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Abstract. Developing interactive programs is difficult because of the poor sup-
port for programming interactions in programming languages and the poor sup-
port for creative graphic design in traditional toolkits. This paper presents the
Hierarchical State Machine Toolkit (HsmTk), a toolkit targeting the development
of rich interactions. HsmTk has been designed to accommodate the needs of its
users, namely programmers as well as interaction and graphic designers. It fea-
tures a new control structure that makes interactions first class objects by ex-
tending C++ with hierarchical state machines. It also features the use of Scalable
Vector Graphics (SVG) as the graphic language, enabling graphical designers to
specify high-quality interfaces. Together, these features enable a tight coupling
between graphic and interaction design by designers and software development
by programmers. The paper provides examples illustrating the development pro-
cess that results from using HsmTk.

Keywords: Advanced interaction techniques, hierarchical state machines, HsmTk,
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1 Introduction

Programming interactive applications is known to be difficult and costly [1]. User in-
terface toolkits are the most effective solution proposed so far to reduce the cost and
difficulty of developing such applications. They usually provide high-level components
that hide the underlying complexity of interactive behaviours. Most user interface toolk-
its are based onwidgets, such as menus or buttons, which can be assembled to create a
complete user interface.

Widget-based toolkits have proved effective, as they are used for developing most
graphical user interfaces. However they result in a WIMP (Windows, Menus, Icons,
Pointing) interaction style that may not be well-suited to the task at hand. Figure 1
shows two interactions to perform a color change. On the left, the color is selected with a
modal dialog box and requires three to five clicks. This type of interaction is common in
current applications, because it is the path of least effort for the programmer when using
a traditional widget-based toolkit. Yet this interaction violates the principles of direct
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manipulation [2] that led to the first graphical interfaces. Indeed, the color attribute is
manipulatedindirectly, through a dialog box [3].

Fig. 1.Two interactions to set a color. Using a property box (left), or a transparent tool (right)

On the right of Fig. 1, the color is selected with a single click through a bimanual
transparent tool ortoolglass[4]: a trackball used by the non-dominant hand moves the
toolglass over the desired area while the dominant hand selects both the action (chang-
ing the color) and the object of the action in a single click. Such a bimanual transparent
tool is an example of a so-called post-WIMP interaction technique. Many such tech-
niques have emerged over the past decade and have been shown to be very efficient for
a variety of tasks. Many post-WIMP techniques cannot be implemented as widgets and
are therefore not available to developers using widget-based toolkits. The only alter-
native is to use program these techniques from scratch using low-level programming.
The limitations of the WIMP approach and widget-based toolkits are illustrated by the
amount of recent works conducted in the field of post-WIMP interaction toolkits [5–8].
Our goal, similar to some of this related work, is to make programming of hand-crafted
interactions dedicated to a very specific need as easy as programming stereotypes inter-
actions.

To achieve this goal, the Hierarchical State Machine Toolkit (HsmTk) provides the
developer with multiple levels of abstraction. For example, the mouse can be seen as
a device on its own, or as a two dimensional position and a separate set of buttons. If
needed, the position can even be used as two unidimensional independent values. A
collection of lightweight objects reduces the complexity of the development and helps
create the proper levels of abstraction for the application at hand. Nothing is hidden, so
developers can control what they are programming at any desired level, even the finest
one. The toolkit was designed by applying a user-centered design approach where the
user is the programmer using the toolkit. With traditional widget-based toolkits, the only
alternative when no widget suits the application needs is to make do with the available
widgets — at the expense of usability — or to develop the interaction from scratch —
a very costly alternative. With HsmTk, the developer can choose the desired level of
abstraction to start with, from the widget down to the low level physical device.



More precisely, HsmTk provides two main features:

– A system abstraction to access input and output devices as well as other system
features required to program interactive systems, such as threads or timers.

– A programming abstraction designed to make interactions as first class objects, thus
encouraging their factoring and reuse. To achieve this goal, we have extended the
C++ programming language1 with a new control structure for describing hierarchi-
cal state machines (HSM).

The benefits of our toolkit are introduced by first presenting a small scenario of develop-
ment using HsmTk. Next, an example of advanced interaction technique, the continuous
keyboard zooming, demonstrates the versatility and expressiveness of HsmTk. The next
section describes the abstractions provided by HsmTk and the extension of the C++ pro-
gramming language with the HSM control structure. Then we discuss the advantages of
our approach for the development of interactive software and highlight the perspectives
of our work. Finally, we compare our work with other research on interaction toolkits.

2 Development Scenario

In order to better understand the process involved in using HsmTk, let us observe Pe-
ter, a software programmer and Dave, a graphic designer, as they create the simplest
interactive object: a button2 (Fig. 2).

Defining the Button. Peter and Dave agree that a button is a widget that can be pushed
and popped, and that triggers an action when it is released. The button has two visible
states that Dave can begin to design with his favorite editor (Fig. 2 left, and Fig. 3 for
the resulting SVG). A formal description of the button behaviour is given by Peter using
a finite state machine (FSM) (Fig. 2 right).

However, in order to capture the subtleties of the behaviour, the FSM should be
refined: when one pushes the mouse button inside the button, then leaves the button and
reenters it, popping the mouse button should trigger the action. Meanwhile, the look
of the button should have changed from up to down, to up again when the mouse is
outside, and down again when it reenters the button. In order to refine the behaviour,
Peter uses a hierarchical formalisma la statecharts [9] (Fig. 4).

Programming the Button Behaviour. To program the behaviour described on Fig. 4,
Peter uses the control structure provided by HsmTk: the hierarchical state machine. He
maps the chart in directly onto the HSM language (Fig. 5). He then implements the
actions of the button using various HsmTk facilities: structured graphics manipulation
of the button look using the SVG API, and event dispatching to notify an observer that
the button has been clicked.

1 C++ was chosen for performance reasons.
2 HsmTk provides a default button implementation. We use this simple example to avoid the

complexity of describing a new interaction and a new formalism simultaneously. A richer
example is provided in the next section.
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Fig. 2.The look (left) and the behaviour (right) of a button

<svg xmlns:hsm=’hsm.insitu.lri.fr’>
<defs>

<!-- background gradient definitions, details omitted for readability -->
<linearGradient id=’armed’ ... />
<linearGradient id=’disarmed’ ... />

</defs>

<!-- button definition -->
<g hsm:behaviour=’Button’

style=’font-size:10; font-weight: bold’>

<g><!-- armed version -->
<rect width=’80’ height=’20’ rx=’4’ ry=’4’

style=’fill:url(#armed); stroke:gray;’ />
<text x=’19’ y=’13’>Armed</text>

</g>

<g><!-- disarmed version -->
<rect width=’80’ height=’20’ rx=’4’ ry=’4’

style=’fill:url(#disarmed); stroke:gray;’/>
<text x=’19’ y=’13’>Disarmed</text>

</g>
</g>

</svg>

Fig. 3.Button look enriched with behaviour binding
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Fig. 4.A refined version of the button behaviour



The first lines of the declaration bind the button logic to the actual visual repre-
sentation of the button. The compatibility between the implementation and the SVG
document is insured by checking for the presence of the requested SVG fragments,
specified as XPath expressions. This part of the code defines acontractexpressing the
requirements of the implementation. In this particular case, the SVG representation of
a button must consist of a SVG element having at least two children (two SVG group
elements) representing the two visual states of the button. This makes it easy to change
the look of the button without changing the code — and thus without recompilation
— and to reuse the same code across multiple applications. This feature is particularly
useful to enable fast prototyping of interfaces and interaction techniques using coarse
sketches while the graphics designer creates the final look of the application.
In order to glue together the behaviour with the visual representation, Peter has to anno-
tate the SVG document produced by Dave (Fig. 3 shows the annotations in bold). This
annotation system allows to specify a particular implementation for an object present in
the SVG document. Here, a C++ object of class “Button” (corresponding to the HSM
in Fig. 5) will be created when loading the SVG node from the document and will be
attached to this node. The annotation system can also be used to pass values from the
SVG representation back to the implementation, in the same way as C++ constructor
arguments.

In summary, Peter and Dave have created a complete button from scratch. They
have not just skinned a preexisting widget, they have defined a behaviour using a HSM,
defined a look using a standard authoring tool to produce a SVG document, and con-
nected the behaviour to the view of the widget. The SVG document shown on Fig. 3
just needed a simple annotation to make the binding between the representation of the
button and its implementation. All the code needed is given on Fig. 5.

3 Sample Application: Continous Keyboard Zooming

Before describing the HSM language in more detail, we present a more advanced ex-
ample. We have prototyped an interaction technique that uses the keyboard as a non
positional input device to perform a simple gesture recognition. This technique can be
used to zoom in and out, e.g. in a drawing program.

Concept. Graphics software with zooming capabilities use various interaction tech-
niques to perform magnification. Some of them rely on the mouse, e.g. dragging with
a particular button or modifier, using the mouse wheel, or clicking or dragging using a
particular tool. Others rely on the keyboard, e.g. one key to zoom in, one to zoom out.
Interaction techniques using the mouse can be difficult to use on laptops that only have
a track-pad to control the cursor, while those using the keyboard can be tiresome when
zooming across large zooming factors because the magnification step is fixed.

We propose to use a row of keys as a unidimensional tracking device. The interac-
tion to zoom the object lying under the cursor consists of sliding the finger on the key
row from right to left to zoom out and from left to right to zoom in (Fig. 6). Since the
keys of the laptop keyboard are thin and soft, this movement is continuous.



hsm Button {
// structural contract
svg elem {

armedLook is elem/SVGGElement[1]
disarmedLook is elem/SVGGElement[2]

}

// initialization
init { elem->removeChild(armedLook); }

// logic
hsm Disarmed {

hsm OutUp {
- enter() > InUp

}

hsm {
- leave() > OutUp
- push() > Armed::InDown

}

hsm OutDown {
- enter() > Armed::InDown
- pop() > OutUp

}
}

hsm Armed {
// changing the look of the button
enter { elem->replaceChild(disarmedLook, armedLook); }
leave { elem->replaceChild(armedLook, disarmedLook); }

hsm InDown {
- leave() > Disarmed::OutDown

// performing the action
- pop() broadcast( DO_IT) > Disarmed::InUp

}
}

}

Fig. 5.Button behaviour specified by a Hsm

Fig. 6.Continuous keyboard zooming



Implementation. The continuous keyboard zooming can be implemented easily using
HsmTk. The major issue with such an interaction is that the timing of actions has se-
mantics. Pressing a single key does not perform any action whereas the successive press
of two contiguous keys zooms in or out depending on the order of their activation. The
HSM used to perform the keyboard zooming (Fig. 7) consists of two main states, a do-
nothingIdle HSM and an activeDo HSM. The latter is entered when a key is pressed.
The requirement ensures that a zoomable object is located at the picking position3. If
this requirement is not met, then theKZoomer HSM goes back to the idle state.

hsm KZoomer {
hsm Idle {

// waiting for a key press to enter the Do HSM
- key [event.key != 0] > Do::Zoom(startKey = event.key)

}

hsm Do {
var hsm::SVGLWindow &window;
var hsm::Point &p;

var hsm::Zoom *zoom = 0;

// ensuring the presence of a zoomable object
require ((zoom = window.pick< hsm::Zoom >(p)) != 0) else Idle

hsm Zoom {
var char startKey = 0;
var char currentKey = 0;

// performing the actual zoom
- key [(currentKey = event.key) >= ’1’] [currentKey <= ’9’] {

zoom->zoom(currentKey - startKey);
} > Zoom(startKey = currentKey)

// waiting at most 200 ms between successive keys stops zooming
- 200 > Idle

}
}

}

Fig. 7.Keyboard zooming

TheDo HSM has aZoomsub-HSM that performs the actual zooming operation when
successive keys are pressed, using the distance between the two pressed keys as value
for the zoom factor. The meaning of “successive” is encoded by a timer-activated tran-
sition. This transition puts the HSM back into the idle state after 200 ms if no key has
been pressed during this delay. The timer is automatically reset when reentering the
state after a transition has been activated by a key, so this delay is only counted after the
last key press event, and the HSM loops in the active state while keys are pressed.

3 The pick function returns a non null pointer on a zoomable object if such an object exists at
the picking position. Otherwise, it returns null.



4 The Hierarchical State Machine Toolkit

HsmTk provides several abstractions and a control structure adapted to interaction pro-
gramming. We present both aspects with a stronger emphasis on the latter since it is the
main originality of HsmTk.

4.1 System Abstraction

Programming interactions can require fine tuning of the code, because details are im-
portant for the usability of interaction techniques. For example, navigating hierarchical
menus is a lot easier if proper timeouts are built in so that the user can move diagonally
from an item to its submenu. The lowest level of detail provided by HsmTk is a thin
portable layer on top of the operating system to help make code portable across plat-
forms4. The highest level is the component abstraction, which can be a widget, a device
such as the mouse, a hierarchical state machine, or any object that can interact with the
user or with other components.

Low Level Abstractions. The low level abstractions deal with services usually pro-
vided by the operating system. HsmTk provides threading and synchronization objects,
interprocess communication facilities, and management functions. It provides a frame-
work for plug-ins in order to support modularity and reuse. HsmTk also provides win-
dow management facilities based on the portable low-level graphic library OpenGL.

HsmTk also provides general mechanisms such as events for communicating be-
tween components, function objects to ease the manipulation of callbacks and active
values that broadcast modifications when they are updated.

Device Abstractions.The only output device supported so far are the windows mapped
on the screen. HsmTk uses SVG as a structured graphical model to describe the win-
dows’ content. Many editors, such as Adobe Illustrator, can export to SVG, making it
easy to create high quality graphics. SVG supports gradients and transparency, arbitrary
geometrical transformations, and more. Such features are not only useful to produce
good looking interfaces, but they are necessary for many post-WIMP interactions such
as transparent tools or zoomable user interfaces. HsmTk uses the svgl library5 [10],
based on OpenGL, to render SVG at interactive speeds.

The input device model provided by HsmTk is hierarchical. For example, a mouse
can be seen as a whole device, or as a position and a set of buttons, or even as two
distinct coordinates, and two distinct buttons. Depending on the platform, USB devices
can be plugged in and out dynamically. HsmTk also supports Wacom INTUOS tablets,
making it easy to develop bimanual as well as pen-based interaction techniques.

4 HsmTk runs on MacOS X, Unix/Linux, and Microsoft Windows.
5 svgl is freely available athttp://svgl.sf.net/ .



Interaction Support. HsmTk provides support for programming interactions. It pro-
vides an extensible set of basic interaction protocols, e.g. pan/zoom, enter/leave or
push/pop, and default implementation for the most common ones. Those protocols can
be used as bricks to build more complex interactive behaviours such as drag-and-drop.

HsmTk uses a plug-in architecture that encourages reusing behaviours across appli-
cations. Once a behaviour has been written, it can be compiled into a plug-in, imple-
mented as a dynamic library, and added to the interaction repository. When a SVG file is
loaded, HsmTk checks for SVG elements that have an associated behaviour (specified
with thehsm:behaviour attribute in Fig. 3) and instantiates these behaviours. When
a behaviour is unknown, the library looks it up in the plug-in repository. If it finds it, it
loads it and instantiates the resulting component. As a result, applications do not need
to redefine generic behaviours, however they can override them to suit their needs.

4.2 Hierarchical State Machines

From the developer’s point of view, the main feature of HsmTk is the HSM language
extension. Interactive software often leads to code that is difficult to maintain and reuse
and that can look like a “spaghetti” of callbacks [11]. Due to the lack of appropriate
control structures, imperative programming languages are not adapted to the imple-
mentation of interactions. They are tightly bounded to the computer execution model
that, as noted by Wegner, “cannot accept external input while they compute; they shut
out the external world” [12].

Formalisms adapted to the description and specification of interactions do exist. We
propose to extend an imperative programming language with a control structure, the
hierarchical state machine (HSM), borrowed from such a formalism. HSMs are close to
Statecharts [9], the visual language chosen by UML to describe behaviours. HSMs are
not equivalent to Statecharts however. For example, they take advantage of the textual
form of the code to avoid nondeterminism: states and transitions have a natural order,
unlike in a visual programming language. This order defines a precedence relationship
that is used in case of potential ambiguity.

We now present the syntax of the HSM control structure and its semantics. Since
we are extending C++, we use C++ definitions of type, identifier and statement.

States. A HSM has a name, can define variables and inputs, and can specify initial-
ization, enter and leave actions. It can contain sub-HSMs, transitions and some other
constructs described below. The syntax for defining a HSM is:

hsm Name {{ content }}

Name is an identifier starting with a capital letter, and content is a succession of any
number of the declarations below, and zero or more sub-HSMs.

Initial HSM. When several HSMs are defined inside a parent HSM, the first one is the
initial HSM. When a HSM is entered (after a transition), it sets its own current state to
its initial HSM, which is then entered, and so on recursively. However, to put the HSM
in a state consistent with its inputs, it is possible to specify rules for choosing the initial
state as follows:



[ condition ] : Name

Name should be one of the direct sub-HSMs. The condition can be any boolean expres-
sion involving variables or inputs that are in the scope of the HSM.

Variables. HSMs can declare variables of any type, initialized or not. Variables are
accessible inside any action of the HSM. The scope of variables in the HSM hierarchy is
unusual. First, nested HSMs cannot access their parent’s variables. Second, if a variable
is declared and not initialized, it is aliased with an implicitly declared variable in the
parent HSM that has the same type and name. As a result, a parent HSM can access
inner HSM variables when they are not initialized (see the button variable on Fig. 5 for
an example). This process recurs to the top, unless a parent HSM explicitly initializes
the variable. The instantiation of the top HSM will then require the specification of
all the nested non-initialized variables. The syntax for declaring variables is one of the
following (the first one is the declaration without initialization):

var type identifier ;
var type identifier = value ;
var type identifier ( value , ...)

Inputs. An input is a special variable that can trigger transitions. It has the same scope
properties as regular variables and is declared and defined as follows:

in identifier ;
in identifier = value ;
in identifier ( value , ...)

Transitions. Transitions between HSMs are triggered by events it receives. They are
driven by ordered rules. A typical rule has the following form:

- input . EVENT [ condition ] {{ code }} broadcast( EVENT) > Target ( var = value , ...)

EVENT denotes the type of event that can trigger the transition. Some predefined event
types are provided to notify modification, creation and removal of components. To catch
all event types one can use a wildcard (* ). Omitting the event type is a shortcut for the
most common event: modification. If the input is omitted, events coming from any
sender and matching the event specification will trigger the transition.

A clause between square brackets specifies guards for the transition. The boolean
condition must be true for the transition to occur. It should be calculable within the
scope of the HSM. Multiple guards are or-ed together. Guards are optional.

The code is any set of C++ statements valid in the scope. It is executed when the
transition is triggered. The execution occurs in the context of the current HSM, before
leaving it. The broadcast section allows to generate events and dispatch them to other
components. Thus HSMs can be used as event filters. Dispatching occurs right after
executing the code and just before leaving the current HSM. Code and broadcast clauses
are optional.

The last part of a transition defines the name of the target HSM. The name resolution
rules are those of C++ namespaces. For example, one can specify a sub-HSM of a
sibling HSM using scope qualification (e.g.Armed::InDown in Fig. 5). The final part



of the target clause allows to pass values to the target’s variables, and can be omitted.
If the target is the current state, the HSM is left and then reentered, with the associated
code being executed. Conversely, if no target is specified, the HSM stays in the same
state without leaving and reentering it.

Special Transitions.Two actions can trigger special transitions: the explicit invocation
of a method and the firing of a timer. In the first case, the arguments passed by the
method call are available within the code. In the second case,ms denotes the time in
milliseconds after which the transition is fired, the timer being armed when the HSM
is entered. In both cases, only the first part of the transition is special. The rest of the
transition can consist of the same optional parts than any other transition, i.e. conditions,
code, broadcast and target clauses:
- method ( type var , ...) {{ code }} > ...
- ms > ...

Event Handling. An event triggering a transition is consumed by the transition. In
some cases, it can be useful to propagate the event to the target HSM instead of con-
suming it. This can be done using a special arrow (=>) for the transition.

When a transition triggers, the target HSM is entered after a three-step process:

1. First, the HSM where the transition occurred is left. This process is recursive, start-
ing by leaving the inner-most current HSM, and recursing upward until the source
of the transition is reached.

2. Then, the target HSM is resolved. To perform this resolution, HSMs are left upward
until a common ancestor of the source and target HSMs is found. Starting from this
HSM, the branch leading to the target HSM is followed down and each HSM along
this path is entered.

3. Finally, the target HSM is entered. The initial HSM of the target HSM is entered
unless ahistory transition is specified. In this case, the last current sub-HSM is
entered, and the rules specifying the initial HSM are ignored. This process is recur-
sive, going downwards. To specify a history transition, a special arrow (h> or =h>)
is used.

This process is illustrated in Fig. 8. The three steps — leaving the current HSM, finding
the target HSM, entering the target HSM — are labeled 1, 2, and 3.

Hsm

PlayInit

Turn1 Turn2Wait1 Wait2

transition

leave

leave enter

enter

hsm hierarchy
current state
transition
target resolution

1

2

3

Fig. 8.Target resolution



Enter & Leave Actions.During this process, custom code can be executed by specifying
enter and leave actions for each HSM (in Fig. 5 such code is used to set the look of the
button according to its current state):

enter {{ code }}
leave {{ code }}

Requirements.A last convenience structure, called requirements, is provided in order
to handle exceptions. A requirement can take the following forms (the code section is
optional):

require ( condition ) else {{ code }} Target
! ( condition ) : {{ code }} Target

The validity of the conditions is tested before entering the HSM. If the condition eval-
uates to false, the optional code is executed, and target resolution restarts with the sup-
plied target as new goal. The target specification can include parameters as for a normal
transition target (see theZoomHSM Fig. 7).

5 Discussion and Perspectives

We have used HsmTk to create sample applications. The largest project to date is Indigo,
a generic post-WIMP distributed application. In this application, so-called conceptual
objects are managed by client applications and sent to a rendering and interaction server
(RIS) as XML streams. They are transformed into SVG fragments on the RIS side, us-
ing XSL rules specified by the application (and according to the capabilities of the
display device). These SVG fragments are annotated to specify their interactive capa-
bilities, and then presented to the user. When a particular behaviour is unknown to the
interaction server and no corresponding plug-in is found, the interaction server requests
its implementation from the application, compiles it into a plug-in and loads it. The
behaviour is then ready for reuse by other object servers.

Fig. 9.Sample applications developed using HsmTk

We have developed a generic rendering and interaction server using HsmTk, as well as
several client applications, some of which are shown in Fig. 9: a multi player game, a file
system explorer and a simple chart editor. In the multi-player game (left), each player



adds a token in a column by clicking on it. The coloured token then falls from the top of
the screen to the lowest possible position in an animated motion. This game does not use
any widget. Writing it required only a couple hours. The file system explorer (center)
is based on a tree widget that performs the tree layout according to the opened folders,
with a customized SVG representation. Folders can be opened and closed, and files can
be moved around. The chart editor (right) uses bimanual interaction and a toolglass to
perform simple chart editing.

Our use of the toolkit so far validates our approach: we have used it to implement a
wide variety of techniques and have found that it makes simple things simple and com-
plex things possible. Some limitations do however exist as well as room for improve-
ment. For example, the SVG graphic model does not support visualization techniques
using non linear transformations such as fisheye views. Another drawback is the lack
of supporting tools. In particular, the consistency between SVG and HSM is checked
only at run time, leading to potential problems when only one of them is upgraded to
a new version. Another tool is missing for the development of HSMs: at compilation
time, C++ code is generated from the HSMs, and the errors reported by the compiler
are relative to this generated code. Going back to the actual source of the problem in
case of an error can be somewhat difficult.

6 Related Work

Toolkits. A good example of a post-WIMP application is CPNTools [13], an environ-
ment designed to create, edit and simulate coloured Petri nets. The CPNTools visual
editor uses advanced interaction techniques such as bimanual interaction, toolglasses
[4] and marking menus [14]. At the time it was developed, no toolkit supported si-
multaneously multiple mice, transparency and zooming. So CPNTools was developed
from scratch, highlighting the need for a toolkit that allows rich graphical output and
extensible support for multiple input devices.

Some toolkits do provide support for specific interaction needs: the Jazz and Pic-
colo toolkits [8, 15] provide a well-designed Java framework to build ZUIs. ICON [16]
supports advanced input techniques for Java/Swing applications by customizing the
mapping between available physical devices and interaction techniques. However, the
graphical model of these Java-based toolkits is rather poor and there is no support for
directly t using he work of graphical designers.

Similar limitations apply to the Ubit toolkit [5]. However, Ubit relies on the interest-
ing brickget concept — a dynamic combination of fine-grained brick elements, e.g. box,
text, image. This approach combines the advantages of scene graph and widget-based
toolkits, but the behaviour of objects is included directly in the brickget graph. Mag-
glite [6] and IntuiKit [7] do provide a similar mixed-graph approach, where interaction
specification and graphic specification are mixed together.

Languages and Formalisms.Dataflow or reactive languages have been used to sup-
port interaction. For example, ICON [16] uses a dataflow visual programming language
to configure the mapping between actual physical input devices and logical devices.
However, they usually require a visual representation, and they are inherently stateless.



Various types of finite automata have been used for programming interactions be-
fore the advent of GUIs, e.g., [17]. Statecharts [9] were designed for this purpose but
their semantics is difficult to implement. Petri nets have clear semantics and can be used
to perform some automatic verifications [18]. However, these formalisms can not easily
be integrated into a programming language. They require a dedicated environment for
programming and a runtime framework to support their execution.

7 Conclusion

In this paper we have described the HsmTk toolkit and illustrated its versatility through
several examples. The most important aspects of HsmTk are the support for a rich
graphical model that is compatible with the authoring tools used by graphic designers
and the explicit support for interactions as a language construct that programmers can
easily adapt to. HsmTk promotes reification, polymorphism and reuse, three principles
that have proved important to user interface design [19]: HSMs reify the concept of an
interaction; the decoupling of graphics (SVG) and interaction (HSM) encourages a form
of polymorphism where the same interaction can be used in different contexts; the use
of SVG for graphics and plug-ins for interaction encourages reuse of both graphical and
interaction components. While supporting tools would help make HsmTk more usable
for real-world development, we believe it provides a sound base for a new generation
of user interface toolkits.
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