D0+Pf (D0×D0

Ω). We will onsider the initial solutionto this equation. Conretely, we de�ne D0 as the set of �nite terms generatedby the prodution d of the following grammar (c ranges over elements of C):
d ::= c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | ΩNow, we need to de�ne a set-theoreti interpretation J_K0 : T → P(D0)suh that JtK0 = E(a)0 ∩ D0. Beause of the indutive struture of elementsof D0, this equation atually de�nes the funtion J_K0. To see this, we willde�ne a binary prediate (d : t) where d ∈ D0 and t ∈ T . The truth valueof (d : t) is de�ned by indution on the pair (d, t) ordered lexiographially,using the indutive struture for elements of D0, and the indution priniple wementioned earlier for types. Here is the de�nition:

(c : b) = c ∈ BJbK
((d1, d2) : t1×××t2) = (d1 : t1) ∧ (d2 : t2)
({(d1, d

′
1), . . . , (dn, d′n)} : t1→→→t2) = ∀i. (di : t1) ⇒ (d′i : t2)

(d : t1∨∨∨t2) = (d : t1) ∨ (d : t2)
(d : ¬¬¬t) = ¬(d : t)
(d : t) = false otherwise38

Now we de�ne JtK0 = {d ∈ D0 | (d : t)}. It is straightforward from thisde�nition to see that J_K0 is a set-theoreti interpretation and that it is stru-tural (and thus well-founded). It is also lear that it is �nitely extensional. It isthus a model. It remains to prove that this model is universal. This is a diretonsequene of the next lemma.Lemma 49 If S 0 = {τ | JτK0 = ∅} and S is a simulation, then S ⊆ S 0.Proof: Let S be a simulation. We need to prove that ∀τ ∈ S . JτK0 = ∅,that is:
∀d ∈ D0.∀τ ∈ S . d 6∈ JτK0We will prove this property by indution on d ∈ D0. Let's take d ∈ D0 and

τ ∈ S . Sine S is a simulation, we also have τ ∈ ES , that is:
∀u ∈ U.∀(P, N) ∈ t. (P ⊆ Au ⇒ CP,N∩Au

u)} (6)where the onditions CP,N
u are as in De�nition 25.We need to prove that d 6∈ JτK0. The set JτK0 is equal to:

⋃

(P,N)∈τ

⋂

a∈P

JaK0\
⋃

a∈N

JaK0We prove that d does not belong to any of the terms of this union. Let
(P, N) ∈ τ and u be the kind of d (as for values, it is straightforward toassoiate a unique kind to eah element of D0). If a ∈ A \Au, then learly
d 6∈ JaK0. As a onsequene, if P 6⊆ Au, then d 6∈

⋂

a∈P JaK0\⋃a∈N JaK0. Wenow assume that P ⊆ Au. We an apply (6). We obtain that CP,N∩Au

u holds.It remains to prove that:
d 6∈

⋂

a∈P

JaK0\
⋃

a∈N∩Au

JaK0

u = basi, d = c. The ondition CP,N∩Au

u is:
C ∩

⋂

b∈P

BJbK ⊆
⋃

b∈N

BJbKAs a onsequene, we get:
d 6∈

⋂

b∈P

BJbK\
⋃

b∈N

BJbK =
⋂

a∈P

JaK0\
⋃

a∈N∩Abasi JaK0

u = prod, d = (d1, d2). The ondition CP,N∩Au

u is:
∀N ′ ⊆ N ∩ Aprod.

N

(

∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

)

∈ S

∨

N

∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2

 ∈ S39

For eah N ′, we apply the indution hypothesis to d1 and to d2. We get:
d1 6∈

t
∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

|0

∨ d2 6∈

u
v ∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2

}
~

0That is:
d 6∈

(

⋂

t1×××t2∈P

Jt1K0\
⋃

t1×××t2∈N ′

Jt1K0
)

×

⋂

t1×××t2∈P

Jt2K0\
⋃

t1×××t2∈N\N ′

Jt2K0

Aording to Lemma 20 and to Jt1K0 × Jt2K0 = Jt1×××t2K0, we thus get:
d 6∈

⋂

a∈P

JaK0\
⋃

a∈N∩Aprod JaK0

u = fun, d = {(d1, d
′
1), . . . , (dn, d′n)}. The ondition CP,N∩Au

u says that thereexists t0→→→s0 ∈ N suh that, for all P ′ ⊆ P :
N

(

t0∧∧∧
∧∧∧

t→→→s∈P ′

¬¬¬t

)

∈ S ∨

P 6= P ′

N

(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P\P ′

s

 ∈ SApplying the indution hypothesis to the di and d′i (note that if d′i = Ω, then
d′i 6∈ JτK0 is trivial for all τ):

di 6∈

t
t0∧∧∧

∧∧∧

t→→→s∈P ′

¬¬¬t

|0

∨

P 6= P ′

d′i 6∈

u
v(¬¬¬s0)∧∧∧

∧∧∧

t→→→s∈P\P ′

s

}
~

0Let us �rst assume that ∀i. (di ∈ Jt0K0 ⇒ d′i ∈ Js0K0). Then we have d ∈

Jt0→→→s0K0. Otherwise, let us onsider i suh that di ∈ Jt0K0 and d′i 6∈ Js0K0.The formula above gives for any P ′ ⊆ P :
(

di ∈
⋃

t→→→s∈P ′

JtK0
)

∨

P ′ 6= P ∧ d′i ∈ {Ω} ∪
⋃

t→→→s∈P\P ′

J¬¬¬sK0

Let's take P ′ = {t→→→s ∈ P | di 6∈ JtK0}. We have di 6∈
⋃

t→→→s∈P ′ JtK0, and thus
P ′ 6= P and d′i ∈ {Ω}∪

⋃

t→→→s∈P\P ′ J¬¬¬sK0. We an thus �nd t→→→s ∈ P\P ′ suhthat d′i 6∈ JsK0, and beause t→→→s 6∈ P ′, we also have di ∈ JtK0. We have thusproved that d 6∈ Jt→→→sK0 for some t→→→s ∈ P .In both ases, we get:
d 6∈

⋂

a∈P

JaK0\
⋃

a∈N∩Afun JaK0

240

6.9 Subtyping deidability for the universal modelWe will now fous on Theorem 15. Let ≤0 denote the subtyping relation induedby the universal model J_K0. We have t1 ≤0 t2 ⇐⇒ Jt1\\\t2K0 = ∅ ⇐⇒

JN (t1\\\t2)K0 = ∅. Therefore we need to show how to deide, for a given normalform τ0, whether Jτ0K0 = ∅ or not. Thanks to the Lemma above, we get:
Jτ0K0 = ∅ if and only if there exists a simulation S suh that τ0 ∈ S .Atually, we an restrit our attention to a �nite number of normal forms.Indeed, let us onsider the set A of all the atoms that our in τ0 (inludingatoms nested in other atoms). Thanks to the regularity of types, this set A is�nite. Write N (A) for the set of normal forms built only on top of these atoms,that is: N (A) = P(P(A) × P(A)). This set is also �nite, and looking atDe�nition 25, we see that an intersetion of a simulation and N (A) is again asimulation. As a onsequene, we get: Jτ0K0 = ∅ if and only if there exists asimulation S ⊆ N (A) suh that τ0 ∈ S . A naive algorithm an simply enu-merate all the subset of N (A) whih ontains τ0 and by applying De�nition 25hek whether one of them is a simulation.Of ourse, there exist better algorithms. For instane, we an interpretthe de�nition of a simulation as saturation rules: the algorithm starts fromthe set {τ0} and tries to saturate it until it obtains a simulation. Beauseof the disjuntions in the de�nition of a simulation, this algorithm needs toexplore di�erent branhes. A branh annot be in�nite beause the algorithmwill only onsider the normal forms in N (A) whih is a �nite set. There existsa simulation whih ontains τ0 if and only if one of the branhes sueeds inreahing a simulation. The Ph.D. thesis [14℄ desribes two algorithms whihimprove over this simple saturation-based strategy.6.10 Non-universal modelsThe interpretation domainD of a �nitely extensional set-theoreti interpretationmust be a solution to the equation D = EfD. In the previous setion, weonsidered the initial solution to this equation and we obtained a universalmodel. In this setion, we will build non-universal models by onsidering non-initial solutions to the equation D = EfD.A �rst attempt ould be to onsider in�nite (or maybe regular) terms gen-erated by the following produtions:

d ::= c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | ΩBut it is then impossible to build a �nitely extensional interpretation on thisdomain D∞. Indeed, if J_K is suh an interpretation, we onsider the element

d ∈ D∞ suh that d = (d, d) and the type t suh that t = (¬¬¬t)×××(¬¬¬t). Sine
d ∈ D∞ and JtK = E(t) ∩ D∞ = (D∞\JtK) × (D∞\JtK), we have: d ∈ JtK ⇐⇒
(d, d) ∈ (D∞\JtK) × (D∞\JtK) ⇐⇒ d 6∈ JtK. Contradition.41

So, we will build domains whih are intermediate between D0 and D∞. Weneed to introdue some new notions.For an arbitrary set X , we de�ne D[X] as the set of �nite terms generatedby the prodution d below:
d ::= x | c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | Ωwhere x ranges over elements of X . In other words, D[X] is the initial solution

D to the equation D = X + C + D2 + Pf (D × DΩ). We de�ne the prediate
∆ ⊢ d : t for d ∈ D[X], t ∈ T , ∆ ∈ P(T)X by indution on the struture of d:
(∆ ⊢ d : t1∨∨∨t2) = (∆ ⊢ d : t1) ∨ (∆ ⊢ d : t2)
(∆ ⊢ d : ¬¬¬t) = ¬(∆ ⊢ d : t)
(∆ ⊢ c : b) = c ∈ BJbK
(∆ ⊢ (d1, d2) : t1×××t2) = (∆ ⊢ d1 : t1) ∧ (∆ ⊢ d2 : t2)
(∆ ⊢ {(d1, d

′
1), . . . , (dn, d′n)} : t1→→→t2) = ∀i. (∆ ⊢ di : t1) ⇒ (∆ ⊢ d′i : t2)

(∆ ⊢ x : a) = a ∈ ∆(x)
(∆ ⊢ d : t) = false otherwiseA ongruene on D[X] is an equivalene relation ≡ suh that (d1

1 ≡ d2
1∧d1

2 ≡
d2
2) ⇒ (d1

1, d
1
2) ≡ (d2

1, d
2
2) and (∀i.d1

i ≡ d2
i ∧ d

′1
i ≡ d

′2
i) ⇒ {(d1

1, d
′1
1), . . .} ≡

{(d2
1, d

′2
1), . . .}. If for all x, we hoose an element dx ∈ Ef(D[X]) = D[X]\Xand if we onsider the smallest ongruene ≡ suh that ∀x ∈ X.x ≡ dx, thenthe quotient D

[X]
≡ = D[X]/ ≡ is suh that Ef (D

[X]
≡) = D

[X]
≡ (modulo an impliitbijetion). Let's hoose some ∆ ∈ P(T)X . We require the prediate (∆ ⊢ d : t)to be invariant under ≡, that is: d1 ≡ d2 ⇒ ((∆ ⊢ d1 : t) ⇐⇒ (∆ ⊢ d2 : t)).This is the ase if and only if ∀x.(∆ ⊢ x : t) ⇐⇒ (∆ ⊢ dx : t), that is, if andonly if:

(∗) ∀x ∈ X. ∆(x) = {t | ∆ ⊢ dx : t}When this property holds, we an de�ne J_K∆ : T → P(D
[X]
≡) by JtK∆ =

{[d]≡ | (∆ ⊢ d : t)}, where [d]≡ denotes the equivalene lass of d modulo
≡. This de�nes a �nitely extensional set-theoreti interpretation (and thus amodel).Of ourse, the di�ulty is now to hoose X , the dx and ∆ suh that (∗) holds.Let us onsider the ase where X = Z, and eah dk, k ∈ Z is de�ned using only
dk−1 in a uniform way. Formally, we onsider a �xed element δ ∈ D{•} suhthat δ 6= • and we de�ne dk = δ[• := k−1] (that is, the element of DZ obtainedby substituting • by k−1 in δ). If ∆ ∈ P(T)Z, then ∆ ⊢ dk : t is equivalent to
∆ ⊢ δ[• := k − 1] : t, and an indution on the struture of δ shows that this isequivalent to (• 7→ ∆k−1) ⊢ δ : t. If we de�ne the operator F : P(T) → P(T)by F (T) = {t | (• 7→ T) ⊢ δ : t}, then the ondition (∗) an be rewritten as:

∀k ∈ Z. ∆k = F (∆k−1)Building suh a sequene is not straightforward. We will rely on a tehniallemma. 42

Lemma 50 Let A be a �nite set, f : A → A, and a0 ∈ A. There exists aunique periodi sequene (ak)k∈Z ∈ AZ suh that:
∃n0 ∈ N.∀k ≥ n0.ak = fk(a0)(where fn denotes the n-th iterated omposition of f with itself). This sequeneis suh that:

∀k. ak+1 = f(ak)Proof: We onsider the sequene (an)n∈N de�ned by an = fn(a0). Sine
A is �nite, this sequene annot be injetive. We an �nd n0 < n1 suhthat an0 = an1 . A reurrene gives an = an+(n1−n0) for any n ≥ n0: thesequene (an)n∈N is ultimately periodi. As a onsequene, there exists aunique sequene (ak)k∈Z whih oinides ultimately with (an)n∈N.Clearly, the property ak+1 = f(ak) holds for k large enough, and beause
(ak)k∈Z is periodi, it holds for any k. 2Theorem 51 Let T 0 be a set of types. There exists a sequene (∆k)k∈Z suhthat:
• ∀k ∈ Z.∆k+1 = F (∆k)

• For any type t, the sequene of the truth values of (t ∈ ∆k)k∈Z is periodiand ∃n0 ∈ N.∀k ≥ n0.(t ∈ ∆k ⇐⇒ t ∈ F k(T 0))Proof: Sine the set P(T) is not �nite, we annot use the lemma diretly.The regularity of types will ome to the resue. We de�ne a one as a �niteset of types whih is losed under subterms deomposition (that is, if the setontains a type, it also ontains all its subterms). Any type belongs to someone beause a type is a regular term. For a one C, we an de�ne the funtion
FC : P(C) → P(C) by FC(T) = F (T) ∩ C. We an apply the lemma tothis funtion, beause P(C) is �nite. We write (T C

k)k∈Z for the sequene weobtain. Now, we observe on the de�nition of the ⊢ prediate that for t ∈ C,the assertion (• 7→ T) ⊢ δ : t holds if and only if (• 7→ (T ∩ C)) ⊢ δ : t holds.This gives immediatly the following property:
∀T ⊆ T . C ∩ F (T ∩ C) = C ∩ F (T)From that, a reurrene gives Fn

C(T 0) = Fn(T 0) ∩ C. So, for t ∈ C, wehave t ∈ T C
k ⇐⇒ t ∈ F k(T0) when k is large enough. Sine the sequene

(t ∈ T C
k)k∈Z is periodi, it does not depend on the hoie of the one C whihontains t. We an thus de�ne ∆k as the set of types t suh that t ∈ T C

k forsome/any one C that ontains t. We have T C
k = ∆k ∩C. It remains to hekthat ∆k+1 = F (∆k) for all k. Let t be a type and C a one whih ontains

t. We have t ∈ ∆k+1 ⇐⇒ t ∈ T C
k+1 and aording to the lemma, we have

T C
k+1 = F (T C

k) ∩ C = F (∆k) ∩ C. So: t ∈ ∆k+1 ⇐⇒ t ∈ F (∆k). Sine thisproperty holds for an arbitrary t, we get ∆k+1 = F (∆k) as expeted. 243

We will give two examples of onstrutions based on this theorem. First,we will build a model whih is not well-founded. In a well-founded model, thereursive type t0 = t0×××t0 is empty. We will build a model where this type is notempty. We take δ = (•, •) and we build (∆k)k∈Z as given by the theorem. Wethus get a �nitely extensional set-theoreti interpretation J_K∆ : T → P(DZ
≡).For any set of types T , we have t0 ∈ F (T) ⇐⇒ (• 7→ T) ⊢ δ : t0 ⇐⇒ (• 7→

T) ⊢ (•, •) : t0×××t0 ⇐⇒ (• 7→ T) ⊢ • : t0 ⇐⇒ t0 ∈ T . So if we hoose
T 0 suh that t0 ∈ T 0, we have t0 ∈ ∆k for all k, from whih we onlude that
Jt0K∆ ontains the [k]≡ for k ∈ Z. In partiular, it is not empty. To betterunderstand our onstrution, we an onsider the type t1 = (¬¬¬t1)×××(¬¬¬t1). We�nd that t1 ∈ F (T) ⇐⇒ t1 6∈ T and we dedue that Jt1K∆ ontains the [k]≡for all even k ∈ Z (if t1 ∈ T 0) or for all k ∈ Z (if t1 6∈ T 0). For more omplexreursive types, we might see other periods that 2.Now, we will build a strutural (and thus well-founded) model whih is notuniversal. We onsider the reursive type t0 = (0→→→0)\\\(t0→→→0). If J_K is a�nitely extensional set-theoreti interpretation, a simple omputation gives:

Jt0K = {(di, d
′
i) | ∃i. di ∈ Jt0K}In partiular, this set is empty for the universal model built in the previoussetion (beause its elements are �nite trees). We take δ = {(•, Ω)} and weproeed as above, with the following omputation: t0 ∈ F (T) ⇐⇒ (• 7→ T) ⊢

δ : t0 ⇐⇒ (• 7→ T) ⊢ {(•, Ω)} : (0→→→0)\\\(t0×××0) ⇐⇒ (• 7→ T) ⊢ • : t0 ⇐⇒
t0 ∈ T . We onlude that the model J_K∆ is not empty. It remains to see thatit is strutural. The deomposition relation ⊲ is de�ned by ([d1]≡, [d2]≡) ⊲ [di]≡.Beause of the de�nition of δ, if [d]≡ ⊲ [d′]≡, then d must be a pair (d1, d2) in
DZ × DZ . As a onsequene, the relation ⊲ is noetherian.6.11 Towards type-hekingIn this setion, we introdue notions that will be useful for deriving a type-heking algorithm. We also give the proof of Theorem 10 (loal exatness ofthe appliation rule). The existene results in this setion are e�etive (viz. itis possible to ompute the objets whose existene is asserted) provided that thesubtyping relation is deidable.Lemma 52 Let t be a type suh that t ≤ 1×××1. There exists a �nite set of pairsof types π(t) ∈ Pf (T 2) suh that:

• t ≃
∨∨∨

(t1,t2)∈π(t)

t1×××t2

• ∀(t1, t2) ∈ π(t). t1 6≃ 0 ∧ t2 6≃ 0 44

Proof: We an write:
t ≃

∨∨∨

(P,N)∈N (t) | P⊆Aprod(1×××1)∧∧∧ ∧∧∧a∈P

a\\\
∨∨∨

a∈N∩Aprod aUsing Lemma 20, we an rewrite any intersetion of produt types and om-plement of produt types as a union of produt types P ′ ⊆ Aprod:
t ≃

∨∨∨

a∈P ′

aWe simply de�ne π(t) as {(t1, t2) | t1×××t2 ∈ P ′ ∧ t1 6≃ 0 ∧ t2 6≃ 0}. 2Lemma 53 Let t be a type suh that t ≤ 0→→→1. Then there exists a �nite setof pairs of types ρ(t) ∈ Pf (T 2) and a type Dom(t) suh that:
∀t1, t2. (t ≤ t1→→→t2) ⇐⇒

{

t1 ≤ Dom(t)
∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ t2)Proof: We an write:

t ≃
∨∨∨

(P,N)∈N (t) | P⊆Afun(0→→→1)∧∧∧ ∧∧∧
a∈P

a\\\
∨∨∨

a∈N∩Afun aClearly, the Lemma is true for t ≃ 0 (with Dom(t) = 1 and ρ(t) = ∅), and if itholds for t and t′, then it also holds for t∨∨∨t′ (with Dom(t∨∨∨t′) = Dom(t)∧∧∧Dom(t′)and ρ(t∨∨∨t′) = ρ(t)∪ ρ(t′)). We an thus assume with loss of generality that thas the form:
t =

∧∧∧

a∈P

a\\\
∨∨∨

a∈N

awith P, N ⊆ Afun, P 6= ∅, and t 6≃ 0. We onlude easily with Lemma 24. 2Corollary 54 Let t and t1 be two types. If t ≤ t1→→→1, then t ≤ t1→→→t2 has asmallest solution t2 whih we write t • t1.Proof: Sine t ≤ t1→→→1, we have t1 ≤ Dom(t). The assertion t ≤ t1→→→t2 is thusequivalent to:
∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ t2)that is:

∨∨∨

(s1,s2)∈ρ(t) | (t1 6≤s1)

s2

 ≤ t2We write t • t1 for the left-hand side of this equation. 245

We an now prove Theorem 10.Proof: Let t, t1 be two types suh that t ≤ t1→→→1. Clearly, if ⊢ vf : t and
⊢ vx : t1, then ⊢ vfvx : t • t1, and thus, subjet redution gives ⊢ v : t • t1 if
vfvx

⋆
; v.Let's prove the opposite impliation:

∀v. ⊢ v : t • t1 ⇒ ∃vf , vx. (vfvx
⋆
; v) ∧ (⊢ vf : t) ∧ (⊢ vx : t1)This property is learly true for t ≃ 0, and if it is true for t and t′, then it istrue for t∨∨∨t′ (beause 0 • t1 ≃ 0 and (t∨∨∨t′) • t1 ≃ (t • t1)∨∨∨(t′ • t1)). We anthus assume, as in the proof of Lemma 53, that t has the form:

t =
∧∧∧

a∈P

a\\\
∨∨∨

a∈N

awith P, N ⊆ Afun, P 6= ∅, and t 6≃ 0. Lemma 24 gives:
t • t1 =

∨∨∨

P ′⊆P | t1 6≤
W

W

W

t′
1
→→→t′

2
∈P ′ t′

1

∧∧∧

t′
1
→→→t′

2
∈P\P ′

t′2

and
t1 ≤

∨∨∨

t′
1
→→→t′

2
∈P

t′1Let v be a value of type t•t1. We an �nd P ′ ⊆ P suh that t1 6≤
∨∨∨

t′
1
→→→t′

2
∈P ′ t′1and ⊢ v :

∧∧∧

t′
1
→→→t′

2
∈P\P ′ t′2. Let vx be a value of type t1\\\

∨∨∨

t′
1
→→→t′

2
∈P ′ t′1 and vfthe abstration

µf(P).λx. (y = x ∈
∨∨∨

t′
1
→→→t′

2
∈P ′

t′1 ? fy | v)It is then easy to hek that ⊢ vf : t and vfvx
⋆
; v. 26.12 Type-heking algorithmIn this setion, we assume that the subtyping relation ≤ is deidable and wegive a type-heking algorithm for our type system.The key di�ulty to overome is that the set of types t suh that Γ ⊢ e : t,for a given environment Γ and a given expression e has no smallest elementin general. Indeed, onsider the ase where e is a well-typed abstration. The

(abstr) rule allows us to hoose an arbitrary number of arrow types.46

We will thus introdue a new syntati ategory, alled type sheme to de-note suh sets of types. The syntax for type shemes is given by the followingprodutions: t ::= t t ∈ T

| [t1→→→s1; . . . ; tn→→→sn] n ≥ 1; ti, si ∈ T

| t1 ⊗ t2
| t1 > t2
| ΩWe will write [ti→→→si]i=1..n for [t1→→→s1; . . . ; tn→→→sn]. We de�ne the funtion {{{_}}}whih maps shemes to sets of types:

{{{t}}} = {s | t ≤ s}

{{{[ti→→→si]i=1..n}}} = {s | ∃s0 =
∧∧∧

i=1..n

(ti→→→si) ∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j). 0 6≃ s0 ≤ s}

{{{t1 ⊗ t2}}} = {s | ∃t1 ∈ {{{t1}}}, t2 ∈ {{{t2}}}. t1×××t2 ≤ s}
{{{t1 > t2}}} = {s | ∃t1 ∈ {{{t1}}}, t2 ∈ {{{t2}}}. t1∨∨∨t2 ≤ s}
{{{Ω}}} = ∅Lemma 55 Let t be a type shema. Then {{{t}}} = ∅ if and only if Ω appears int. Moreover, {{{t}}} is losed under subsumption (t ∈ {{{t}}} ∧ t ≤ t′ ⇒ t′ ∈ {{{t}}}) andintersetion (t ∈ {{{t}}} ∧ t′ ∈ {{{t}}} ⇒ t∧∧∧t′ ∈ {{{t}}}).Proof: Straightforward indution of the struture of t. 2Lemma 56 Let t be a type sheme and t0 a type. We an ompute a typesheme, written t0 ? t, suh that:

{{{t0 ? t}}} = {s | ∃t ∈ {{{t}}}. t0∧∧∧t ≤ s}Proof: We de�ne t0?t by indution on t. If t is a type t, we take t0?t = t0∧∧∧t.If t is a union t1∨∨∨t2, we distribute: t0 ? t = (t0 ? t1) > (t0 ? t2). If t is Ω, orif {{{t}}} = ∅, we take t0 ? t = Ω. For the two remaining ases, we assume thatt 6= ∅, and we observe that:
t0 ≃

∨∨∨

(P,N)∈N (t)

∧∧∧

a∈P

a∧∧∧
∧∧∧

a∈N

¬¬¬aWe an thus see t0 as a boolean ombination built with 0, 1, ∨∨∨, ∧∧∧, atoms andomplement of atoms. For t0 ≃ 0, we take t0 ? t = 0. For t0 ≃ 1, we take
t0 ? t = t. For t0 ≃ t1∨∨∨t2, we take t0 ? t = (t1 ? t)> (t2 ? t). For t0 ≃ t1∧∧∧t2,we take t0 ? t = t1 ? (t2 ? t). It remains to deal with the ase of an atom ora omplement of an atom.For the ase t = t1 ⊗ t2, we take:

(t1×××t2) ? (t1 ⊗ t2) = (t1 ? t1) ⊗ (t2 ? t2)47

¬¬¬(t1×××t2) ? (t1 ⊗ t2) = ((¬¬¬t1 ? t1) ⊗ t2) > (t1 ⊗ (¬¬¬t2 ? t2))and if a ∈ A \Aprod:
a ? (t1 ⊗ t2) = 0

¬¬¬a ? (t1 ⊗ t2) = (t1 ⊗ t2)For the ase t = [ti→→→si]i=1..n, we take:
(t→→→s) ? [ti→→→si]i=1..n =

[ti→→→si]i=1..n si ∧∧∧

i=1..n

ti→→→si ≤ t→→→s0 si ∧∧∧

i=1..n

ti→→→si 6≤ t→→→s

¬¬¬(t→→→s) ? [ti→→→si]i=1..n =

0 si ∧∧∧

i=1..n

ti→→→si ≤ t→→→s

[ti→→→si]i=1..n si ∧∧∧

i=1..n

ti→→→si 6≤ t→→→sand if a ∈ A \Afun:
a ? [ti→→→si]i=1..n = 0

¬¬¬a ? [ti→→→si]i=1..n = [ti→→→si]i=1..n

2Lemma 57 Let t be a type sheme and t a type. We an deide the assertion
t ∈ {{{t}}}, whih we also write t ≤ t.Proof: First, we make the observation that t ∈ {{{t}}} if and only if 0 ∈
{{{(¬¬¬t) ? t}}}. Indeed: 0 ∈ {{{(¬¬¬t) ? t}}} ⇐⇒ ∃s ∈ {{{t}}}. (¬¬¬t)∧∧∧s ≤ 0 ⇐⇒
∃s ∈ {{{t}}}. s ≤ t ⇐⇒ t ∈ {{{t}}}. As a onsequene, we only need to dealwith the ase t = 0. If {{{t}}} = ∅, then 0 ∈ {{{t}}} does not hold. Otherwise, weonlude by indution over the struture of t:0 ∈ {{{t}}} ⇐⇒ t ≃ 00 6∈ {{{[ti→→→si]i=1..n}}}0 ∈ {{{t1 ⊗ t2}}} ⇐⇒ (0 ∈ {{{t1}}}) ∨ (0 ∈ {{{t2}}})0 ∈ {{{t1 > t2}}} ⇐⇒ (0 ∈ {{{t1}}}) ∧ (0 ∈ {{{t2}}})0 6∈ {{{Ω}}}

2Lemma 58 Let t by a type sheme and i ∈ {1, 2}. We an ompute a typesheme πi(t) suh that
πi(t) = {s | ∃t1×××t2 ∈ {{{t}}}.ti ≤ s}48

Proof: Let's take for instane i = 1. Note that ∃t1×××t2 ∈ {{{t}}}.t1 ≤ s isequivalent to s×××1 ∈ {{{t}}}.If t 6≤ 1×××1, then we take {{{π1(t)}}} = Ω. Otherwise, we proeed by indutionover the struture of t. For t = t1 > t2, we take π1(t) = π1(t1) > π1(t2). Fort = t1 ⊗ t2, we take π1(t) = t1. For t = t, we take π1(t) =
∨∨∨

(t1,t2)∈π(t) t1.The other ases are impossible. 2Lemma 59 Let t and t1 be two type shemes. We an ompute a type shemet • t1 suh that
{{{t • t1}}} = {s | ∃t1→→→t2 ∈ {{{t}}}.t1 ∈ {{{t1}}} ∧ t2 ≤ s}Proof: We proeed by indution over the struture of t. For t = t1 > t2, wetake t • t1 = t1 • t1 > t2 • t1. For t = t1 ⊗ t2 or t = Ω, we take t • t1 = Ω.For t = [t′i→→→s′i]i=1..n, we take t • t1 = (

∧∧∧

i=1..n(t′i→→→s′i)) • t1, so the onlyremaining ase if t = t. We observe that ∃t1→→→t2 ∈ {{{t}}}.t1 ∈ {{{t1}}} ∧ t2 ≤ s isequivalent to ∃t1 ∈ {{{t1}}}.t ≤ t1→→→s. Aording to Lemma 53, this is equivalentto: ∃t1 ∈ {{{t1}}}.t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ s). We laimthat this is equivalent to t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ s).The ⇒ impliation is immediate. Let us hek the ⇐ impliation. For every
(s1, s2) ∈ ρ(t) suh that s2 6≤ s, we have t1 ≤ s1 and it is thus possible to�nd a type t′1 ∈ {{{t1}}} suh that t′1 ≤ s1. We de�ne t1 as the intersetion of allthese t′1 and of Dom(t), and we thus have t1 ∈ {{{t1}}} ∧ t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈
ρ(t). (t1 ≤ s1) ∨ (s2 ≤ s). To onlude, we de�ne t • t1 as Ω if t1 6≤ Dom(t),and otherwise as:

∨∨∨

(s1,s2)∈ρ(t).(t1 6≤s1)

s2

2We an now desribe a type-heking algorithm. We de�ne a sheme environmentas a �nite mapping � from variables to type shemes suh that {{{�(x)}}} 6= ∅ forevery x in the domain of �. The type-heking algorithm is formalized as a totalfuntion whih maps a sheme environment � and an expression e to a shemewritten �[e]. This funtion is de�ned by indution on the struture of e by the
49

following equations:

�[c] = bc�[(e1, e2)] = �[e1] ⊗ �[e2]�[µf(t1→→→s1; . . . ; tn→→→sn).λx.e] =

{ t if ∀i = 1..n. si ≤ si

Ω otherwisewhere { t = [ti→→→si]i=1..nsi = ((f : t), (x : ti),�)[e] (i = 1..n)�[x] =

{ �(x) if �(x) is de�ned
Ω otherwise�[πi(e)] = πi(�[e])�[e1e2] = �[e1] • �[e2]�[(x = e ∈ t ? e1|e2)] = s1 > s2where

t0 = �[e]t1 = t ? t0t2 = (¬¬¬t) ? t0si =

((x : ti),�)[ei] if ti 6≤ 0,{{{ti}}} 6= ∅0 if ti ≤ 0
Ω if {{{ti}}} = ∅

(i = 1..2)We are now going to prove soundness and ompleteness of the algorithm. If �is a sheme environment and Γ is a typing environment, we write � ≤ Γ when �and Γ have the same domain and for all x in this domain �(x) ≤ Γ(x). If Γ1 and
Γ2 are two typing environment, we de�ne Γ1∧∧∧Γ2 by (Γ1∧∧∧Γ2)(x) = Γ1(x)∧∧∧Γ2(x)(unde�ned when one of the Γi(x) is not de�ned). Note that if � ≤ Γ1 and� ≤ Γ2, then � ≤ Γ1∧∧∧Γ2.Lemma 60 (Corretness) If �[e] ≤ t, then there exists Γ ≥ � suh that
Γ ⊢ e : t.Proof: By indution over the struture of e.

e = c. We have bc ≤ t, and thus ⊢ c : t. We an take for Γ an arbitrary typingenvironment suh that Γ ≥ �. We use the ∧∧∧ operator on typing environmentand Lemma 30 to reonile di�erent Γ's given by several uses of the indutionhypothesis.
e = x. We have Γ(x) ≤ t. We an hoose Γ ≥ � suh that Γ(x) = t.
e = (e1, e2). We have �[e1] ⊗ �[e2] ≤ t. We an thus �nd t1 ≥ �[e1] and
t2 ≥ �[e2] suh that t1×××t2 ≤ t. The indution hypothesis gives Γ1 ≥ � suhthat Γ1 ⊢ e1 : t1 and Γ2 ≥ � suh that Γ2 ⊢ e2 : t2. We take Γ = Γ1∧∧∧Γ2.
e = e1e2. We have �[e1]•�[e2] ≤ t. We an thus �nd t1, t2 suh that t1→→→t2 ≥�[e1], t1 ≥ �[e2] and t2 ≤ t. The indution hypothesis gives Γ1 ≥ � suh that
Γ1 ⊢ e1 : t1→→→t2 and Γ2 ≥ � suh that Γ2 ⊢ e2 : t1. We take Γ = Γ1∧∧∧Γ2.
e = πi(e

′). We have πi(�[e′]) ≤ t. We an thus �nd t1, t2 suh that t1×××t2 ≥�[e′] and ti ≥ t. The indution hypothesis gives Γ ≥ � suh that Γ ⊢ e′ :
t1×××t2. We dedue that Γ ⊢ e : ti and by subsumption Γ ⊢ e : t.50

e = (x = e′ ∈ t′ ? e1 | e2). We take t0 = �[e′], t1 = t′?t0 and t2 = (¬¬¬t′)?t0.We also take s1 and s2 as in the orresponding ase of the de�nition of �[e].We have s1>s2 ≤ t. We an thus �nd s1 ≥ s1 and s2 ≥ s2 suh that t ≥ s1∨∨∨s2.Let's take i ∈ {1, 2}. We will de�ne a type ti. We have si 6= Ω sine si ≥ si.There remains two ases. If ti 6≤ 0, we have si = ((x : ti),�)[ei]. Theindution hypothesis gives Γi ≥ � and ti ≥ ti suh that (x : ti), Γi ⊢ ei : si.Otherwise, we have si = 0 and we take ti = 0. In both ase, we have ti ≥ ti.Let's onsider the type t0 = (t1∧∧∧t′)∨∨∨(t2∧∧∧¬¬¬t′). We now prove that t0 ≥ t0.Sine t1 ≥ t1 = t′ ? t0, there exists t′1 ≥ t0 suh that t′∧∧∧t′1 ≤ t1. Similarly,we have t′2 ≥ t0 suh that (¬¬¬t′)∧∧∧t′2 ≤ t2. We get t0 ≥ (t′∧∧∧t′1)∨∨∨((¬¬¬t′)∧∧∧t′2) ≥
(t′∧∧∧t′1∧∧∧t′2)∨∨∨((¬¬¬t′)∧∧∧t′1∧∧∧t′2) ≃ t′1∧∧∧t′2 ≥ t0.Sine t0 ≥ t0, the indution hypothesis gives Γ0 ≥ � suh that Γ0 ⊢ e′ : t0.Let's onsider the types t′′1 = t0∧∧∧t ≤ t1 and t′′2 = t0∧∧∧(¬¬¬t) ≤ t2. By onsideringthe intersetion of Γ0 and of Γ1 and Γ2 when they are de�ned, we �nd Γ ≥ �suh that Γ ⊢ e′ : t0 and (xi : t′′i), Γ ⊢ ei : si when ti 6≤ 0. The rule (case)gives Γ ⊢ e : s1∨∨∨s2. By subsumption, we get Γ ⊢ e : t.
e = µf(t1→→→s1; . . . ; tn→→→sn).λx.e′. We take t and si as in the de�nition of theorresponding ase for �[e]. Sine �[e] 6= Ω, we get t ≤ t and si ≤ si for all
i = 1..n. The indution hypothesis gives, for eah i, an environment Γi ≥ �,and two types ti ≥ t, t′′i ≥ ti suh that (f : ti), (x : t′′i), Γi ⊢ e′ : si.We de�ne the type t′ as ∧∧∧i=1..n ti∧∧∧t. We have t′ ≥ t = [ti→→→si]i=1..n. We anthus �nd a type t′′ of the form t′′ =

∧∧∧

i=1..n ti→→→si∧∧∧
∧∧∧

j=1..m¬¬¬(t′j→→→s′j) suhthat t′ ≥ t′′ and t′′ 6≃ 0.If we take for Γ the intersetion of all the Γi, we obtain (f : t′′), (x : ti), Γ ⊢
e′ : si for all i from whih we onlude Γ ⊢ e : t′′ and thus Γ ⊢ e : t. 2Lemma 61 (Completeness) If � ≤ Γ and Γ ⊢ e : t then �[e] ≤ t.Proof: By indution over the derivation of Γ ⊢ e : t and ase disjuntion overthe last rule used in this derivation. The proof is mehanial. We give thedetails only for the rule (case).

Γ ⊢ e : t0

{

t0 6≤ ¬¬¬t ⇒ (x : t0∧∧∧t), Γ ⊢ e1 : s
t0 6≤ t ⇒ (x : t0\\\t), Γ ⊢ e2 : s

Γ ⊢ (x = e ∈ t ? e1|e2) : sWe assume that � ≤ Γ and we take t0,t1, t2,s1,s2 as in the de�nition of�[(x = e ∈ t ? e1|e2)]. We need to prove that s1 > s2 ≤ s, that is s1 ≤ s ands2 ≤ s. We will do the proof for s1 (the proof for s2 is similar).The indution hypothesis gives t0 = �[e] ≤ t0, from whih we get t1 ≤ t∧∧∧t0.If t1 ≤ 0, then s1 = 0 ≤ s. Otherwise, sine {{{t1}}} 6= ∅, we have s1 = ((x :t1),�)[e1]. We have t0 6≤ ¬¬¬t, otherwise t1 ≤ 0. We thus have a sub-derivation
(x : t0∧∧∧t), Γ ⊢ e1 : s. The indution hypothesis, applied to the environment
(x : t1),� gives s1 ≤ s. 251

By ombining the two previous lemmas, we get an exat haraterization ofthe type-heking algorithm in terms of the type system.Theorem 62 For any sheme environment � and expression e:
{{{�[e]}}} = {t | ∃Γ ≥ �.Γ ⊢ e : t}Corollary 63 Let Γ be a typing environment. It an also be seen as a shemeenvironment. For any expression e and any type t, we have:

Γ ⊢ e : t ⇐⇒ Γ[e] ≤ tAs a speial ase, the expression e is well-typed under Γ if and only if {{{Γ[e]}}} 6= ∅.7 ConlusionOur original motivation for developing the theory presented in this artile wasthe addition of �rst-lass funtions to XDue while preserving the set-theoretiapproah to subtyping. This was the starting point of the CDue projet [10℄,aiming at developing a programming framework overing several aspets of XMLprogramming: e�ient implementation, query languages, web-servies, web pro-gramming, and so on.The reader might be surprised to fae suh a omplex theory in the setting ofan XML-oriented funtional language. First, we should mention that XML playsno role in the omplexity of the theory. The irularity whih our bootstrappingtehnique addresses omes only from the ombination of arrow types, reursivetypes and Boolean onnetives. Sine XDue already had reursive types andBoolean onnetives, it seemed natural to add arrow types and to fully integratethem with these features. Simpler solutions ould have been possible, e.g. bystratifying the type algebra so as to avoid any interation between arrow typesand existing XDue types: this is what the �rst author did to integrate XDuetypes into an ML-based type system [15℄.Seond, we ould have presented the theory without introduing the abstratonept of models. Indeed, for the appliation to a spei� programming lan-guage, we ould have worked diretly with the universal model (Setion 6.8).That said, we believe that the urrent presentation better aptures the esseneof our approah. Working diretly with a spei� model would be mysteriousand ad ho.Although we presented our notion of model and the bootstrapping tehniqueon a spei� type algebra and for a spei� alulus, our framework is quite ro-bust. Frish's Ph.D. thesis [14℄ desribes some variants of the system (removingtype error at appliation, removing overloading) and shows how minimal mod-i�ations to the theory are enough to deal with them.More importantly, our approah and the tehniques we developed turnedout to have muh a broader appliation than we initally expeted. What wedevised is the �rst approah for a higher order λ-alulus in whih union, in-tersetion, and negation types have a set-theoreti interpretation. The logial52

relevane of the approah was independently on�rmed by Dezani et al. [13℄who showed that the subtyping relation indued by the universal model of Se-tion 6.8 restrited to its positive part (that is arrows, unions, intersetions butno negations) oinides with the relevant entailment of the B+ logi (de�ned30 years before we started our work). This same approah an be applied toparadigms other than λ-aluli: Castagna, De Niola and Varaa [9℄ use ourtehnique to de�ne the Cπ-alulus, a π-alulus where Boolean ombinatorsare added to the type onstrutors ch+(t) and ch
−(t) whih lassify all the han-nels on whih it is possible to read or, respetively, to write a value of type t.The tehnique using the extensional interpretation is still needed for ardinalityreasons, however bootstrapping in Cπ has a di�erent �avour, sine it generatesa model that is muh loser to the model of values. Interestingly, this modelis de�ned by a �x-point onstrution. Cπ features several points that are inommon with or dual to CDue: Cπ presents the same paradox one meets whenadding referene types to CDue [7℄. The paradox an be avoided by restritingCπ to its �loal� version [9℄ but in that ase the type shemes of Setion 6.12must be reintrodued, in spite of the fat that they are not needed for the fullversion of Cπ. Another striking resemblane between CDue and Cπ that isworth mentioning is that in order to deide the subtyping relation for the Cπ,one takles the same di�ulties as those met in deiding general subtyping forthe polymorphi extension of CDue [19℄, namely, one must be able to deidewhether a type is a singleton or not. An informal introdution to these aspetsan be found in [5℄, while the formal orrespondene between CDue and Cπ isstudied in [6℄.Referenes[1℄ A. Aiken and E. L. Wimmers. Type inlusion onstraints and type in-ferene. In Proeedings of the Seventh ACM Conferene on FuntionalProgramming and Computer Arhiteture, pages 31�41, Copenhagen, Den-mark, June 93.[2℄ A. Asperti and G. Longo. Categories, Types and Strutures: An Introdu-tion to Category Theory for the Working Computer Sientist. MIT-Press,1991.[3℄ H. Barendregt, M. Coppo, and M. Dezani-Cianaglini. A �lter lambdamodel and the ompleteness of type assignment. Journal of Symboli Logi,48(4):931�940, 1983.[4℄ V. Benzaken, G. Castagna, and A. Frish. CDue: an XML-friendly generalpurpose language. In ICFP '03, 8th ACM International Conferene onFuntional Programming, pages 51�63, Uppsala, Sweden, 2003. ACM Press.[5℄ G. Castagna. Semanti subtyping: hallenges, perspetives, and open prob-lems. In ICTCS 2005, Italian Conferene on Theoretial Computer Siene,53

number 3701 in Leture Notes in Computer Siene, pages 1�20. Springer,2005.[6℄ G. Castagna, M. Dezani, and D. Varaa. Enoding CDue into the Cπ-alulus. In CONCUR '06, Leture Notes in Computer Siene. Springer-Verlag, 2006. To appear.[7℄ G. Castagna and A. Frish. A gentle introdution to semanti subtyping. InProeedings of PPDP '05, the 7th ACM SIGPLAN International Sympo-sium on Priniples and Pratie of Delarative Programming, ACM Press(full version) and ICALP '05, 32nd International Colloquium on Automata,Languages and Programming, Leture Notes in Computer Siene n. 3580,Springer (summary), Lisboa, Portugal, 2005. Joint ICALP-PPDP keynotetalk.[8℄ G. Castagna, G. Ghelli, and G. Longo. A alulus for overloaded funtionswith subtyping. Information and Computation, 117(1):115�135, 1995.[9℄ G. Castagna, R. D. Niola, and D. Varaa. Semanti subtyping for the π-alulus. In LICS '05, 20th Annual IEEE Symposium on Logi in ComputerSiene. IEEE Computer Soiety Press, 2005.[10℄ The CDue programming language. http://www.due.org.[11℄ M. Coppo and M. Dezani-Cianaglini. An extension of the basi fun-tionality theory for the λ-alulus. Notre-Dame Journal of Formal Logi,21(4):685�693, Otober 1980.[12℄ F. Damm. Subtyping with union types, intersetion types and reursivetypes II. Researh Report 816, IRISA, 1994.[13℄ M. Dezani-Cianaglini, A. Frish, E. Giovannetti, and Y. Motohama. Therelevane of semanti subtyping. In Intersetion Types and Related Systems.Eletroni Notes in Theoretial Computer Siene 70(1), 2002.[14℄ A. Frish. Théorie, oneption et réalisation d'un langage de programmationfontionnel adapté à XML. PhD thesis, Université Paris 7, De. 2004.[15℄ A. Frish. OCaml + XDue. In Programming Languages Tehnologies forXML (PLAN-X), 2006.[16℄ A. Frish, G. Castagna, and V. Benzaken. Semanti Subtyping. In LICS'02, 17th Annual IEEE Symposium on Logi in Computer Siene, pages137�146. IEEE Computer Soiety Press, 2002.[17℄ R. Hindley and G. Longo. Lambda-alulus models and extensionality.Zeit. Math. Logik Grund. Math., 26(2):289�319, 1980.[18℄ H. Hosoya. Regular Expression Types for XML. PhD thesis, The Universityof Tokyo, 2001. 54

[19℄ H. Hosoya, A. Frish, and G. Castagna. Parametri polymorphism forXML. In POPL '05, 32nd ACM Symposium on Priniples of ProgrammingLanguages. ACM Press, 2005.[20℄ H. Hosoya and B. Piere. Regular expression pattern mathing for XML.In POPL '01, 25th ACM Symposium on Priniples of Programming Lan-guages, 2001.[21℄ H. Hosoya and B. Piere. XDue: A typed XML proessing language. ACMTransations on Internet Tehnology, 3(2):117�148, 2003.[22℄ J. C. Reynolds. The oherene of languages with intersetion types. InT. Ito and A. R. Meyer, editors, Theoretial Aspets of Computer Software,volume 526 of Leture Notes in Computer Siene, pages 675�700, Berlin,1991. Springer-Verlag.[23℄ J. C. Reynolds. Design of the programming language Forsythe. TehnialReport CMU-CS96 -146, Carnegie Mellon University, Pittsburgh, Pennsyl-vania, June 1996.

55

