
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

A RECURSIVE MODEL FOR BATTERY
LIFETIME ESTIMATION IN WIRELESS

SENSOR NETWORKS

RAHME J / AL AGHA K

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

09/2009

Rapport de Recherche N° 1525

A Recursive Model for Battery Lifetime Estimation
in Wireless Sensor Networks

Joseph Rahmé† ∗ and Khaldoun Al Agha † ∗
† LRI, University of Paris-Sud, CNRS

91405 Orsay Cedex, France
∗ INRIA

Email: {rahme,alagha}@lri.fr

Abstract—Since sensor nodes use batteries as their source of
energy, energy-based routing becomes an important requirement
to extend network lifetime. This routing is done using the nodes
remaining energy information. Nonetheless, this information
cannot be estimated using built-in primitives in nodes powered
by a lithium-ion battery. The reason is that primitives rely on
the decreasing battery voltage to estimate the node residual
energy while a lithium-ion battery maintains an almost constant
voltage during its lifetime. In this paper, we introduce an efficient
battery model that estimates the remaining energy of a node
independently of its battery chemistry. Our model is based on an
existing battery model that uses the current consumption during
a state and its duration to estimate the battery remaining energy.
This model is very accurate, however, it cannot be implemented
in a sensor node as it requires complex computations and large
lookup tables. Therefore, we present a recursive approximation
of this model that requires low memory and simple computation,
while maintaining the original model accuracy. We show by
simulation the validity of our model.

I. INTRODUCTION

The recent advance in wireless communications allowed the
development of tiny sensor nodes, available at low prices,
capable of communicating in short distances. Sensor nodes are
designed to last many years without any human intervention
while using batteries. For this reason, the nodes must have
a low duty cycle and energy expenditure. Moreover, sensor
nodes use a built-in algorithm to discover their neighbors in
order to form a network. Once the network is formed, each
node senses its environment to collect a particular information
(temperature, vibration,...) and relays it to a central node called
the sink. Hence, we need an energy efficient routing protocol.
Energy-based routing are very popular and these protocols rely
on the nodes remaining energy information to route packets
towards the sink. Consequently, the battery energy information
becomes crucial for extending the lifetime of sensor networks.
Having this in mind, we address the issue of estimating a node
remaining energy. We consider that sensor nodes are powered
by lithium-ion batteries, since a lithium-ion battery capacity is
almost constant for different discharge power and temperature
[1].

In practice, a sensor node is equipped with a primitive
that can read the battery voltage, allowing the prediction of

This work is supported by the ANR-OCARI project.

the battery remaining energy. This technique is valid only
for a node powered by an alkaline battery, because the
battery voltage varies proportionally to its remaining energy.
However, this technique is not useful in a node powered
by a lithium-ion battery, as the lithium battery maintains an
almost constant voltage during its lifetime. To deal with this
issue, we introduce a battery model that accurately estimates
the remaining energy of a node battery, independently of the
battery chemistry. Our battery model is based on the model
presented in [2] which considers the following effects:
• Rate capacity: if a battery is discharged with a current of

a magnitude greater than the battery rated current, then
its lifetime decreases [3], [4].

• Recovery effect: if a battery is discharged with small
currents separated by idle periods, it is possible to recover
some of its energy [5].

The original model allows a node to predict the time-to-failure
of its battery, given a current load profile. It relates the battery
lifetime to the load and needs two parameters to be estimated,
α and β. The α parameter represents the total charge in the
battery when it is fully charged and β the rate at which the
active charges are filled at the electrode surface.

Even so, this model cannot be implemented in a sensor node
in its original form for the following reasons:
• it requires complex computations and large pre-computed

lookup tables
• it needs large memory size to save the history of all node

states (loads magnitude and their duration)
The contribution of the present work consists in an recursive

version of the model presented in [2], that needs low memory
and is simple to compute. The recursive model approximates
the nodes remaining energy based on the previously computed
value and updates it periodically.

In the rest of this paper, we provide an overview of the
related work in section II. Section III presents the notations
used to describe our model. The original model is simplified
to obtain a recursive model in section IV. Section V describes
the simulation results and section VI presents the conclusion.

II. RELATED WORK

Models describing the behavior of the battery were pre-
sented in previous work. These models were divided into four

categories: physical, empirical, abstract and mixed [6].
The physical models [7] are the most accurate with a

predicted battery lifetime very close to the experimental data.
They involve a high computational complexity and require
an in-depth knowledge of the battery chemistry. These two
properties make them difficult to be implemented in a sensor
node, with limited memory and computational ability.

The empirical models require low computational complexity
and do not need any information about the battery chemistry.
The work in [8] achieves a medium accuracy in estimating
the battery remaining energy and it needs calibration for each
temperature. This model could not be a good solution to
our problem as it lacks of precision. A statistical method
was presented in [9]. It uses experimental data to express
the battery voltage in terms of the delivered capacity. The
model gives quick predictions for the battery lifetime with low
precision. We discard these models as we need to estimate the
remaining energy accurately for energy-based routing.

The abstract models of the battery behavior use mathemati-
cal models related to the physical characteristics of the battery.
In [4], the battery behavior is represented using a discrete
time transient stochastic process. The process begins in state
N (containing N charges) and proceeds to the next state, N-
i, depending on the number i of charges that has been used.
It considers both the rate capacity and recovery effects, and
represents the recovery as a decreasing exponential. However,
this model concentrates only on charge recovery and does not
account for other battery non linearities.

The mixed models combine a high-level representation
of the battery and provide analytical expressions based on
physical laws as in [2], [10]. These models predict the lifetime
of a battery with high precision and complexity. We have
chosen to simplify the model in [2], as it requires only two
parameters to be estimated. Other existing work estimates the
battery energy in sensor networks precisely, i.e. [11], with a
long computing time. In fact, if we need a high precision
battery model, the computational complexity will be high. The
model in [2] combines the load profile i(τ) and the parameter
β to compute σ(t), which is the charge consumed by the
battery at time t. It has the following form:

σ(t) =
∫ t

0

i(τ) dτ + 2
∞∑
m=1

∫ t

0

i(τ)e−β
2m2(t−τ)dτ (1)

where β is the rate at which the active charge carriers are
replenished at the electrode surface.

The first term in (1) determines the consumption of the
load having a current magnitude i(τ) during a period [0,t].
The second term represents the non-linear behavior of the
battery. To resume, σ(t) calculates the apparent charge lost
by the battery for a given load and the battery is considered
depleted when α − σ(t) = 0. Still there is two issues that
makes the model not implementable in a sensor node: its
complex computation and large memory requirement. We deal
with these issues in section IV.

III. MODEL DESCRIPTION

In this section, we define the different assumptions and
notations needed to introduce our model.

In general, a sensor node has a low duty cycle: it is active
for a small duration and goes to sleep the rest of the time.
It is important to determine a node state, so we can have an
estimate about the current magnitude in this particular state.
In general, a node could be in one of the following states:

1) Transmission: the node has all its components activated
(antenna, micro-controller). It modulates the information
to send it over the medium

2) Reception: The radio interface and micro-controller are
active. The node listens to the medium for decoding the
information

3) Idle: The node has all its components active and is idle
4) Sleep: The application (micro-controller) is active and

all the other components are inactive
5) Deep sleep: All the node components are in the sleep

mode, including the micro-controller
In our recursive model, we divide the time into intervals of

duration ∆ (see figure 1). During an interval, a node can be
active for a duration δk, i.e., the duration of the current Ik
(δk ∈]0,∆]). Ik represents the constant current value during
active state δk and tk is the time at which the current Ik is
applied. The current is not considered null during the sleep
state and δkr is the sleep duration within ∆. Moreover, the
recursive model is ∆-based, which means that the energy of
the battery is updated each ∆. To define our model, we use

1

1 1r

2

2 2r

k

k kr

21 k

Fig. 1: Current profile

the following notations:
• ∆, is the period for energy updates,
• σ(n∆) is the apparent charge consumed by node battery

at n∆ in mA-min,
• α is the theoretical capacity of the battery in mA-min,

and β is the same as in the original model (min−
1
2).

α and β are estimated using the lifetime of the battery
measured with continuous current discharge. We will
detail the estimation method in section V,

• C(n∆) is the battery charge level at n∆ in mA-min,
• Ln = n∆ is the time in terms of ∆

Implemented at the MAC layer, our model can easily deduce

the duration of a state by using a simple timer that is
reinitialized at each change in the node state.

IV. BATTERY MODEL FOR SENSOR NODES

In this section, we first simplify the form of the summation
in the original model and optimize the memory usage, in order
to introduce later the recursive form of our battery model.

A. Simplifying the original model

In this section, we take advantage of some properties
available in sensor nodes to simplify the computation of the
original model. In general, a sensor node consumes a small
current during a state and the current magnitude varies slightly
during any state. Figure (2) shows the current needed by a

Current (mA)

Time (ms)

1

2

3 5

4 6

7

8

9

Fig. 2: Current consumption of a sensor node

CC2430 node to operate [12]. The node start up (goes to
sleep) in intervals 1-2 (8-9), transmit and receive a packet
from 3 to 7. Therefore without loss of generality, we consider
that the current can be approximated by the average of the
current magnitudes during a state. This means that the current
consumption in any state is constant. Moreover, a sensor node
in a beacon mode is active every beacon period to listen,
receive or transmit data. Consequently, our choice to consider
a constant current value during δk is justified.

Using this assumption, we let i(τ) = Ik in (1) and the
constant Ik can be brought out of the integrals. Thus (1) reads,

σ(Ln) =
n∑
k=1

Ik δk + 2
n∑
k=1

Ik A(Ln, tk + δk, tk) (2)

where the function A is defined as

A(Ln, x, y) =
∞∑
m=1

e−β
2m2(Ln−x) − e−β2m2(Ln−y)

β2m2
.

The evaluation of the second term in (2) requires a long
computation time and a large lookup table for the exponential
calculation. The reason is that a sensor node can only perform
basic math operations (addition, subtraction, multiplication
and division) and he needs to access the memory very often to
store intermediate results. In fact, for an acceptable accuracy
in computing A, m can go from 1 to 10. In this case, the
A function alone requires 10 subtraction operations between

two exponential terms, in addition to 10 divisions with the
square of β and m. This without mentioning the product in
the power of the exponential and the summation of all the
terms. Furthermore, at time Ln, we need to save all the states
k prior to Ln with information Ik,∆k, tk related to every state.
Then, the model becomes impossible to implement in a sensor
node and this what motivates us to find a simplified form of
A (section IV-B) in addition to resolving the memory usage
problem (section IV-C).

B. Simplification of the sum

As mentioned above, A(Ln, x, y) is very complex to com-
pute and requires a large memory space. We need to find a sim-
ple and accurate mathematical approximation of A(Ln, x, y),
to be able to implement the model in a sensor node.
In the battery model, β is known a priori (estimated offline)
and it can be brought out the sum. We also separate the two
terms of the difference in A, to obtain the following form:

f(t) =
∞∑
m=1

e−β
2m2t

m2
=
∞∑
m=1

1
m2(eβ2t)m2 , (3)

which approximation can be used for both terms of A. Now,
we begin to find the approximation for f(t).
It is known that,

∞∑
m=0

xm =
1

1− x
(4)

We want m to be in the denominator, so we integrate both
sides of (4) with respect to x (see [13])

∞∑
m=1

xm

m
=
∫ x

0

1
1− y

dy = log(
1

1− x
). (5)

If we replace x by 1
x in (5), we obtain:

∞∑
m=1

1
mxm

= log(
x

x− 1
), |x| > 1. (6)

By developing
∑∞
m=1

1
mxm , (6) becomes

log(
x

x− 1
) =

1
x

+
1

2x2
+

1
3x3

+ · · ·+ 1
mxm

. (7)

We may write (7) to make
∑∞
m=1

1
m2xm2 appear

log(
x

x− 1
) =

∞∑
m=1

1
m2xm2 +

1
2x2

+
1

3x3
+

1
5x5

+ · · · ,

then the value of the sum
∑∞
m=1

1
m2xm2 will be

∞∑
m=1

1
m2xm2 = log(

x

x− 1
)− 1

2x2
− 1

3x3
− · · · . (8)

Moreover, we know that |eβ2t| > 1, since β > 0 (model
parameter) and t > 0 (time). Using (8), (3) reads

∞∑
m=1

e−β
2m2t

m2
= log(

eβ
2t

eβ2t − 1
)− 1

2× (eβ2t)2
− · · · . (9)

Since β2 · t > 0,

∀n ∈ N∗, n · enβ
2t > n,

and the reciprocal of the inequality is

1
nenβ2t

<
1
n
.

For any t, the ratio 1
nenβ2t has 1

n as an upper bound. In
addition, following a certain t, the term eβ

2t becomes
significant and 1

nenβ2t � 1
n . Thus, the approximation

log(eβ
2t

eβ2t−1
) is a good one for f(t) starting from a certain

value of t. We will call this approximation f2(t). In what
follows, we find the sum approximation for small t that we
call f1(t) .

We know that the Jacobi theta function is defined as:

ϑ(z; τ) =
∑
m∈Z

eπim
2τ+2πinz. (10)

For z = 0 and τ = it, (10) becomes

ϑ(0; it) = Θ(t) =
∑
m∈Z

e−πm
2t, (11)

where Θ(t) is called the theta function. We need to find an
approximation of f(t) for small t, for this reason let us remind
the Poisson summation formula:∑

m∈Z
f̂(m) = 2π

∑
m∈Z

f(2πm), (12)

where f̂ is the Fourier transform of the function e−ax
2
, (a >

0) defined over R
Using (12), we can obtain the following expression [14]:

∀ t > 0,Θ(t) =
1√
t
·Θ(

1
t
) (13)

Having (11) and (13), we can write
∑
m∈Z e

−β2m2t in terms
of Θ. The main reason for this is to estimate the sum from
which we can deduce f(t)∑

m∈Z
e−β

2m2t = θ(
tβ2

π
) =

√
π

tβ2
·Θ(

π

tβ2
) (14)

We develop (14) to find the form
∑∞
m=1 e

−β2m2t:

1 + 2 ·
∞∑
m=1

e−β
2m2t =

√
π

tβ2
·

(
1 + 2 ·

∞∑
m=1

e
−π2m2

tβ2

)
We obtain the final form of our sum, which is:
∞∑
m=1

e−β
2m2t =

1
2
·
(√

π

tβ2
− 1
)

+
√

π

tβ2
·
∞∑
m=1

e
−π2m2

tβ2 (15)

We can notice that for small values of t, the first term
1
2 ·
(√

π
tβ2 − 1

)
is a good approximation of the original

sum. The reason is that the sum
∑∞
m=1 e

−π2m2

tβ2 is negligible
for small values of t and as a consequence the second
term of (15). However, when t increases significantly the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

β
(m

in
-1

/2
)

ts (min)

Fig. 3: ts for different value of the parameter β

approximation becomes inaccurate since the first term
1
2 ·
(√

π
tβ2 − 1

)
alters to negative as

√
π
tβ2 � 1 .

Therefore, for small values of t, we will have
∞∑
m=1

e−β
2m2t ≈ 1

2
·
(√

π

tβ2
− 1
)
. (16)

In our case, we need to find the approximation of f(t) for
small values of t. By integrating (16) with respect to t, we
obtain,

∞∑
m=1

e−β
2m2t

−β2m2
+ C ≈

√
π

β2
·
√
t− t

2
(17)

For t = 0 in (17), we get, C = π2

6β2 .
After simplification, (17) reads,

∞∑
m=1

e−β
2m2t

m2
≈ tβ2

2
− β
√
πt+

π2

6
(18)

For the rest of this paper, we will use f1(t), f2(t) to designate
tβ2

2 − β
√
πt + π2

6 and β2 · t − log(eβ
2t − 1) respectively.

Additionally, we still have to define for a value of the β
parameter, when to use f1(t) and f2(t). We will call ts, the
time at which the approximation of f(t) switches from f1(t)
to f2(t).

f(t) =

{
f1(t) = tβ2

2 − β
√
πt+ π2

6 , if t ∈ [0, ts[

f2(t) = β2 · t− log(eβ
2t − 1) , if t ∈ [ts,∞[

To calculate ts, we find the time t for which the difference
between f1(t) and f2(t) is minimal, i.e., the time where the
two functions are too close. It can be computed by calculating
the derivative d′(t) of f1(t)−f2(t) with respect to t and finding
its root, i.e. the value of ts. d′(t) has the following form:

d′(t) =
−β2eβ

2t

e2β2t − 2eβ2t + 1
+
√
π

4β
√
t3

(19)

For a given β, we can calculate ts numerically using the
Newton-Raphson method. Figure (3) shows ts for different
values of β.

TABLE I: Number of operations
Operation Original form Approximated form

+ 9 2
- 20 3
* 40 5
/ 10 1

Table (I) shows the number of operations for the original
form of A and our approximation. One can clearly see the
simplification brought to the original form of A, in terms of
computation and memory usage. Also, half of the subtraction
operations in A are done between exponential terms requiring
the use of a lookup table. Yet, in our approximation we use
only one lookup table for the logarithm function because
the square root can be approximated by a linear function.
The linear approximation involves one multiplication and an
addition.
Despite our approximation of the sum A, we still have the
memory issue to handle in order to implement the model in a
sensor node. We deal with this problem in the next section.

C. Reduce the memory usage

To estimate the remaining energy at Ln, the model needs the
information on all previous states prior to Ln (see equaton 2).
In this case, the information (Ik, tk, δk) regarding the previous
states must be saved in memory permanently. The former
condition makes the model unimplementable in a sensor node
with a limited memory. Thus, we introduce a recursive version
of the original model to optimize the memory usage and
computation. We also define the two following sets

• Sδ = {δk | k = {1, · · · , n}}, is the set of all the possible
states duration sorted in an ascending order,

• Sξ = {ξk(n) | k = {1, · · · , n}}, is the set of all the
ratios ξk(n) of the state durations δk,

where,

ξk(n) =
A(Ln+1, tk + δk, tk)
A(Ln, tk + δk, tk)

. (20)

1) Introduce the recursive model: Using the original model,
we use the current magnitude I1 and the pulse duration δ1 to
calculate the energy consumed at ∆,

I1 δ1 + 2 I1 A(∆, δ1, 0). (21)

At time 2∆, the remaining energy estimation needs the previ-
ous state history, in this case states 1 and 2:

I1 ·
(
δ1+2 A(2∆, δ1, 0)

)
+I2 ·

(
δ2+2 A(2∆,∆+δ2,∆)

)
(22)

In equation (22), the time Ln in function A related to I1, is
incremented by ∆ at each energy update period. For instance,
at L2 = 2∆, I1 ·

(
δ1 + 2 A(2∆, δ1, 0)

)
and at L3 = 3∆,

I1 ·
(
δ1 + 2 A(3∆, δ1, 0)

)
and so on. Therefore, the follow-

ing question raises now: is it possible to avoid computing
I1A(n∆, δ1, 0) other than in the first state ∆ ? To answer
this question, we try find a relation between A(Ln+1, δ1, 0)

and A(Ln, δ1, 0). We begin first by expressing A(Ln+1, δ1, 0)
as follows:

A(Ln+1, δ1, 0) =
∞∑
m=1

e−β
2m2Ln+1

(
e−β

2m2δ1 − 1
)

β2m2
. (23)

Then, we take e−β
2m2∆ out of the sum to retrieve the form

of A(Ln, δ1, 0),

A(Ln+1, δ1, 0) ≤ e−β
2∆

∞∑
m=1

e−β
2m2Ln

(
e−β

2m2δ1 − 1
)

β2m2

A(Ln+1, δ1, 0) ≤ e−β
2∆ ·A(Ln, δ1, 0)

which implies

ξ1(n) =
A(Ln+1, δ1, 0)
A(Ln, δ1, 0)

≤ e−β
2∆ (24)

ξ1(n) is the ratio performed for the current of duration δ1.
Since β is the parameter of the model and ∆ is a constant,
the upper bound of ξ1(n) is a constant. This propriety is logic
as our A function is a sum of the terms from 1 to ∞ and
from a certain t, the new terms added to the first sum terms
becomes negligible. We can also calculate a constant υ (using
a linear regression) such that e−β

2υ∆ is the upper bound of
ξ1(n),

sup(ξ1(n)) ≤ e−β
2υ∆. (25)

After simplification, we will obtain the following form:

log(sup(ξ1(n)))
−β2∆

≤ υ (26)

Now, we plot ξ1(n) for different values of β (fig.4) to visualize
the value of n for which the ratio becomes a constant. On the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10

ξ 1
(n

)

n

β=0.2
β=0.3
β=0.4
β=0.5
β=0.6
β=0.7
β=0.8
β=0.9

β=1
β=1.1
β=1.2
β=1.3

Fig. 4: ∆ = 1 min, δ1 = 0.1 min

one hand, we notice that for β ≥ 1.1 and an appropriate ∆
value, the ratio ξ1(n) is constant for all n. This ratio permits
to compute the A function related to a current at any time step
n∆ without the history of previous states information. On the
other hand, the ratio is not constant for small values of β. With
β = 0.2 for instance, we need to save nine values in memory
{ξ1(1), · · · , ξ1(9)}, to be able to use the recursive model.
However, in practice the batteries possess a minimum β of 0.6

min−
1
2 . ξ1(n) can be used to represent the variations of ξk(n),

because the variation among different δk is not significant. We
will develop how to compute the value of ∆ in the next section
but now we want to obtain the recursive form of our battery
model. We begin by computing the energy consumed using (2)
at L1 (∆), L2(2∆). The apparent charge consumed is given
by the following two equations:

σ(∆) = I1 δ1 + 2 I1 A(∆, δ1, 0)
σ(2∆) = I1 δ1 + I2 δ2 + 2 I2 A(2∆,∆ + δ2,∆)

+ 2 I1 A(2∆, δ1, 0)
= I1 δ1 + I2 δ2 + 2 I2 A(2∆,∆ + δ2,∆)

+ 2 ξ1(1) I1 A(∆, δ1, 0)

As we can notice, the computation for the charge consumed
by the current I1 can be done once at ∆ and can be concluded
using ξ1(n) in the next state. The same property applies for
all the current I2, · · · , In and allows us to avoid storing states
history. Therefore, the size of the memory needed to save the
states history can be freed. We introduce the recursive model
solution by computing the energy consumed at 2∆ function
of σ(∆) :

σ(2∆) = I1 δ1 + I2 δ2 + 2 I2 A(2∆,∆ + δ2,∆)
+ 2 I1 ξ1(1) A(∆, δ1, 0)

(27)

In (27), ξ1(1) = A(2∆,δ1,0)
A(∆,δ1,0) is known a priori. We can also

conclude from (27) that 2 I1 A(∆, δ1, 0) = σ(∆) − I1 δ1.
Thus, (27) reads

σ(2∆) = I1 δ1 + I2 δ2 + 2 I2 A(2∆,∆ + δ2,∆)
+ ξ1(1) (σ(∆)− I1 δ1) .

The general recursive form of the our battery recursive model
is

σ(Ln) =
n∑
k=1

Ik δk + λ ·

(
σ(Ln−1)−

n−1∑
k=1

Ik δk

)
+ 2 · In ·A(Ln, Ln−1 + δn, Ln−1)

(28)

where σ(L1) = I1 δ1 + 2 I1 A(∆, δ1, 0) is the model
initial value and λ = ξ1(n) ≈ ξ2(n) ≈ ξ3(n) ≈ · · · ≈
ξn(n),∀n ∈ N∗ with an appropriate ∆ value. We study
the complexity of equation (28) in terms of the operations
needed to compute the remaining energy. The first term in
(28) is the sum

∑n
k=1 Ik δk. The evaluation of this term

requires one multiplication during n (In δn), considering the
previous multiplication

∑n−1
k=1 Ik δk are done progressively

during previous states. We need to save at each energy update
the multiplication of the present current to the sum of previous
states.

The second term in (28), λ ·
(
σ(Ln−1) −

∑n−1
k=1 Ik δk

)
is composed of the charge consumed during previous states
σ(Ln−1) and the sum

∑n−1
k=1 Ik δk. These terms are saved

in memory to calculate their subtraction which is multiplied
by λ. The last term is the most complex compared to the
first ones. This term is composed of two terms with the form

∑∞
m=1

e−β
2m2t

β2m2 with t > 0. Recall f(t) from (3), we can write
function A in terms of f(t) and we obtain:

A(Ln, Ln−1 + δn, Ln−1) =
f(∆− δn)

β2
− f(∆)

β2
. (29)

β and ∆ are two parameters of the model, which means that
f(∆)
β2 can be computed offline and it equal to a constant c0

f(∆)
β2

=
∞∑
m=1

e−β
2m2∆

β2m2
= c0.

The first term of (29) can be computed using the approxima-
tion of f(t)

f(γ)
β2

=

γ
2 −

√
π
β ·
√
γ + π2

6β2 , if γ ∈ [0, ts[

γ − log(eβ
2γ−1)
β2 , if γ ∈ [ts,∞[

where γ = ∆ − δn. The ratio π2

6β2 is also a constant (c1)
that is kept in memory and needs no computation to estimate
its value. The other ratio

√
π
β is a constant c2. We still have

the square root
√
γ that is easy to compute using a linear

approximation in the vicinity of a value a. In fact, if γ varies
around constant a, the approximation of the square root is√
γ ≈
√
a+(γ−a) 1

2
√
a

where
√
a, 1

2
√
a

are computed offline.
This assumption is realistic because the duration of a state does
not vary a lot between different states.

D. Optimal period ∆
The ∆ parameter is important in our recursive model. It is

the time at which a node updates its energy. If the duration
∆ is too short, the energy will be updated very often in vain
because between two successive states the energy consumed
is not significant. Our conclusion results from the fact that
nodes have low duty cycle and use small current. For this
reason, we want to find the optimal period ∆ that maintains
the model precision while considering the maximum variation
in state duration. In this case, the condition in (30) should be
minimal:

max
i={2,··· ,n}

(
ξ1(n)− ξi(n)

)
(30)

We consider that the current durations in Sδ are sorted in
an ascending order and that δ1 (δn) is the smallest (highest)
pulse. This makes ξ1(n)− ξi(n) ≥ 0,∀i 6= 1. We also notice
that ξi(n) converges to a constant value at high n values. In
addition, the difference ξ1(n) − ξi(n) is maximal for n = 1,
which allows us to replace ξi(n) by ξi(1) and ξ1(n) by ξ1(1)
in (30) to obtain

max
i=2,··· ,n

(
ξ1(1)− ξi(1)

)
. (31)

We conclude from the above that the maximum of the differ-
ence between ξ1(n) − ξi(n) is equal to ξ1(1) − ξn(1). Thus,
the optimal parameter ∆ to update the energy is the value that
minimizes the difference ξ1(1)− ξn(1).

For instance, if ∆ = 1 min and the maximum pulse
duration δn is 0.7 min, the difference ξ1(1) − ξn(1) is
negligible for high β values. However, for small β values,
the difference becomes significant (see figure 5).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ 1
(1

)
-

ξ n
(1

)

δn(min)

β = 0.276
β = 2

Fig. 5: ∆ = 1 min

E. Error in the approximation

To prove the accuracy of our recursive model, we need to
know what is the maximum error we introduce when replacing
the original model by our approximation. Besides, it is very
important to see the impact of an error in the first energy
computations and its propagation in our estimation during the
node operation.

We define the error between the original model and our
approximation as

εk(Ln) = |Er(Ln, tk + δk, tk)− Ea(Ln, tk + δk, tk)|

where the |.| denote the absolute value and
• Er, is the energy consumed computed using the original

model (2),
• Ea, is the approximated value of Er, i.e. our recursive

model (28),
• E(x), is the error at time x .
Our model is recursive and to study the propagation of

the error in our energy estimation, we compute the energy
consumed from ∆ to n∆ to find the form of the error,

σ(L1) = I1 δ1 + 2 I1 A(L1, δ1, 0)
E(L1) = 2 I1 ε1(∆)
σ(L2) = I1 δ1 + I2 δ2 + 2 I2 A(L2, L1 + δ2, L1)

+ 2 I1 A(L2, δ1, 0)
E(L2) = 2 I2 ε2(L2) + 2 I1 ξ1(1) ε1(∆)

The expression of the error at Ln is:

E(Ln) = η ·

(
2 ·

n−1∑
k=1

Ik · εk(Ln−1)

)
+ 2 · In · εn(Ln) (32)

where η is the upper bound of ξ1(n). We will see in the next
section that the approximation error is almost negligible, even
with a significant variation in the current magnitude and pulse
duration.

V. SIMULATION

The quality of our model is evaluated with respect to results
obtained by the low-level simulator DUALFOIL [7], [15].
The high quality of this simulator has been demonstrated in

[16], [17]. DUALFOIL numerically simulates a set of partial
differential equations that mimic the behavior of a lithium-
ion cell. Over 50 parameters must be supplied as an input
in order to have a simulated battery. We have modified these
parameters to have the simulated battery in [6] which was
demonstrated to be realistic. In the rest of this section, we will
use this battery to perform our lifetime measurements and it
will called dualfoil battery.

A. Determine α and β parameters

As mentioned earlier, we need to estimate two parameters
α mA-min and β (min−

1
2) to implement our model. These

parameters are determined using the lifetime information gath-
ered by discharging the battery using constant currents (see
table II).

Under constant-current discharge (i(t) = I), equation (1)
reduces to the following form:

α = σ(L) = I ·

(
L+ 2

∞∑
m=1

1− e−β2m2L

β2m2

)
(33)

where L is the lifetime duration of the battery under a
continuous current load of magnitude I and α is the total
charge in the battery. Using (33), we fit the current values
I for the set of the measured lifetime L in table II and we
estimate the parameters (α, β) using least square estimation.

TABLE II: Battery simulated lifetime
Load current, mA Lifetime, min Load current, mA Lifetime, min

2 21202.039 40 1052.170
5 8475.242 50 840.021

10 4234.405 60 698.589
15 2820.079 70 597.871
20 2112.915 80 522.869
28 1506.469 100 415.723

To have a good estimate of α and β, it is necessary to
discharge the dualfoil battery with a wide range of load
currents. We begin from small current values (current in the
sleep state) to very high currents (while all the components
are active). Our simulated battery has an α = 40027 mA-min
and β = 0.276 min−

1
2 with an open-circuit voltage of 4.3V

and the cutoff voltage is 3.2V . The low value of β means
that the battery exhibits strong non-linearity in contradiction
to an ideal battery model. We introduce this model in the next
section.

B. Ideal model

The ideal model considers that if a battery has a capacity
of 640 mAH , it can deliver 640mA for one hour. The energy
estimation using the ideal model is not accurate and we will
prove this by comparing the ideal model lifetime estimation
to the simulator predictions.

In order to compare the dualfoil battery lifetime with the
ideal model, we must know the capacity of the our battery.
Many techniques are used to estimate the capacity of the
battery, we will use the one that determines the battery
capacity when its voltage reaches 3.2V (cutoff voltage for

our dualfoil battery). For this reason, the dualfoil battery is
discharged with a constant current (100 mA for example) until
the battery voltage reaches 3.2V , and we measure its lifetime.
The battery lifetime is 6.928 hours and the battery estimated
capacity is 100× 6.928 = 692.87 mAH . We apply the same
method with all the currents in table II and we calculate the
average to get the best battery capacity estimation. The dualfoil
battery has a capacity of 701.55 mAH .

C. Performance evaluation

To prove the accuracy of our recursive model, we need
to compare its lifetime estimation with the one given using
the dualfoil simulator. Therefore, we have given a series of
current profiles as an input to both the simulator and the
recursive model, and we have computed the battery lifetime
using both models. We will consider that ∆ is the same in all
our scenarios and it is equal to 60 seconds.

In the first scenario, we consider that a constant current load
is applied to the battery for the first 10% of the interval ∆ and
that a 0.1 mA load is applied in the rest of this interval. The
current profile is repeated every ∆ until the battery is depleted.
The current remains constant during all the battery duration
and we repeat the same scenario for the currents ranging from
20 to 100. Using the recursive model, the battery is considered
depleted when α − σ(Ln) is null, however, in the dualfoil
simulator the battery is depleted when its voltage reaches the
cutoff voltage. The results of our simulation can be seen in
table III. In this table E represent the percentage of estimation
error of every method compared to the result given by the
dualfoil simulator. We can clearly notice that the error using
the recursive model is approximately half of the one appearing
when considering the battery as an ideal model. And we can
prove that the ideal model is not very accurate to quantify the
remaing energy of a battery. Despite this fact, many papers
consider the battery as an ideal source when estimating the
remaining energy of a sensor node. They simply calculate
the energy consumed per node state (transmissionn reception,
...) using consumption measurement and update the battery
remaining energy accordinly. If those estimations are used
in energy-based routing, the routing protocol can use sensor
nodes with low remaining energy, since the energy information
is overestimated. Consequently, the sensor network lifetime
will be shortened.

The second scenario is the same as the first one, except that
the current 0.1 mA is replaced by 0.0001 mA. The result of
our simulation is shown in table IV. The main goal of this
study is to find the effect of the current consumed in a node
sleep state on the battery lifetime. In fact, we need to show that
the assumption that current consumed in the sleep state can
be neglected is not realistic. Figure 6 shows the percentage
of error a battery model can make if it did not account the
current consumed in sleep state. It can be clearly seen that for
sensor nodes with low current consumption, neglecting the
current consumed in a sleep state can affect considerably the
energy estimation of the node. In addition, the error percentage
decreases as the current increases since at high current the

TABLE III: Battery lifetime estimation (min)
Load, mA DUALFOIL Ideal model E% Recursive model E%

20 18156.1 20140.1 10.92 19116 5.28
40 9249.1 10291.1 11.26 9751 5.42
60 6203 6911.8 11.41 6537 5.38
80 4664.1 5203 11.55 4912 5.31
100 3737.1 4171.7 11.62 3932 5.21

TABLE IV: Battery lifetime estimation (min)
Load, mA DUALFOIL Ideal model E 1 % Recursive model E%

20 18866 21037.1 11.50 19978 5.89
40 9430 10520.9 11.56 9968 5.70
60 6283.1 7014.4 11.63 6636 5.61
80 4710 5261 11.69 4968 5.47
100 3766 4208.9 11.76 3967 5.33

current in the sleep mode becomes negligible compared to the
current in the active states.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 20 30 40 50 60 70 80 90 100

E
rr

or
 %

Current (mA)

Ideal model
Recursive model

Fig. 6: Percentage of estimation error

The last scenario is the same as previous scenarios but with
a random current ranging from 2 mA to 100 mA and with also
a random duration that varies from 0.1 to 0.4 min during the
interval ∆. Other than during the duration of the active pulse,
the current is very low. The estimation of the lifetime using
dualfoil simulator is 3203.240 min and 3072 min using our
recursive model. The estimation error in the battery lifetime
is 3.8%. The mean error between the original model and our
approximation is 0.08% with a maximum peak of 10 mA-
min.

VI. CONCLUSION

In this paper, we proposed a recursive battery model that
estimates the remaining energy of a node battery. Although our
model estimates the remaining energy in lithium-ion batteries,
it can be used in any node independently of its battery chem-
istry. We have showed that our model can be implemented in a
sensor node since it requires a simple computation and needs
a small memory. In addition, the accuracy of our model is
showed by a good estimation of the battery remaining energy
information with different scenarios.

We have also proved in this paper that the assumption of
considering the battery as an ideal model is not realistic. In
fact, if a node consumes c mAH in a state, it is not realistic

to update the battery energy after this state by subtracting c
from the original battery capacity.

ACKNOWLEDGMENT

I would like to thank Professor Daler Rakhmatov for helping
me in finding the right parameters for the dualfoil battery.
A special thank also to Professor Jean-Christophe Leger for
his remark that putted me on the right track to find the sum
approximation.

REFERENCES

[1] “Energizer battery,” http://data.energizer.com/PDFs/L91ULT EU.pdf.
[2] D. Rakhmatov and S. Vrudhula, “Energy management for battery-

powered embedded systems,” ACM transactions on Embedded Com-
puting Systems, vol. 2, no. 3, pp. 277–324, August 2003.

[3] M. Doyle and J. Newman, “Analysis of capacity rate data for lithium
batteries using simplified models of the discharge process,” J. Applied
Electrochem., vol. 27, no. 7, pp. 846–856, July 1997.

[4] D. Panigrahi, C. Chiasserini, S. Dey, R. Rao, A. Raghunathan, and
K. Lahiri, “Battery life estimation of mobile embedded systems,”
Proceedings of the The 14th International Conference on VLSI Design,
pp. 57–63, 2001.

[5] T. Fuller, M. Doyle, and J.S.Newman, “Relaxation phenomena in
lithium-ion-insertion cells,” J. Electrochem., vol. 141, no. 4, pp. 982–
990, April 1994.

[6] R. Rao, S. Vrudhula, and D. Rakhmatov, “Battery modeling for energy-
aware system design,” Computer, pp. 77–87, December 2003.

[7] M. Doyle, T. Fuller, and J. Newman, “Modeling of galvanostatic
charge and discharge of the lithium/polymer/insertion cell,” J. Applied
Electrochemical Soc., vol. 140, no. 6, pp. 1526–1533, 1993.

[8] M. Pedram and Q. Wu, “Design considerations for battery-powered
electronics,” Proc. 36th ACM/IEEE Design Automation Conf.,ACM
Press, pp. 861–866, 1999.

[9] K. Syracuse and W. Clark, “A statistical approach to domain perfor-
mance modeling for oxyhalideprimary lithium batteries,” Proc. 12th
Ann. Battery Conf.Applications and advances, IEEE Press, pp. 163–170,
1997.

[10] P. Rong and M. Pedram, “An analytical model for predicting the remain-
ing capacity of lithium-ion batteries,” Proc. 2003 Design, Automation
and Test in Europe conf. and Exposition, IEEE CS Press, pp. 1148–1149,
2003.

[11] C. Ma, Z. Zang, and Y. Yang, “Battery-aware scheduling in wireless
mesh networks,” Mobile Networks and Applications, vol. 13, no. 1-2,
pp. 228–241, April 2008.

[12] B. Selvig, “Measuring power consumption with cc2430 and z-stack,”
2007.

[13] Graham, Knuth, and Patashnik, Concrete mathematics. Addison-
Wesley, 1989.

[14] “http://www.dynamaths.com/docs/lecons/developpement analyse 130.
pdf.”

[15] T. Fuller, M.Doyle, and J. Newman, “Simulation and optimization of
the dual lithium ion insertion cell,” J. Applied Electrochemical Soc.,
vol. 141, no. 1, 1994.

[16] M. Doyle and J. Newman, “Comparison for modeling predictions with
experimental data from plastic lithium ion cells,” J. Applied Electro-
chemical Soc., vol. 143, no. 6, 1996.

[17] P.Arora, M. Doyle, A.Gozdz, R.White, and J. Newman, “Comparison
between computer simulations and experimental data for high-rate
discharges of plastic-ion batteries,” J. Power Sources, vol. 88, 2000.

	RR1525entete
	RR1525rapp

