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Abstract

Upper and lower bounds are proved for the maximum number of triangles in
C2k+1-free graphs. The bounds involve extremal numbers related to appropriate
even cycles.

1 Introduction and notation

Throughout the paper, we follow the usual notation you can find, say, in [2].

Erdős [5] stated several conjectures in extremal graph theory related to triangles and
pentagons. We recall just the most relevant one.

Conjecture 1. The number of cycles of length in a triangle-free graph of order n is
at most (n/5)5 and equality holds for the blown-up pentagon if 5|n.

The best published upper bound about 1.03(n/5)5 is proved in [7], but Füredi an-
nounced an improvement to 1.01(n/5)5 or maybe to 1.001(n/5)5.

Bollobás and Győri [[1]] studied the natural, less studied converse of the problem:
what can we say about the number of triangles in a graph not containing any pentagon.
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Theorem 1. If G is a graph not containing any C5 then the number of triangles in G is
at most (

√
2/4 + 1)n3/2 + o(n3/2).

Theorem 1 is sharp apart from the constant coefficient as the following example shows.

Example 1. Let G0 be a C4-free bipartite graph on n/3 + n/3 vertices with about
(n/3)3/2 edges. Double each vertex in one of the color classes and add an edge joining the
old and the new copy. (We call these edges monochromatic.) Let G denote the resulting
graph. The number of edges in G is 2(n/3)3/2 + o(n3/2). Clearly, the number of triangles
in G is the number of edges in G0 and G does not contain any C5.

In this paper, we generalize Theorem 1 and Example 1 replacing the pentagons with
longer odd cycles. Interestingly, the number of triangles in a C2k+1-free graph is bounded
by different constant times the extremal edge numbers in graphs not containing C2k or
having girth 2k+2. Let us remark that it again calls our attention to the old and classical
question: how close are the functions ex(n; C2k and ex(n; C4, C6, ..., C2k to each other.

The main theorem we are to prove is as follows.

Theorem 2: For any integer k ≥ 2, if G is a C2k+1-free simple graph. Then the number
t(G) of the triangles in G is less than (2k−1)(16k−2)

3
ex(n,C2k).

Remark. The upper bound in Theorem 2 is essentially sharp. The following example
shows that there exists a graph G such that

t(G) ≥
(
k

2

)
exbip(

2n

k + 1
; C4, C6, ..., C2k).

If we assume that the function exbip(n; C4, C6, ..., C2k) behaves nicely, like say, nc then
it implies easily that t(G) ≥ (k − 2)exbip(n; C4, C6, ..., C2k). (The estimate t(G) ≥
exbip(n; C4, C6, ..., C2k) can be proved easily without any assumption.) Since the functions
exbip(n; C4, C6, ..., C2k), ex(n; C4, C6, ..., C2k), ex(n; C2k) are essentially the same ([?]), it
follows that our estimate in Theorem 2 is essentially sharp.

Example. Take a maximum size bipartite graph H(X0, Y ) with |X0| = n
k+1

, |Y | = n
k+1

such that C4, C6, ..., C2k 6⊆ H. To get the desired graph G, ”blow up” the vertices in
X, more precisely for every vertex x ∈ X, replace x by k vertices x1, x2, ...xk joined to
each other and all neighbors of x. The set of these new vertices is denoted by X and the
resulting graph G has n vertices. This graph G contains many cycles of length 3, 4, ..., 2k:
Take k neighbors of a vertex x ∈ X0 in H, then x1, x2, ..., xk and these neighbors constitute
a split graph, i.e. a Kk,k plus all the edges in one of the color classes. But suppose that G
contains a (2k + 1)-cycle C. Since Y is independent, C contains at least k + 1 vertices in
X. Now, contract the cliques of the vertices x1, ..., xk for every vertex x ∈ X0 to get back
the graph H and lat what happens to C. The cycle C is transformed into a closed walk C ′

in the bipartite graph H which contains at least two vertices in X0 and uses every vertex
in Y only once. So, there is a vertex y ∈ V (C ′)∩Y such that the neighbors of y in C ′ are
distinct and C ′ contains an even cycle of length at most 2k + 1, which is contradiction.
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Now count the triangles in G. The set Y is independent, so every triangle contains at
least two vertices in X. The number of triangles containing two and three vertices in X
is

(
k
2

)
e(G) and

(
k
3

)
n

k+1
, respectively. The second term is linear in n, so it is neglectable.

2 Preliminary Lemmas

We will prove the main theorem by showing the following two results:

Lemma A: If G is a C2k+1-free simple graph such that every edge is in at least one
triangle. Then the number t(G) of the triangles in G is at most (2k−2)e(G)

3
.

Proof of Lemma A: For any vertex x, the number tx of triangles containing x is
e(G[N(x)]), the number of edges in N(x). Since G is a C2k+1-free, G[N(x)] does not
contain any path of 2k vertices. So,

tx ≤ (k − 1)d(x)

by the classical theorem of Erdős and Gallai [eg]. By adding up these inequalities, it
follows that t(G) = 1

3

∑
x∈V (G) tx ≤ 2k−2

3
e(G), as required.
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Lemma B: If G is a C2k+1-free simple graph such that every edge is in at least one
triangle. Then e(G) is at most (16k − 2)ex(n,C2k).

Proof of Lemma B: Put G0 = G and let us define three sets by

R0:= ∅,
W0:=e(G) and

D0:=∅.
Suppose that we have defined Gi together with Ri,Wi, Di, i ≥ 0.
We call an edge in Ri, Wh and Dh red, white and deleted edge in Gh, respectively. For

a vertex x we denote by px the number of white edges incident to x in Gi and by qx the
number of white edges in the neighborhood subgraph G[(N(x))].

Choose a vertex x such that 8k qx < px if there is such one and we define the followings:

Gi+1 = Gi − {e ∈ Wi: e is incident to x},
Di+1 = Di ∪ {e ∈ Wi: e is incident to x},
Wi+1 = Wi − {e ∈ Wi: e is incident to x} − {e ∈ Wi ∩G[(N(x)])} and

Ri+1 = Ri ∪ {e ∈ Wh ∩G[N(x)]}.
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Claim 1: There is no 2k-cycle C in Gi such that E(C) ∩Ri 6= ∅ for i = 0, 1, 2, ....

Proof of Claim 1: We prove the claim by induction on i.
If i = 0 then we have nothing to prove.
Assume that there is no 2k-cycle in G0, G1, ..., Gi that contains any edge in R0, R1, ..., Ri,

respectively. Suppose that there is a 2k-cycle C in Gi+1 that contains at least one
edge in Ri+1. Then by the inductional hypothesis, this cycle C contains an edge f in
Ri+1 − Ri = {e ∈ Wi ∩ G[N(x)]}. Every edge incident to x in Gi+1 is in Ri and by the
inductional hypothesis again, it is not in E(C). Therefore x is not in V (C). Since the
edge f is in N(x). Let e1, e2 be the two edges incident to the end vertices of f and x
respectively. Then (C −{f})∪ {e1, e2} is a (2k + 1)-cycle in G, a contradiction. So there
is no 2k-cycle in Gi+1 that contains at least one edge in Ri+1.

2

Let j be the smallest index such that , 8kqx ≤ px in Gj for every vertex x, i.e. our
procedure stops.

We distinguish two cases regarding Wj.

Case 1. Wj = ∅.
By Claim 1, we have e(Gj) ≤ ex(n,C2k).
According to the definition, we had 8kqx > px in each step. It follows |Di+1 −Di| =

px > 8kqx for i = 0, 1, ..., j − 1 and hence
j∑

i=0

|Di| ≤ 8k|Rf | ≤ 1

f(k)
ex(n,C2k).

We obtain e(G) ≤ (1 + 1
f(k)

)ex(n,C2k).

Case 2: Wj 6= ∅.
We have 8kqx ≤ px ≤ d(x) in Gj for every vertex x.

Since every edge of G is in at least one triangle, it follows that for any x,

|{e ∈ Wj ∩G[(N(x)]}|+ |{e ∈ (Rj ∪Dj) ∩G[N(x)]}| ≥ d(x)

2
and hence

|{e ∈ (Rj ∪Dj) ∩G[N(x)]}| ≥ d(x)
2
− 1

8k
d(x)

≥ (4k − 1)qx.

By Lemma A, the number of triangles in G is at most 2k−1
3

e(G). But, every edge e ∈
(Rj ∪Dj)∩G[N(x)]} is in a triangle containing x. This triangle could be counted at most
3 times when we count {e ∈ (Rj ∪Dj) ∩G[N(x)]} for every x. It follows that

(2k − 1)e(g) ≥ 3t(G) ≥ ∑
x∈G |{e ∈ (Rj ∪Dj) ∩G[N(x)]}|

≥ (4k − 1)qx

≥ (4k − 1)|Wj|.

4



Thus we get

|Wj| ≤ 2k − 1

4k − 1)
e(G).

On the other hand, in each step i, we have 8kqx ≥ px and we know that |Di+1−Di| =
px < 8kqx and hence |Dj| ≤ 8k

∑j
i=0 qx = 8k|Rf |. It follows that

2k
4k−1

e(G) ≤ e(G)− |Wj| = |Dj|+ |Rj|
≤ (8k + 1)|Rj|
≤ (8k + 1)ex(n,C2k).

Therefore

e(G) ≤ (8k + 1)(4k − 1)

2k
ex(n,C2k) < (16k − 2)ex(n, C2k).

2

Proof of Theorem 2: By Lemmas A and B, we have that the number of triangles in G
is at most (2k−1)e(G)

3
≤ (2k−1)(16k−2)

3
ex(n,C2k).
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