
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

CANONIZED REWRITING AND GROUND AC

COMPLETION MODULO SHOSTAK THEORIES

CONCHON S / CONTEJEAN E / IGUERNELALA M

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

12/2010

Rapport de Recherche N° 1538

Laboratoire de Recherche en Informatique

Research Report N◦ 1538

December 2010

Canonized Rewriting and Ground AC
Completion Modulo Shostak Theories

Sylvain Conchon Evelyne Contejean Mohamed Iguernelala

LRI, Univ Paris-Sud, CNRS, Orsay F-91405
INRIA Saclay – Ile-de-France, ProVal, Orsay, F-91893

Abstract. AC-completion efficiently handles equality modulo associa-
tive and commutative function symbols. When the input is ground, the
procedure terminates and provides a decision algorithm for the word
problem. In this paper, we present a modular extension of ground AC-
completion for deciding formulas in the combination of the theory of
equality with user-defined AC symbols, uninterpreted symbols and an ar-
bitrary signature disjoint Shostak theory X. Our algorithm, called AC(X),
is obtained by augmenting in a modular way ground AC-completion
with the canonizer and solver present for the theory X. This integration
rests on canonized rewriting, a new relation reminiscent to normalized
rewriting, which integrates canonizers in rewriting steps. AC(X) is proved
sound, complete and terminating, and is implemented to extend the core
of the Alt-Ergo theorem prover.

Key words: decision procedure, associativity and commutativity,
rewriting, AC-completion, SMT solvers, Shostak’s algorithm.

1 Introduction

Many mathematical operators occurring in automated reasoning such as union
and intersection of sets, or boolean and arithmetic operators, satisfy the following
associativity and commutativity (AC) axioms

∀x.∀y.∀z. u(x, u(y, z)) = u(u(x, y), z) (A)
∀x.∀y. u(x, y) = u(y, x) (C)

Automated AC reasoning is known to be difficult. Indeed, the mere addition of
these two axioms to a prover will usually glut it with plenty of useless equalities
which will strongly impact its performances1. In order to avoid this drawback,
built-in procedures have been designed to efficiently handle AC symbols. For
instance, SMT-solvers incorporate dedicated decision procedures for some spe-
cific AC symbols such as arithmetic or boolean operators. On the contrary, algo-
rithms found in resolution-based provers such as AC-completion allow a powerful
generic treatment of user-defined AC symbols.

Given a finite word problem
∧
i∈I si = ti ` s = t where the function sym-

bols are either uninterpreted or AC, AC-completion attempts to transform the
conjunction

∧
i∈I si = ti into a finitely terminating, confluent term rewriting

system R whose reductions preserve identity. The rewriting system R serves as
a decision procedure for validating s = t modulo AC: the equation holds if and
only if the normal forms of s and t w.r.t R are equal modulo AC. Furthermore,
when its input contains only ground equations, AC-completion terminates and
outputs a convergent rewriting system [15].

Unfortunately, AC reasoning is only a part of the automated deduction prob-
lem, and what we really need is to decide formulas combining AC symbols and
other theories. For instance, in practice, we are interested in deciding finite
ground word problems which contain a mixture of uninterpreted, interpreted
and AC function symbols, as in the following assertion

u(a, c2 − c1) ≈ a ∧ u(e1, e2)− f(b) ≈ u(d, d)∧
d ≈ c1 + 1 ∧ e2 ≈ b ∧ u(b, e1) ≈ f(e2) ∧ c2 ≈ 2 ∗ c1 + 1

` a ≈ u(a, 0)

where u is an AC symbol, +, −, ∗ and the numerals are from the theory of linear
arithmetic, f is an uninterpreted function symbol and the other symbols are
uninterpreted constants. A combination of AC reasoning with linear arithmetic
and the free theory E of equality is necessary to prove this formula. Linear
arithmetic is used to show that c2−c1 = c1+1 so that (i) u(a, c1+1) = a follows
by congruence. Independently, e2 = b and d = c1+1 imply (ii) u(c1+1, c1+1) = 0
by congruence, linear arithmetic and commutativity of u. AC reasoning can
finally be used to conclude that (i) and (ii) imply that u(a, c1 + 1, c1 + 1) is
equal to both a and u(a, 0).

There are two main methods for combining decision procedures for disjoint
theories. First, the Nelson-Oppen approach [17] is based on a variable abstraction

1 Given a term t of the form u(c1, u(c2, . . . , u(cn, cn+1) . . .), the axiomatic approach
may have to explicitly handle the (2n)!/n! terms equivalent to t.

2

mechanism and the exchange of equalities between shared variables. Second, the
Shostak’s algorithm [20] extends a congruence closure procedure with theories
equipped with canonizers and solvers, i.e. procedures that compute canonical
forms of terms and solve equations, respectively. While ground AC-completion
can be easily combined with other decision procedures by the Nelson-Oppen
method, it cannot be directly integrated in the Shostak’s framework since it
actually does not provide a solver for the AC theory.

In this paper, we investigate the integration of Shostak theories in ground
AC-completion. We first introduce a new notion of rewriting called canonized
rewriting which adapts normalized rewriting to cope with canonization. Then,
we present a modular extension of ground AC-completion for deciding formulas
in the combination of the theory of equality with user-defined AC symbols,
uninterpreted symbols and an arbitrary signature disjoint Shostak theory X. The
main ideas of our integration are to substitute standard rewriting by canonized
rewriting, using a global canonizer for AC and X, and to replace the equation
orientation mechanism found in ground AC-completion with the solver for X.

AC-completion has been studied for a long time in the rewriting commu-
nity [14, 19]. A generic framework for combining completion with a generic built-
in equational theory E has been proposed in [9]. Normalized completion [16] is
designed to use a modified rewriting relation when the theory E is equivalent to
the union of the AC theory and a convergent rewriting system S. In this setting,
rewriting steps are only performed on S-normalized terms. AC(X) can be seen as
an adaptation of ground normalized completion to efficiently handle the theory
E when it is equivalent to the union of the AC theory and a Shostak theory X.
In particular, S-normalization is replaced by the application of the canonizer of
X. This modular integration of X allows us to reuse proof techniques of ground
AC-completion [15] to show the correctness of AC(X).

Kapur [10] used ground completion to demystify Shostak’s congruence closure
algorithm and Bachmair et al. [3] compared its strategy with other ones into
an abstract congruence closure framework. While the latter approach can also
handle AC symbols, none of these works formalized the integration of Shostak
theories into (AC) ground completion.

Outline. Section 2 recalls standard ground AC completion. Section 3 is de-
voted to Shostak theories and global canonization. Section 4 presents the AC(X)
algorithm and illustrates its use through an example. The correctness of AC(X)
is sketched in Section 5 and experimental results are presented in Section 6.
Conclusion and future works are presented in Section 7.

2 Ground AC-Completion

In this section, we first briefly recall the usual notations and definitions of [1, 6]
for term rewriting modulo AC. Then, we give the usual set of inference rules for
ground AC-completion procedure and we illustrate its use through an example.

Terms are built from a signature Σ = ΣAC] ΣE of AC and uninterpreted
symbols, and a set of variables X yielding the term algebra TΣ(X). The range of

3

letters a . . . f denotes uninterpreted symbols, u denotes an AC function symbol,
s, t, l, r denote terms, and x, y, z denote variables. Viewing terms as trees,
subterms within a term s are identified by their positions. Given a position
p, s|p denotes the subterm of s at position p, and s[r]p the term obtained by
replacement of s|p by the term r. We will also use the notation s(p) to denote the
symbol at position p in the tree, and the root position is denoted by Λ. Given a
subset Σ′ of Σ, a subterm t|p of t is a Σ′-alien of t if t(p) 6∈ Σ′ and p is minimal
w.r.t the prefix word ordering2. We write AΣ′(t) the multiset of Σ′-aliens of t.

A substitution is a partial mapping from variables to terms. Substitutions
are extended to a total mapping from terms to terms in the usual way. We write
tσ for the application of a substitution σ to a term t. A well-founded quasi-
ordering [5] on terms is a reduction quasi-ordering if s � t implies sσ � tσ and
l[s]p � l[t]p, for any substitution σ, term l and position p. A quasi-ordering �
defines an equivalence relation ' as � ∩ � and a partial ordering ≺ as � ∩ 6�.

An equation is an unordered pair of terms, written s ≈ t. The variables
contained in an equation, if any, are understood as being universally quantified.
Given a set of equations E, the equational theory of E, written =E , is the set of
equations that can be obtained by reflexivity, symmetry, transitivity, congruence
and instances of equations in E3. The word problem for E consists in determining
if, given two ground terms s and t, the equation s ≈ t is in =E , denoted by s =E t.
The word problem for E is ground when E contains only ground equations. An
equational theory =E is said to be inconsistent when s =E t, for any s and t.

A rewriting rule is an oriented equation, usually denoted by l→ r. A term s
rewrites to a term t at position p by the rule l→ r, denoted by s→p

l→r t, iff there
exists a substitution σ such that s|p = lσ and t = s[rσ]p. A rewriting system R is
a set of rules. We write s→R t whenever there exists a rule l→ r of R such that
s rewrites to t by l→ r at some position. A normal form of a term s w.r.t to R is
a term t such that s→∗R t and t cannot be rewritten by R. The system R is said
to be convergent whenever any term s has a unique normal form, denoted s↓R,
and does not admit any infinite reduction. Completion [11] aims at converting a
set E of equations into a convergent rewriting system R such that the sets =E

and {s ≈ t | s↓R= t↓R} coincide. Given a suitable reduction ordering on terms,
it has been proved that completion terminates when E is ground [13].

Rewriting modulo AC. Let =AC be the equational theory obtained from the set:

AC =
⋃

u∈ΣAC

{u(x, y) ≈ u(y, x), u(x, u(y, z)) ≈ u(u(x, y), z) }

In general, given a set E of equations, it has been shown that no suitable reduc-
tion ordering allows completion to produce a convergent rewriting system for
E ∪ AC. When E is ground, an alternative consists in in-lining AC reasoning
both in the notion of rewriting step and in the completion procedure.

2 Notice that according to this definition, a variable may be a Σ′-alien.
3 The equational theory of the free theory of equality E , defined by the empty set of

equations, is simply denoted =.

4

Rewriting modulo AC is directly related to the notion of matching modulo
AC as shown by the following example. Given a rule u(a, u(b, c)))→ t, we would
like the following reductions to be possible:

(1) f(u(c, u(b, a)), d)→ f(t, d) (2) u(a, u(c, u(d, b)))→ u(t, d)

Associativity and commutativity of u are needed in (1) for the subterm u(c, u(b, a))
to match the term u(a, u(b, c)), and in (2) for the term u(a, u(c, u(d, b))) to be
seen as u(u(a, u(b, c)), d), so that the rule can be applied. More formally, this
leads to the following definition.

Definition 1 (Ground rewriting modulo AC). A term s rewrites to a term
t modulo AC at position p by the rule l→ r, denoted by s →p

AC\l→r t, iff (1)

s|p =AC l and t = s[r]p or (2) l(Λ) = u and there exists a term s′ such that
s|p =AC u(l, s′) and t = s[u(r, s′)]p

In order to produce a convergent rewriting system, ground AC-completion
requires a well-founded reduction quasi-ordering � total on ground terms with
an underlying equivalence relation which coincides with =AC . Such an ordering
will be called a total ground AC-reduction ordering.

The inference rules for ground AC-completion are given in Figure 1. The rules
describe the evolution of the state of a procedure, represented as a configuration
〈 E | R 〉, where E is a set of ground equations and R a ground set of rewriting
rules. The initial state is 〈 E0 | ∅ 〉 where E0 is a given set of ground equations.
Trivial removes an equation u ≈ v from E when u and v are equal modulo
AC. Orient turns an equation into a rewriting rule according to a given total
ground AC-reduction ordering �. R is used to rewrite either side of an equation
(Simplify), and to reduce right hand side of rewriting rules (Compose). Given
a rule l → r, Collapse either reduces l at an inner position, or replaces l by a
term smaller than r. In both cases, the reduction of l to l′ may influence the
orientation of the rule l′ → r which is added to E as an equation in order to be
re-oriented. Finally, Deduce adds equational consequences of rewriting rules to
E. For instance, if R contains two rules of the form u(a, b)→ s and u(a, c)→ t,
then the term u(a, u(b, c)) can either be reduced to u(s, c) or to the term u(t, b).
The equation u(s, c) ≈ u(t, b), called critical pair, is thus necessary for ensuring
convergence of R. Critical pairs of a set of rules are computed by the following
function (aµ stands for the maximal term w.r.t. size enjoying the assertion):

headCP(R) =

{
u(b, r′) ≈ u(b′, r)

∣∣∣∣ l→ r ∈ R, l′ → r′ ∈ R
∃ aµ : l =

AC
u(aµ, b) ∧ l′ =

AC
u(aµ, b′)

}
Example. To get a flavor of ground AC-completion, consider a modified version
of the assertion given in the introduction, where the arithmetic part has been
removed (and uninterpreted constant symbols renamed for the sake of simplicity)

u(a1, a4) ≈ a1, u(a3, a6) ≈ u(a5, a5), a5 ≈ a4, a6 ≈ a2 ` a1 ≈ u(a1, u(a6, a3))

The precedence a1 ≺p · · · ≺p a6 ≺p u defines an AC-RPO ordering on terms [18]
which is suitable for ground AC-completion. The table in Figure 2 shows the

5

Trivial
〈 E ∪ { s ≈ t } | R 〉

〈 E | R 〉
s =AC t

Orient
〈 E ∪ { s ≈ t } | R 〉
〈 E | R ∪ { s→ t } 〉

t ≺ s

Simplify
〈 E ∪ { s ≈ t } | R 〉
〈 E ∪ { s′ ≈ t } | R 〉

s→AC\R s′

Compose
〈 E | R ∪ { l→ r } 〉
〈 E | R ∪ { l→ r′ } 〉

r →AC\R r′

Collapse
〈 E | R ∪ { g → d, l→ r } 〉
〈 E ∪ { l′ ≈ r } | R ∪ { g → d } 〉

{
l→AC\g→d l

′

g ≺ l ∨ (g ' l ∧ d ≺ r)

Deduce
〈 E | R 〉

〈 E ∪ { s ≈ t } | R 〉
s ≈ t ∈ headCP(R)

Fig. 1. Inference rules for ground AC-completion

application steps of the rules given in Figure 1 from an initial configuration
〈 {u(a1, a4) ≈ a1, u(a3, a6) ≈ u(a5, a5), a5 ≈ a4, a6 ≈ a2} | ∅ 〉 to a final configu-
ration 〈 ∅ | Rf 〉, where Rf is the set of rewriting rules {1, 3, 5, 7, 10}. It can be
checked that a1 ↓Rf

and u(a1, u(a6, a3))↓Rf
are identical.

1 u(a1, a4)→ a1 Ori u(a1, a4) ≈ a1
2 u(a3, a6)→ u(a5, a5) Ori u(a3, a6) ≈ u(a5, a5)
3 a5 → a4 Ori a5 ≈ a4
4 u(a3, a6)→ u(a4, a4) Com 2 and 3

5 a6 → a2 Ori a6 ≈ a2
6 u(a3, a2) ≈ u(a4, a4) Col 4 and 5

7 u(a4, a4)→ u(a3, a2) Ori 6

8 u(a1, a4) ≈ u(a1, u(a3, a2)) Ded from 1 and 7

9 a1 ≈ u(a1, u(a3, a2)) Sim 8 by 1

10 u(a1,u(a3, a2))→ a1 Ori 9

Fig. 2. Ground AC-completion example

3 Shostak Theories and Global Canonization

In this section, we recall the notions of canonizers and solvers underlying Shostak
theories and show how to obtain a global canonizer for the combination of the
theories E and AC with an arbitrary signature disjoint Shostak theory X.

From now on, we assume given a theory X with a signature ΣX. A canonizer
for X is a function canX that computes a unique normal form for every term
such that s =X t iff canX(s) = canX(t). A solver for X is a function solveX that

6

solves equations between ΣX-terms. Given an equation s ≈ t, solveX(s ≈ t)
either returns a special value ⊥ when s ≈ t ∪ X is inconsistent, or an equivalent
substitution. A Shostak theory X is a theory with a canonizer and a solver which
fulfill some standard properties given for instance in [12].

Our combination technique is based on the integration of a Shostak theory
X in ground AC-completion. From now on, we assume that terms are built from
a signature Σ defined as the union of the disjoint signatures ΣAC , ΣE and ΣX.
We also assume a total ground AC-reduction ordering � defined on TΣ(X) used
later on for completion. The combination mechanism requires defining both a
global canonizer for the union of E , AC and X, and a wrapper of solveX to
handle heterogeneous equations. These definitions make use of a global one-to-
one mapping α : TΣ → X (and its inverse mapping ρ) and are based on a variable
abstraction mechanism which computes the pure ΣX-part [[t]] of a heterogeneous
term t as follows:

[[t]] = f([[~s]]) when t = f(~s) and f ∈ ΣX and [[t]] = α(t) otherwise

The canonizer for AC defined in [8] is based on flattening and sorting techniques
which simulate associativity and commutativity, respectively. For instance, the
term u(u(u′(c, b), b), c) is first flattened to u(u′(c, b), b, c) and then sorted4 to get
the term u(b, c, u′(c, b)). It has been formally proved that this canonizer solves
the word problem for AC [4]. However, this definition implies a modification
of the signature ΣAC where arity of AC symbols becomes variadic. Using such
canonizer would impact the definition of AC-rewriting given in Section 2. In order
to avoid such modification we shall define an equivalent canonizer that builds
degenerate trees instead of flattened terms. For instance, we would expect the
normal form of u(u(u′(c, b), b), c) to be u(b, u(c, u′(c, b))). Given a signature Σ
which contains ΣAC and any total ordering E on terms, we define canAC by:

canAC(x) = x when x ∈ X
canAC(f(~v)) = f(canAC(~v)) when f 6∈ ΣAC
canAC(u(t1, t2)) = u(s1, u(s2, . . . , u(sn−1, sn) . . .))

where t′i = canAC(ti) for i ∈ [1, 2]

and {{s1, . . . , sn}} = A{u}(t′1) ∪ A{u}(t′2)

and si E si+1 for i ∈ [1, n− 1]when u ∈ ΣAC

We can easily show that canAC enjoys the standard properties required for a
canonizer. The proof that canAC solves the word problem for AC follows directly
from the one given in [4].

Using the technique described in [12], we define our global canonizer can

which combines canX with canAC as follows:

can(x) = x when x ∈ X
can(f(~v)) = f(can(~v)) when f ∈ ΣE
can(u(s, t)) = canAC(u(can(s), can(t))) when u ∈ ΣAC

can(f
X
(~v)) = canX(f

X
([[can(~v)]]))ρ when f

X
∈ ΣX

4 For instance, using the AC-RPO ordering based on the precedence b ≺p c ≺p u
′.

7

Again, the proofs that can solves the word problem for the union E , AC and X
and enjoys the standard properties required for a canonizer are similar to those
given in [12]. The only difference is that canAC directly works on the signature
Σ, which avoids the use of a variable abstraction step when canonizing a mixed
term of the form u(t1, t2) such that u ∈ ΣAC .

Using the same mappings α, ρ and the abstraction function, the wrapper
solve can be easily defined by:

solve(s ≈ t) =

{
⊥ if solveX([[s]] ≈ [[t]]) = ⊥
{ xiρ→ tiρ } if solveX([[s]] ≈ [[t]]) = {xi≈ ti}

In order to ensure termination of AC(X), the global canonizer and the wrapper
must be compatible with the ordering � used by AC-completion, that is:

Lemma 1. ∀t ∈ TΣ , can(t) � t
∀s, t ∈ TΣ , if solve(s ≈ t) =

⋃
{pi → vi} then vi ≺ pi

We can prove that the above properties hold when the theory X enjoys the
following local compatibility properties:

Axiom 1. ∀t ∈ TΣ , canX([[t]]) � [[t]]
∀s, t ∈ TΣ , if solveX([[s]] ≈ [[t]]) =

⋃
{xi ≈ ti} then tiρ ≺ xiρ

To fulfil this axiom, AC-reduction ordering can be chosen as an AC-RPO order-
ing [18] based on a precedence relation ≺p such that ΣX ≺p ΣE ∪ ΣAC . From
now on, we assume that X is locally compatible with �.

Example. To solve the equation u(a, b) + a ≈ 0, we use the abstraction α =
{u(a, b) 7→ x, a 7→ y} and call solveX on x+ y ≈ 0. Since a ≺ u(a, b), the only
solution which fulfills the axiom above is {x ≈ −y}. We apply ρ and get the set
{u(a, b)→ −a} of rewriting rules.

4 Ground AC-Completion Modulo X

In this section, we present the AC(X) algorithm which extends the ground AC-
completion procedure given in Section 2. For that purpose, we first adapt the
notion of ground AC-rewriting to cope with canonizers. Then, we show how
to refine the inference rules given in Figure 1 to reason modulo the equational
theory induced by a set E of ground equations and the theories E , AC and X.

4.1 Canonized Rewriting

From rewriting point of view, a canonizer behaves like a convergent rewriting sys-
tem: it gives an effective way of computing normal forms. Thus, a natural way for
integrating can in ground AC-completion is to extend normalized rewriting [16].

Definition 2. Let can be a canonizer. A term s can-rewrites to a term t at
position p by the rule l→ r, denoted by s p

l→r t, iff

s→p
AC\l→r t

′ and can(t′) = t

8

Example. Using the usual canonizer canA for linear arithmetic and the rule
γ : u(a, b) → a, the term f(a + 2 ∗ u(b, a)) canA-rewrites to f(3 ∗ a) by γ as
follows: f(a+ 2 ∗u(b, a))→AC\γ f(a+ 2 ∗ a) and canA(f(a+ 2 ∗ a)) = f(3 ∗ a).

Lemma 2. ∀ s, t. s l→r t =⇒ s =AC,X,l≈r t

4.2 The AC(X) Algorithm

The first step of our combination technique consists in replacing the rewriting
relation found in completion by canonized rewriting. This leads to the rules of
AC(X) given in Figure 3. The state of the procedure is a pair 〈 E | R 〉 of equations
and rewriting rules. The initial configuration is 〈 E0 | ∅ 〉 where E0 is supposed to
be a set of equations between canonized terms. Since AC(X)’s rules only involve
canonized rewriting, the algorithm maintains the invariant that terms occurring
in E and R are in canonical forms. Trivial thus removes an equation u ≈ v
from E when u and v are syntactically equal. A new rule Bottom is used to
detect inconsistent equations. Similarly to normalized completion, integrating
the global canonizer can in rewriting is not enough to fully extend ground AC-
completion with the theory X: in both cases the orientation mechanism has
to be adapted . Therefore, the second step consists in integrating the wrapper
solve in the Orient rule. The other rules are much similar to those of ground
AC-completion except that they use the relation R instead of →AC\R.

Trivial
〈 E ∪ { s ≈ t } | R 〉

〈 E | R 〉
s = t Bottom

〈 E ∪ { s ≈ t } | R 〉
⊥

solve(s, t) = ⊥

Orient
〈 E ∪ { s ≈ t } | R 〉
〈 E | R ∪ solve(s, t) 〉

solve(s, t) 6= ⊥

Simplify
〈 E ∪ { s ≈ t } | R 〉
〈 E ∪ { s′ ≈ t } | R 〉

s R s′ Compose
〈 E | R ∪ { l→ r } 〉
〈 E | R ∪ { l→ r′ } 〉

r R r′

Collapse
〈 E | R ∪ { g → d, l→ r } 〉
〈 E ∪ { l′ ≈ r } | R ∪ { g → d } 〉

{
l g→d l

′

g ≺ l ∨ (g ' l ∧ d ≺ r)

Deduce
〈 E | R 〉

〈 E ∪ { s ≈ t } | R 〉
s ≈ t ∈ headCP(R)

Fig. 3. Inference rules for ground AC-completion modulo X

Example. We illustrate AC(X) on the example given in the introduction:

u(a, c2 − c1) ≈ a ∧ u(e1, e2)− f(b) ≈ u(d, d)∧
d ≈ c1 + 1 ∧ e2 ≈ b ∧ u(b, e1) ≈ f(e2) ∧ c2 ≈ 2 ∗ c1 + 1

` a ≈ u(a, 0)

9

The table given in Figure 4 shows the application of the rules of AC(X) on
the example when X is instantiated by linear arithmetic. We use an AC-RPO
ordering based on the precedence 1 ≺p 2 ≺p a ≺p b ≺p c1 ≺p c2 ≺p d ≺p e1 ≺p
e2 ≺p f ≺p u. The procedure terminates and produces a convergent rewriting
system Rf = {3, 5, 9, 10, 11, 13, 16}. Using Rf , we can check that a and u(a, 0)
can-rewrite to the same normal form.

1 u(a, c2 − c1)→ a Ori u(a, c2 − c1) ≈ a
2 u(e1, e2)→ u(d, d) + f(b) Ori u(e1, e2)− f(b) ≈ u(d, d)
3 d→ c1 + 1 Ori d ≈ c1 + 1

4 u(e1, e2)→ u(c1 + 1, c1 + 1) + f(b) Com 2 and 3

5 e2 → b Ori e2 ≈ b
6 u(b, e1) ≈ u(c1 + 1, c1 + 1) + f(b) Col 4 and 5

7 u(b, e1)→ u(c1 + 1, c1 + 1) + f(b) Ori u(b, e1) ≈ u(c1 + 1, c1 + 1) + f(b)

8 u(c1 + 1, c1 + 1) + f(b) ≈ f(b) Sim u(b, e1) ≈ f(e2) by 5 and 7

9 u(c1 + 1, c1 + 1)→ 0 Ori u(c1 + 1, c1 + 1) + f(b) ≈ f(b)
10 u(b, e1)→ f(b) Com 7 and 9

11 c2 → 2 ∗ c1 + 1 Ori c2 ≈ 2 ∗ c1 + 1

12 u(a, c1 + 1) ≈ a Col 1 and 11

13 u(a, c1 + 1)→ a Ori u(a, c1 + 1) ≈ a
14 u(0, a) ≈ u(a, c1 + 1) Ded from 9 and 13

15 u(0, a) ≈ a Sim 14 by 13

16 u(0, a)→ a Ori 15

Fig. 4. AC(X) on the running example.

5 Correctness

As usual, in order to enforce correctness, we cannot use any (unfair) strategy. We
say that a strategy is strongly fair when no possible application of an inference
rule is infinitely delayed and Orient is only applied over fully reduced terms.

Theorem 1. Given a set E of ground equations, the application of the rules
of AC(X) under a strongly fair strategy terminates and either produces ⊥ when
E ∪ AC ∪ X is inconsistent, or yields a final configuration 〈 ∅ | R 〉 such that:
∀s, t ∈ TΣ . s =

E,AC,X
t ⇐⇒ can(s)

R
= can(t)

R

The proof is based on three intermediate theorems, stating respectively sound-
ness, completeness and termination. In the following, we shall consider a fixed
run of the completion procedure,

〈 E0 | ∅ 〉 → 〈 E1 | R1 〉 → . . .→ 〈 En | Rn 〉 → 〈 En+1 | Rn+1 〉 → . . .

starting from the initial configuration 〈 E0 | ∅ 〉. We denote R∞ (resp. E∞) the
set of all encountered rules

⋃
nRn (resp. equations

⋃
nEn) and Rω (resp. Eω)

the set of persistent rules
⋃
n

⋂
i≥nRi (resp. equations

⋃
n

⋂
i≥nEi).

10

5.1 Soundness

Soundness is ensured by the following invariant:

Theorem 2. For any configuration 〈 En | Rn 〉 reachable from 〈 E0 | ∅ 〉,

∀ s, t, (s, t) ∈ En ∪Rn =⇒ s =AC,X,E0
t

Proof. The invariant obviously holds for the initial configuration and is preserved
by all the inference rules. The rules Simplify, Compose, Collapse and Deduce
preserve the invariant since for any rule l → r, if l =AC,X,E0

r, for any term
s rewritten by l→r into t, then s =AC,X,E0

t. If Orient is used to turn an
equation s ≈ t into a set of rules {pi → vi}, by definition of solve, pi = xiρ
and vi = tiρ, where solveX([[s]] ≈ [[t]]) = {xi ≈ ti} . By soundness of solveX

xi =X,[[s]]≈[[t]] ti. An equational proof of xi =X,[[s]]≈[[t]] ti can be instantiated by ρ,
yielding an equational proof pi =X,s≈t vi. Since by induction s =AC,X,E0

t holds,
we get pi =AC,X,E0

vi.

In the rest of this section, we assume that the strategy is strongly fair. This
implies in particular that headCP(Rω) ⊆ E∞, Eω = ∅ and Rω is inter-reduced,
that is none of its rules can be collapsed or composed by another one. We also
assume that ⊥ is not encountered, otherwise, termination is obvious.

5.2 Completeness

Completeness is established by using a variant of the technique introduced by
Bachmair et al. in [2] for proving completeness of completion. It transforms a
proof between two terms which is not under a suitable form into a smaller one,
and the smallest proofs are the desired ones. The proofs we are considering
are made of elementary steps, either equational steps, with AC, X and E∞, or
rewriting steps, with R∞ and the additional (possibly infinite) rules Rcan = {t→
can(t) | can(t) 6= t}. Rewriting steps with R∞ can be either R∞ or →R∞

5.

The measure of a proof is the multiset of the elementary measures of its
elementary steps. The measure of an elementary step takes into account the
number of terms which are in a canonical form in an elementary proof: the
canonical weight of a term t, wcan(t) is equal to 0 if can(t) =AC t and to 1
otherwise. Notice that if wcan(t) = 1, then can(t) ≺ t, and if wcan(t) = 0, then
can(t) ' t. The measure of an elementary step between t1 and t2 performed
thanks to:

– an equation is equal to ({t1, t2}, , , ,)

– a rule l → r ∈ R∞ is equal to ({t1}, 1, wcan(t1) + wcan(t2), l, r) if t1 l→r t2
or t1 →l→r t2 .

– a rule of Rcan is equal to ({t1}, 0, wcan(t1) + wcan(t2), t1, t2) if t1 →Rcan
t2.

5 Here,s −→R∞ t actually means s −→AC\R∞ t′ and t = canAC(t′).

11

As usual the measure of a step s← t is the measure of t→ s. Elementary steps
are compared lexicographically using the multiset extension of � for the first
component, the usual ordering over natural numbers for the components 2 and
3, and � for last ones. Since � is an AC-reduction ordering, the ordering defined
over proofs is well-founded.

The general methodology is to show that a proof which contains some un-
wanted elementary steps can be replaced by a proof with a strictly smaller mea-
sure. Since the ordering over measures is well-founded, there exists a minimal
proof, and such a minimal proof is of the desired form.

Lemma 3. A proof containing

– an elementary step ←→s≈t, where s ≈ t ∈ AC ∪ X ∪ E∞,
– or an elementary rewriting step truly of the form −→R∞ or←−R∞ , or l→r

or

r←l, where l→ r ∈ R∞ \Rω
– or a peak s←Rcan

t→Rcan
s′, s

Rω
t Rω

s′, or s

Rω
t −→Rcan

s′

is not minimal.

Theorem 3. If s and t are two terms such that s←→∗AC,X,E∞,R∞
s′ then

can(s)

Rω = can(t)

Rω .

Proof. If s and s′ are equal modulo ←→∗AC,X,E∞,R∞
, so are can(s) and can(s′).

By the above lemma, a minimal proof between can(s) and can(s′) is necessary of
the form can(s)(Rω ∪ →Rcan

)∗(

Rω∪ ←Rcan
)∗can(s′). This sequence of steps

can also be seen as can(s)→∗Rcan
(Rω

→∗Rcan
)∗(←∗Rcan

Rω
)∗ ←∗Rcan

can(s′). By
definition, →Rcan

cannot follow a Rω
-step, and can(s) and can(s′) cannot be

reduced by →Rcan
, hence the wanted result.

5.3 Termination

We shall prove that, under a strongly fair strategy, Rω is finite and obtained
in a finite time (by cases on the head function symbol of the rule’s left-hand
side), and then we show that Rω will clean up the next configurations and the
completion process eventually halts on 〈 ∅ | Rω 〉. In order to make our case
analysis on rules, and to prove the needed invariants, we define several sets of
terms (assuming without loss of generality that E0 = can(E0)):

T0 = {t | ∃t0, e1, e2 ∈ TΣ(X), e1 ≈ e2 ∈ E0 and t0 = ei|p and t0 ∗R∞
t}

T0X = T0 ∪ {fX
(t1, . . . , tn) | f

X
∈ ΣX and ∀i, ti ∈ T0X}

T1 = {t | t ∈ T0 and ∀p, t|p ∈ T0X}
T2 = {u(t1, . . . , tn) | u ∈ ΣAC and ∀i, ti ∈ T1}

T0 is the set of all terms and subterms in the original problem as well as their
reducts by R∞. The set T0X moreover contains terms with X-aliens in T0. T1 is
the set of terms that can be introduced by X from terms of T0 (by solving or
canonizing). T2 is a superset of the terms built by critical pairs.

12

We first establish by structural induction over terms that:

∀γ, t, s, γ ∈ R∞ ∩ T 2
j ∧ t ∈ Ti ∧ t γ s =⇒ s ∈ Ti, for i, j = 1, 2

Then, by induction over n, we show that any configuration 〈 En | Rn 〉 accessible
from 〈 E0 | ∅ 〉 after n steps is such that En ∪Rn ⊆ T 2

1 ∪ T 2
2 .

The fact that R∞ is finitely branching is a corollary of

Lemma 4. If l → rn is created at step n in Rn and l → rm at step m in Rm,
with n < m, then rm is a reduct of rn by R∞ .

The proof of this lemma is by induction over the length of the derivation, and
by a case analysis over the applied inference rule.

Theorem 4. Under a strongly fair strategy, AC(X) terminates.

By the above properties, Rω can be divided in Rω ∩ T 2
1 and Rω ∩ T 2

2 . Rω ∩ T 2
1

is finite, since all its left-hand sides are reducts of a finite number of terms by
R∞ which is well-founded and finitely branching. Rω ∩ T 2

2 is finite by using the
same argument as in the ground AC-completion proof, based on the Higman’s
lemma. Hence Rω is finite and obtained in a finite number of steps, that is, there
exists n such that Rω ⊆ Rn. Then Rω will clean the rest of En, and the newly
generated critical pairs will be discarded as trivial ones.

6 Experimental Results

AC(X) has been implemented in the Alt-Ergo [7] theorem prover. In this sec-
tion, we show that this extension has strong impact both on performances and
memory allocation w.r.t. an axiomatic approach. For that purpose, we bench-
marked our implementation and compared its performances with state-of-the-art
smt solvers (Z3 v2.8, CVC3 v2.2, Simplify v1.5.4). All measures were obtained
on a laptop running Linux equipped with a 2.58GHz dual-core Intel processor
and with 4Gb main memory. Provers were given a time limit of five minutes for
each test and memory limitation was managed by the system. The results are
given in seconds; we write to for timeout and om for out of memory.

Our test suite is made of formulas which are valid in the combination of the
theory of linear arithmetic A, the free theory of equality6 E and a small part of
the theory of sets defined by the symbols ∪, ⊆, the singleton constructor {·},
and the following set of axioms:

AC

{
Assoc : ∀x, y, z. x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z

Commut : ∀x, y. x ∪ y ≈ y ∪ x

S


SubTrans : ∀x, y, z. x ⊆ y → y ⊆ z → x ⊆ z
SubSuper : ∀x, y, z. x ⊆ y → x ⊆ y ∪ z
SubUnion : ∀x, y, z. x ⊆ y → x ∪ z ⊆ y ∪ z

SubRefl : ∀x. x ⊆ x
6 These two theories are built-in for all SMT solvers we used for our benchmarks.

13

n-d ac(x) a-e z3 cvc3 simp.
3-3 0.01 0.19 0.22 0.40 0.18
3-6 0.01 32.2 om 132 om
3-12 0.01 to om om om
6-3 0.01 11.2 1.10 13.2 2.20
6-6 0.02 to om om om
6-12 0.02 to om om om
12-3 0.16 to 5.64 242 11.5
12-6 0.24 to om om om
12-12 0.44 to om om om

Fig. 5. AC + E

n-d ac(x) a-e z3 cvc3 simp.
3-3 0.00 1.10 0.03 0.11 0.19
3-6 0.00 to 3.67 4.21 om
3-12 0.00 to om om om
6-3 0.02 149 0.10 2.26 2.22
6-6 0.02 to 17.7 99.3 om
6-12 0.04 to om om om
12-3 0.27 to 0.35 44.5 11.2
12-6 0.40 to 76.7 to om
12-12 0.72 to om om om

Fig. 6. AC + E + A

n-d ac(x) a-e z3 cvc3 simp.
3-3 0.02 3.16 0.09 10.2 om
3-6 0.04 to 60.6 om om
3-12 0.12 to om om om
6-3 0.07 188 0.18 179 om
6-6 0.12 to to om om
6-12 0.66 to om om om
12-3 0.20 to 0.58 om om
12-6 0.43 to to om om
12-12 1.90 to om om om

Fig. 7. AC + E + A + S

In order to get the most accurate information from our benchmarks, we classify
formulas in three categories according to the subset of axioms needed to prove
their validity. We use the standard mathematical notation

⋃d
i=1 ai for the terms

of the form a1∪(a2∪(· · ·∪ad)) · · ·) and we write
⋃d
i=1 ai; b for terms of the form

a1 ∪ (a2 ∪ (· · · ∪ (ad ∪ b))) · · ·). Formulas in the first category are of the form:∧n
p=1({e} ∪

⋃d
i=1 a

p
i) ≈ bp →

∧n
p=1

∧n
q=p+1

⋃1
i=d a

p
i ; b

q ≈
⋃1
i=d a

q
i ; b

p︸ ︷︷ ︸
G

and proving their validity only requires the theory E and the AC properties of ∪.
The second category contains formulas additionally involving linear arithmetic:∧n

p=1({tp − p} ∪
⋃d
i=1 a

p
i) ≈ bp ∧

∧n−1
p=1 tp + 1 ≈ tp+1 → G

Formulas in the third category involve the ⊆ symbol and are of the form:∧n
p=1

⋃d
i=1{e

p
i } ≈ bp ∧

⋃d
i=d{e+ epi } ≈ cp ∧ e ≈ 0→

∧n
p=1 c

p ⊆ (bp ∪ {epd}) ∪ {e}

In order to prove their validity, we additionally need some axioms of S. The
results of the benchmarks are shown in Fig. 5, Fig. 6 and Fig 7. The first column
contains the results for Alt-Ergo when we explicitly declare ∪ as an AC symbol
and remove the AC axioms from the problem. In the second column, we do not
take advantage of AC(X) and keep the AC axioms in the context. Figures 5 and
6 show that, contrary to the axiomatic approach, built-in AC reasoning is little
sensitive to the depth of terms: given a number n of equations, the running time
is proportional to the depth d of terms. However, we notice a slowdown when n
increases. This is due to the fact that AC(X) has to process a quadratic number
of critical pairs generated from the equations in the hypothesis. From Fig. 7,
we notice that Alt-Ergo with AC(X) performs better than the other provers.
The main reason is that its instantiation mechanism is not spoiled by the huge
number of intermediate terms the other provers generate when they instantiate
the AC axioms.

7 Conclusion and Future Works

We have presented a new algorithm AC(X) which efficiently combines, in the
ground case, the AC theory with a Shostak theory X and the free theory of

14

equality. Our combination consists in a tight embedding of the canonizer and
the solver for X in ground AC-completion. The integration of the canonizer
relies on a new rewriting relation, reminiscent to normalized rewriting, which
interleaves canonization and rewriting rules. We proved correctness of AC(X)
by reusing standard proof techniques. Completeness is established thanks to a
proofs’ reduction argument, and termination follows the lines of the proof of
ground AC-completion where the finitely branching result is adapted to account
for the theory X.

AC(X) has been implemented in the Alt-Ergo theorem prover. The first
experiments are very promising and show that a built-in treatment of AC, in the
combination of the free theory of equality and a Shostak theory, is more efficient
than an axiomatic approach. Although effective, the integration of AC(X) in
Alt-Ergo fails to prove the formula

(∀x, y, z.P ((x ∪ y) ∪ z)) ∧ b ≈ c ∪ d→ P (a ∪ b)

since the trigger for the internal quantified formula (the term (x∪y)∪z)) does not
match the term a∪ b, even when exploiting the ground equation b = c∪ d which
allows to match the term a ∪ (c ∪ d)). Introducing explicitly the AC axioms for
∪ would allow the matcher to generate the ground term (a∪ c)∪d that could be
matched. However, as shown by our benchmarks, too many terms are generated
with these axioms in general. In order to fix this problem, we intend to extend
the pattern-matching algorithm of Alt-Ergo to exploit both ground equalities
and properties of AC symbols. In the near future, we also plan to extend AC(X)
to handle the AC theory with unit or idempotence. This will be a first step
towards a decision procedure for a substantial part of the finite sets theory.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational proofs. In
Proc. 1st LICS, Cambridge, Mass., pages 346–357, June 1986.

3. L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. Journal
of Automated Reasoning, 31(2):129–168, 2003.

4. E. Contejean. A certified AC matching algorithm. In V. van Oostrom, editor, 15th
RTA, volume 3091 of LNCS, pages 70–84, Aachen, Germany, June 2004. Springer.

5. N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Sci-
ence, 17(3):279–301, Mar. 1982.

6. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B, pages 243–320. North-
Holland, 1990.

7. S. Conchon and E. Contejean and F. Bobot and S. Lescuyer and M. Iguernelala.
The Alt-Ergo theorem prover. http://alt-ergo.lri.fr

8. J.-M. Hullot. Associative commutative pattern matching. In Proc. 6th IJCAI (Vol.
I), Tokyo, pages 406–412, Aug. 1979.

9. J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of
equations. SIAM Journal on Computing, 15(4), Nov. 1986.

15

10. D. Kapur. Shostak’s congruence closure as completion. In H. Comon, editor, Proc.
8th RTA, volume 1232. Springer-Verlag, 1997.

11. D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297. Perg-
amon Press, 1970.

12. S. Krstić and S. Conchon. Canonization for disjoint unions of theories. Information
and Computation, 199(1-2):87–106, May 2005.

13. D. S. Lankford. Canonical inference. Memo ATP-32, University of Texas at Austin,
Mar. 1975.

14. D. S. Lankford and A. M. Ballantyne. Decision procedures for simple equational
theories with permutative axioms: Complete sets of permutative reductions. Memo
ATP-37, University of Texas, Austin, Texas, USA, Aug. 1977.

15. C. Marché. On ground AC-completion. In R. V. Book, editor, 4th RTA, volume
488 of LNCS, Como, Italy, Apr. 1991. Springer.

16. C. Marché. Normalized rewriting: an alternative to rewriting modulo a set of
equations. Journal of Symbolic Computation, 21(3):253–288, 1996.

17. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. on Programming, Languages and Systems, 1(2):245–257, Oct. 1979.

18. R. Nieuwenhuis and A. Rubio. A precedence-based total AC-compatible ordering.
In C. Kirchner, editor, Proc. 5th RTA, Montréal, LNCS 690. Springer, June 1993.

19. G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational
theories. J. ACM, 28(2):233–264, Apr. 1981.

20. R. E. Shostak. Deciding combinations of theories. J. ACM, 31:1–12, 1984.

16

A Correctness

In this section, we give detailed proofs for completeness and termination of
AC(X). As usual, we focus on a fixed run of the completion procedure

〈 E0 | ∅ 〉 → 〈 E1 | R1 〉 → . . .→ 〈 En | Rn 〉 → 〈 En+1 | Rn+1 〉 → . . .

starting from the initial configuration 〈 E0 | ∅ 〉. We denote R∞ (resp. E∞) the
set of all encountered rules

⋃
nRn (resp. equations

⋃
nEn) and Rω (resp. Eω)

the set of persistent rules
⋃
n

⋂
i≥nRi (resp. equations

⋃
n

⋂
i≥nEi).

In the following, we assume that the strategy used by the above run of com-
pletion is strongly fair, that is no possible application of an inference rule is
infinitely delayed, and Orient is only applied over fully reduced terms. This
means in particular that:

– headCP(Rω) ⊆ E∞,
– Eω = ∅
– Rω is inter-reduced, that is none of its rules can be collapsed or composed

by another one.

Due to the assumptions made over canX and ≺, some properties hold that
will be continuously be used in the following proofs, namely

∀t, can(t) � t
∀s t, s ' t⇐⇒ s =AC t
∀s t, s R∞ t =⇒ t ≺ s

A.1 Completeness

Completeness is established in several steps, by using a variant of the technique
introduced by Bachmair et al. in [2] for proving completeness of completion. It
transforms a proof between two terms which is not under a suitable form into
a smaller one, and the smallest proofs are the desired ones. The proofs we are
considering are made of elementary steps, either equational steps, with AC,X
and E∞, or rewriting steps, with R∞ and the additional (possibly infinite) rules
Rcan = {t→ can(t) | can(t) 6= t}. Rewriting steps with R∞ can be either R∞

or →R∞
7.

The measure of a proof is the multiset of the elementary measures of its
elementary steps. The measure of an elementary step takes into account the
number of terms which are in a canonical form in an elementary proof: the
canonical weight of a term t, wcan(t) is equal to 0 if can(t) =AC t and to 1
otherwise. Notice that if wcan(t) = 1, then can(t) ≺ t, and if wcan(t) = 0, then
can(t) ' t.

The measure of an elementary step between t1 and t2 performed thanks to

– an equation is equal to ({t1, t2}, , , , ,)

7 Here,s −→R∞ t actually means s −→AC\R∞ t′ and t = canAC(t′).

17

– a rule l→ r ∈ R∞ is equal to

{t1}, 1, wcan(t1) + wcan(t2), l, r)

if t1 l→r t2 (or t1 →l→r t2), and to

({t2}, 1, wcan(t1) + wcan(t2), l, r)

if t1

r←lt2 (or t1 ←r←l t2). In the case of a step, the measure is actually
({ti}, 1, wcan(ti), l, r) since the reduct is always in a canonical form.

– a rule of Rcan is equal to

{t1}, 0, wcan(t1) + wcan(t2), t1, t2)

if t1 →Rcan
t2, and to

({t2}, 0, wcan(t1) + wcan(t2), t2, t1)

if t1 ←Rcan
t2.

Elementary steps are compared lexicographically using the multiset extension
of � for the first component, the usual ordering over natural numbers for the
components 2 and 3, and � for last ones. Since � is an AC-reduction ordering,
the ordering defined over proofs is well-founded.

The general methodology is to show that a proof which contains some un-
wanted elementary steps can be replaced by a proof with a strictly smaller mea-
sure. Since the ordering over measures is well-founded, there exists a minimal
proof, and such a minimal proof is of the desired form.

Lemma 5. A proof containing an elementary step ←→s≈t, where s ≈ t ∈
AC ∪ X is not minimal.

Proof. An elementary equational step using an equation s ≈ t of AC ∪ X under
the context C[]p can be reduced: the subproof

C[s]p←→
s≈t

C[t]p

is replaced by

C[s]p
{0,1}−→
Rcan

can(C[s]p) = can(C[t]p)
{0,1}←−
Rcan

C[t]p

The measure strictly decreases, since for the first subproof it is equal to
{({C[s]p,C[t]p}, , , ,)}, and for the second one, it is equal to

{({C[s]p}, , , ,){0,1}, ({C[t]p}, , , ,){0,1}}. The rewrite steps →{0,1}Rcan
only oc-

cur on a term which is not AC-equal to a canonical form (which is denoted by
the {0, 1} exponent). The corresponding elementary measure occurs in the global
measure of the second subproof accordingly.

18

Lemma 6. A proof containing an elementary step ←→s≈t, where s ≈ t ∈ E∞
is not minimal.

Proof. An elementary equational step using an equation s ≈ t of E∞ under the
context C[]p can be reduced. Since Eω is empty, there is a completion state
where s ≈ t disappears, either by Simplify or Orient.

– If Simplify is used to reduce s into s′ by the rule l→ r of R∞, the subproof

C[s]p←→
s≈t

C[t]p

is replaced by
C[s]p →

l→r
C[s′]p←→

s′≈t
C[t]p

The measure strictly decreases, since for the first subproof it is equal to
{({C[s]p,C[t]p}, , , ,)}, and for the second one, it is equal to
{({C[s]p}, , , ,), ({C[s′]p,C[t]p}, , , ,)}, and s � s′.

– If the rule Orient turns s ≈ t into a set of rules π = {pi → vi}, by definition
of solve we have solveX([[s]] ≈ [[t]]) = {xi ≈ ti} (denoted as σ) with pi = xiρ
and vi = tiρ. Since solveX is complete, [[s]]σ =X [[t]]σ. Consider a variable x
of [[s]] or [[t]],
• if x ∈ {xi} then xρπ = piπ = vi and xσρ = tiρ = vi.
• if x 6∈ {xi} then xρπ = xρ (since xρ 6∈ {pi}) and xσρ = xρ (since
xσ = x).

In all cases, xρπ = xσρ. The equational step using s ≈ t can be recovered
as a compound step using π and Rcan as follows:

C[s]p = C[[[s]]ρ]p
+−→
π

C[[[s]]ρπ]p = C[[[s]]σρ]p
0,1−→
Rcan

0,1←−
Rcan

C[[[t]]σρ]p = C[[[t]]ρπ]p
+←−
π

C[[[t]]ρ]p = C[t]p

The set of rules π belongs to R∞, and the measure of the new subproof is a
multiset containing only elements of the form ({C[si]p}, , , ,), where si is
a reduct of a subterm s or t by an arbitrary number of steps of R∞ and Rcan.
In any case, {C[si]p} ≺ {C[s]p,C[t]p}. The new subproof is strictly smaller
than the measure of the original subproof.

Lemma 7. A proof containing an elementary rewriting step truly of the form
−→R∞ or ←−R∞ is not minimal.

Proof. Here, each elementary step s−→R∞ t is already a R∞ step if t =
canAC(t) is in a canonical form w.r.t can, or it can be replaced by

s
R∞

can(t)←−
Rcan

t

The measure of the first subproof is equal to {({s}, 1, wcan(s)+wcan(t), ,)}, and
the measure of the second one is equal to {({s}, 1, wcan(s), ,), ({t}, 0, , ,)},
and t ≺ s. Since wcan(t) = 1, the measure strictly decreases.

The case s←−R∞ t is symmetrical.

19

Lemma 8. A proof containing an elementary rewriting step of the form l→r
or

r←l, where l→ r ∈ R∞ \Rω is not minimal.

Proof. An elementary step using a rule l → r of R∞ \ Rω can be reduced.
The rule l→ r disappears either by Compose or by Collapse.

– If Compose reduces r to r′ = can(r[d]) by the rule g → d of R∞, the
subproof

C[l]p
l→r

can(C[r]p)

can be replaced by

C[l]p
l→r′

can(C[r′]p) = can(C[r[d]]p)

d←g
C[r]p

The identity can(C[r′]p) = can(C[r[d]]p) holds C[r′]p and C[r[d]]p are equal
modulo Rcan, that is AC ∪ X, and such terms have the same canoni-
cal forms. The measure strictly decreases, since for the first subproof it is
equal to {({C[l]p}, 1, wcan(C[l]p), l, r)}, and for the second one, it is equal to
{({C[l]p}, 1, wcan(C[l]p), l, r

′)), ({C[r]p}, 0, , ,)}, and r′ ≺ r ≺ l.
– If Collapse reduces l to l′ = can(l[d]) by the rule g → d in R∞, the subproof

C[l]p
l→r

can(C[r]p)

is replaced by

C[l]p
g→d

can(C[l[d]]p) = can(C[l′]p)←−
Rcan

C[l′]p←→
l′≈r

C[r]p−→
Rcan

can(C[r]p)

The measure strictly decreases, since for the first subproof it is equal to
{({C[l]p}, 1, wcan(C[l]p), l, r)}, and for the second one, it is equal to

{({C[l]p}, 1, wcan(C[l]p), g, d),
({C[l′]p}, , , ,), ({C[l′]pC[r]p}, , , ,), ({C[r]p}, , , ,), }

The last three elements of the second multiset are strictly smaller than the
element of the first multiset, since l′ ≺ l and r ≺ l. The first element of
the second multiset is strictly smaller than the element of the first multiset,
since either g ≺ l, and the fourth component decreases, or g ' l and d ≺ g.
In this case, l′ = d ≺ r. The first four components are identical, and the last
one decreases.

The case

is symmetrical.

Lemma 9. A proof containing a peak s←Rcan
t→Rcan

s′ is not minimal.

Proof. All the terms s, t and s′ involved in the peak are equal modulo AC,X,
hence can(s) = can(s′). The subproof

s←Rcan
t→Rcan

s′

20

is replaced by

s→{0,1}Rcan
can(s) = can(s′)←{0,1}Rcan

s′

The measure strictly decreases, since for the first subproof it is equal to
{({t}, 0, wcan(t)+wcan(s), ,), ({t}, 0, wcan(t)+wcan(s

′), ,)}, and for the second
one, it is equal to {({s}, 0, wcan(s), ,){0,1}, ({s′}, 0, wcan(s), , }{0,1}. s and s′ are
smaller than or equivalent to t (s, s′ � t), and the second component strictly
decreases, since can(s) and can(s′) are in a canonical form and t is not.

Lemma 10. A proof containing a peak s

Rω
t Rω

s′ is not minimal.

Proof. We make a case analysis over the positions of the reductions.

– In the parallel case, the subproof

s
p

r←l
t

q

g→d

s′

can be seen as

s = can(t[r]p[g]q)←−
Rcan

t[r]p[g]q←−
r←l

t[l]p[g]q −→
g→d

t[l]p[d]q −→
Rcan

can(t[l]p[d]q) = s′

The above subproof can be replaced by

s = can(t[r]p[g]q)
{0,1}←−
Rcan

t[r]p[g]q
g→d

can(t[r]p[d]q)

r←l
t[l]p[d]q

{0,1}−→
Rcan

can(t[l]p[d]q) = s′

The measure strictly decreases, since for the first subproof it is equal to
{({t}, , , ,), ({t}, , , ,)}, and for the second one, it is equal to

{(t[r]p[g]q, , , ,){0,1}, (t[r]p[g]q, , , ,),
(t[l]p[d]q, , , ,), (t[l]p[d]q, , , ,){0,1}}

and both terms t[r]p[g]q and t[l]p[d]q are strictly smaller than t = t[l]p[g]q.
– If q is a strict prefix of p, this means that l→ r can be used to collapse the

rule g → d, which is impossible since the strategy is strongly fair, and the
application of Collapse cannot be infinitely delayed.

– The case where p is a strict prefix of q is similar.
– If p and q are equal, this means that in both reductions, the extended rewrit-

ing has been used (second case of definition 1). Otherwise, again, one rule
could collapse the other. This means that l and g have the same AC top
function symbol u. When l and g do not share a common subterm, the rea-
soning is similar to the parallel case. Otherwise, if they share a common
subterm, since the strategy is fair, the head critical pair between l → r and
g → d has been computed. Let aµ the maximal common part between l and g,
l =

AC
u(aµ, b), and g =

AC
u(aµ, b′). The critical pair is u(b′, r) ≈ u(b, d). The

subterm t|p where both reductions occur is of the form u(aµ, u(b, u(b′, c)))
(or u(aµ, u(b, b′)) if it corresponds exactly to the critical pair).

21

The subproof can be replaced by

s =←−
Rcan

t[u(u(b′, r), c)]p ←→
u(b′,r)≈u(b,d)

t[u(u(b, d), c]p−→
Rcan

s′

The measure strictly decreases, since for the first subproof it is equal to
{({t}, , , ,), ({t}, , , ,)}, and for the second one, it is equal to

{({t[u(u(b′, r), c)]p}, , , ,), {t[u(u(b′, r), c)]p, t[u(u(b, d), c]p}, , , ,),
{t[u(u(b, d), c]p}, , , ,)}

and both t[u(u(b′, r), c)]p and t[u(u(b, d), c]p are strictly smaller than t.

Lemma 11. A proof containing a peak s

Rω
t −→Rcan

s′ is not minimal.

The proof of this lemma is partly made by structural induction over t, and
we need an auxiliary result in order to study how behave a proof plugged under
a context.

Definition 3. Given a context C[•]p, and an elementary proof P, P plugged
under C[•]p, denoted as C[P]p is defined as follows:

– if P is an equational step s↔l≈r t, C[P]p is C[s]p ↔l≈r C[t]p.
– if P is a rewriting step s −→l→r t, C[P]p is C[s]p −→l→r C[t]p.
– if P is a rewriting step s l→r t, C[P]p is either

C[s]p l→r can(C[t]p)←Λ
Rcan

C[t]p

if C[t]p is not in a canonical form, or C[s]p l→r can(C[t]p) otherwise.

This definition is extended to a proof made of several steps, by plugging
elementary each step under the context. Notice that if a proof P relates two
terms s and t, then C[P]p relates C[s]p and C[t]p.

Lemma 12. Let P1 and P2 be two proofs which do not contain→R∞ nor←R∞ .
If P1 is strictly smaller than (resp. equivalent to) P2, then C[P1]p is strictly
smaller than (resp. equivalent to) C[P2]p. Moreover if P2 is a step s l→r t,
C[P1]p is strictly smaller than C[s]p l→r C[t]p

Proof. It is enough to show the wanted result for elementary steps. Let P1 and
P2 be two elementary steps such that P1 is strictly smaller than P2.

– If P1 and P2 are →Rcan
steps, they are of the form

si−→
Rcan

ti

and the corresponding measures are ({si}, 0, wcan(si) + wcan(ti), si, ti)).

• if s1 ≺ s2, then C[s1]p ≺ C[s2]p.

22

• if s1 ' s2, and wcan(s1) + wcan(t1) < wcan(s2) + wcan(t2). Since s1 ' s2,
by the AC-totality of �, we know that s1 =AC s2, hence wcan(s1) =
wcan(s2). This means that wcan(t1) = 0 and wcan(t2) = 1. Hence t1 =AC

can(t1), t1 ' can(t1) and t2 6=AC can(t2) and can(t2) ≺ t2. Since s1 =AC

s2, can(t1) = can(t2) holds, hence t1 ≺ t2.
If we look at the plugged proofs, we have C[s1]p ' C[s2]p, wcan(C[s1]p) =
wcan(C[s2]p), wcan(C[t1]p) ≤ wcan(C[t2]p) = 1 and C[t1]p ≺ C[t2]p. The
measure is even on the first component, and either strictly decreases on
the second component, or weakly decreases over the four first compo-
nents, and strictly decreases over the last one. In all cases, C[P1]p is
strictly smaller than C[P2]p.

• if s1 ' s2 and wcan(s1) +wcan(t1) = wcan(s2) +wcan(t2), this means that
t1 ≺ t2. The case wcan(t1) = wcan(t2) = 0 is impossible, since this would
imply t1 ' can(t1) = can(t2) ' t2. Hence wcan(t1) = wcan(t2) = 1.
If we look at the plugged proofs, we have C[s1]p ' C[s2]p, wcan(C[s1]p) =
wcan(C[s2]p), wcan(C[t1]p) = wcan(C[t2]p) = 1 and C[t1]p ≺ C[t2]p. The
measure is even on the first four components, and strictly decreases over
the last one. C[P1]p is strictly smaller than C[P2]p.

– if P1 is a -step, and P2 is a →Rcan
step, necessarily, the first component

strictly decreases. The measure of C[P1]p is

{({C[s1]p}, 1, wcan(C[s1]p), l1, r1), ({C[t1]}, 0, , ,){0,1}}

and the measure of C[P2]p is ({C[s2]p}, 0, , ,), where t1 ≺ s1 ≺ s2. C[P1]p
is strictly smaller than C[P2]p.

– if P1 is a →Rcan
-step, and P2 is a step, necessarily, the first component

weakly decreases and the second component strictly decreases.
The measure of C[P1]p is ({C[s1]p}, 0, , ,) which is strictly smaller than the
measure of C[s2]p l2→r2 C[t2]p, that is {({C[s2]p}, 1, wcan(C[s2]p), l2, r2)}
since s1 � s2.

– if P1 and P2 are -steps, they are of the form

si
li ri

ti

and the corresponding measures are ({si}, 1, wcan(si), li, ri)). The measure
of C[P1]p is

{({C[s1]p}, 1, wcan(C[s1]p), l1, r1),
({C[t1]p}, 0, wcan(C[t1]), C[t1]p, can(C[t1]p))

{0,1}}

and the measure of C[s2]p l2→r2 C[t2]p is ({C[s2]p}, 1, wcan(C[s2]p), l2, r2).
If s1 ≺ s2, since t1 ≺ s1, C[P1]p is strictly smaller than C[s2]p l2→r2 C[t2]p.
Otherwise, s1 ' s2 and s1 =AC s2. Hence wcan(s1) = wcan(s2) and the de-
creasing occurs on the last two components. Hence ({C[s1]p}, 1, wcan(C[s1]p), l1, r1)
and ({C[t1]p}, 0, wcan(C[t1]p), C[t1]p, can(C[t1]p)) are strictly smaller than
({C[s2]p}, 1, wcan(C[s2]p), l2, r2).

23

– When a step is an equational step, necessarily the decreasing occurs on the
first component. Since ≺ is compatible with plugging terms under a context,
hence the wanted result.

We can now come to the proof of Lemma 11.

Proof. Let us denote by l → r the rule of Rω, and g → d the rule of Rcan;
since l is in a canonical form (invariant of the completion run), the reduction
using g → d can only take place at a position q which is above or parallel to the
position p of the reduction using l→ r. We prove by induction that there exists
a proof between s and s′ which is strictly smaller than the original peak.

– In the parallel case, the subproof

s
p

r←l
t

q−→
g→d

s′

can be seen as

can(t[r]p[g]q)←−
Rcan

t[r]p[g]q←−
r←l

t[l]p[g]q −→
Rcan

t[l]p[d]q

Notice that t[r]p[g]q and t[r]p[d]q are equal modulo AC,X, hence have the
same canonical form. The above subproof can be replaced by

can(t[r]p[g]q) = can(t[r]p[d]q)←−
Rcan

t[r]p[d]q←−
r←l

t[l]p[d]q

which is actually
s

r←l
s′

The measure strictly decreases, since for the first subproof it is equal to
{({t}, 1, 1, l, r), ({t}, , , ,)}, and for the second one, it is equal to
{({s′}, 1, wcan(s

′), l, r)}, and s′ � t.
– In the prefix case, we first prove the wanted result when the position q is equal

to Λ. Now we make an induction over p, in order the establish that there is a
proof between s and s′, with a measure (weakly) smaller than s

r←lt, hence
strictly smaller than the global measure of the peak. If p = Λ, rewriting at
top with a rule of Rω is impossible if it is not an extended rewriting, since
l is in a canonical form. In the extended case, the subproof to be replaced
has the form

can(u(r, l′))

r←l
t
Λ−→
Rcan

s′

where t =AC u(l, l′), and s′ = can(u(l, l′)). By definition of can and since l
is in a canonical form and u is an AC symbol, s′ is AC-equal to u(l, can(l′)).
The subproof can be replaced by

can(u(r, l′)) = can(u(r, can(l′)))

r←l
u(l, can(l′)) =AC s′

where the identity can(u(r, can(l′))) = can(u(r, l′)) holds since u(r, can(l′))
and u(r, l′) are equal modulo AC, X. The measure strictly decreases, since

24

for the first subproof it is equal to {({t}, 1, wcan(t), l, r), ({t}, , , ,)}, and
for the second one, it is equal to {({s′}, 1, wcan(s

′), l, r)}, and s′ ≺ t, or s′ ' t
with wcan(s

′) = wcan(t).
If p is of the form i · p′, t is of the form f(t1, . . . , ti−1, ti, ti+1, . . . , tn), and
the proof to be replaced

can(f(t1, . . . , ti[r]p′ , . . . , tn))

r←l
f(t1, . . . , ti[l]p′ , . . . , tn)

Λ−→
Rcan

s′

We may assume without loss of generality that t1, . . . , ti−1, ti+1, . . . , tn are
in a canonical form, since

s′ = can(t) =
can(f(can(t1), . . . , can(ti−1), ti[l]p′ , can(ti+1) . . . , can(tn)))

can(f(t1, ..., ti[r]p′ , ..., tn)) =
can(f(can(t1), ..., can(ti−1), ti[r]p′ , can(ti+1)..., can(tn)))

We also denote as

s0 = f(t1, . . . , can(ti[r]p′), . . . , tn)

and
s′0 = f(t1, . . . , can(ti[l]p′), . . . , tn)

We know that can(ti[l]p′) � ti[l]p′ , and we distinguish between two cases.
• If can(ti[l]p′) ≺ ti[l]p′ , then by induction hypothesis, there exists a proof
P between can(ti[r]p′) and can(ti[l]p′) which is weakly smaller than

can(ti[r]p′)

r←l
ti[l]p′

The decreasing is actually strict since an equivalent proof should be in
one step, and the only possibility is a step of the form

can(ti[r]p′)

r←l
can(ti[l]p′)

However since can(ti[l]p′) ≺ ti[l]p′ and wcan(ti[l]p′) = wcan(ti[l]p′) can-
not be not simultaneously true, such an equivalent step is not possible.
Among all possible proofs P, we pick up a minimal one. By the previous
lemmas, P does not contains →R∞ steps, hence f(t1, . . . ,P, . . . , tn) is
strictly smaller than

can(s0)

r←l
t

If we consider the proof P ′

s
{0,1}←−
Rcan

s0
f(t1,...,P,...,tn)←−−−−−−−−→ s′0

{0,1}−→
Rcan

s′

all its elementary steps are strictly smaller than ({t}, 1, 1, l, r). We have
seen that this is true for the middle part, and also for the left part
({s0}, 0, 1, s0, s){0,1}, and the right part ({s′0}, 0, 1, s′0, s′){0,1}.
P ′ is a proof between s and s′ which is strictly smaller than s

r←lt.

25

• If can(ti[l]p′) ' ti[l]p′ , then by the AC-totality of �, can(ti[l]p′) =AC

ti[l]p′ . Since s′ = can(t), we know that s′ � t and we make a case
analysis:
∗ If s′ ' t then s′ is actually canAC(t) which is AC-equal to t. s′

contains ti[l]p′ as a subterm and can be reduced with l → r to
can(s′[ti[r]p′]) which is AC-equal to t[ti[r]p′]i. Hence can(s′[ti[r]p′]) =
can(t[ti[r]p′]i) = s and the proof

s

r←l
s′

is equivalent to, hence weakly smaller than s

r←l t.
∗ If s′ ≺ t, then we can first see the peak as follows:

s←{0,1}Rcan
s0 ←r←l t→Rcan

s′ = can(t)

We eagerly replace every occurrence of l by r in s0 and s′, getting
respectively s1 and s′′. Then s1 and s′′ are equal modulo AC and
X, because any proof modulo AC and X between t and s′ can be
replayed by replacing the σ-instances of AC and X used originally by
σ′-instances where xσ′ is xσ where every occurrence of l is replaced
by r. We get the new proof

s
{0,1}←−
Rcan

s0
∗−→
l→r

s1
{0,1}−→
Rcan

can(s1) = can(s′′)
{0,1}←−
Rcan

s′ = can(t)

Since s′ ≺ t, all terms in the above proof are strictly smaller than t,
hence the measure of this proof is strictly smaller than ({t}, 1, 1, l, r).

If the proof occurs under a context t[•]q, we know that there is a proof
P between s = can(t[r]q·p′) and can(t) which is weakly smaller than
({t[l]q·p′}, 1, 1, l, r) (case →Rcan

at Λ). Hence

s
P←→ can(t)

{0,1}←−
Rcan

s′

is a proof between s and s′ which is weakly smaller than

{({t[l]q·p′}, 1, 1, l, r), ({s′}, 0, 1, s′, can(t)){0,1}}

whereas the measure of the original peak is

{({t}, 1, 1, l, r), ({t}, 0, 2, t, s′)}

Since s′ � t, the measure of the new proof is strictly smaller than the
measure of the original peak.

Theorem 5. If s and t are two terms such that s←→∗AC,X,E∞,R∞
s′ then

can(s)

Rω
= can(t)

Rω
.

Proof. If s and s′ are equal modulo ←→∗AC,X,E∞,R∞
, so are can(s) and can(s′).

By the above lemmas, a minimal proof between can(s) and can(s′) is necessary of
the form can(s)(Rω

∪ →Rcan
)∗(

Rω
∪ ←Rcan

)∗can(s′). This sequence of steps
can also be seen as can(s)→∗Rcan

(Rω
→∗Rcan

)∗(←∗Rcan

Rω
)∗ ←∗Rcan

can(s′). By
definition →Rcan

cannot follow a Rω -step, and can(s) and can(s′) cannot be
reduced by →Rcan

, hence the wanted result.

26

A.2 Termination

The proof of termination partly reuses some facts used for the termination proof
of AC-ground completion (based on Higman’s lemma), but also needs some in-
termediate lemmas which are specific to our framework. 8 We shall prove that,
under a strongly fair strategy, Rω is finite and obtained in a finite time (by cases
on the head function symbol of the rule’s left-hand side), and then we show that
Rω will clean up the next configurations and the completion process eventually
halts on 〈 ∅ | Rω 〉. In order to make our case analysis on rules, and to prove
the needed invariants, we define several sets of terms (assuming without loss of
generality that E0 = can(E0)):

T0 = {t | ∃t0, e1, e2 ∈ TΣ(X), e1 ≈ e2 ∈ E0 and t0 = ei|p and t0 ∗R∞
t}

T0X = T0 ∪ {fX
(t1, . . . , tn) | f

X
∈ ΣX and ∀i, ti ∈ T0X}

T1 = {t | t ∈ T0 and ∀p, t|p ∈ T0X}
T2 = {u(t1, . . . , tn) | u ∈ ΣAC and ∀i, ti ∈ T1}

Lemma 13. ∀γ, t, s, γ ∈ R∞ ∩ T 2
j ∧ t ∈ Ti ∧ t γ s =⇒ s ∈ Ti, for i, j = 1, 2.

The proof is by structural induction over terms (for dealing with rewriting
under a context) and by case analysis over Ti when rewriting at the top level. It
uses the (quasi-immediate) fact that T0 ∩ T2 ⊆ T1.

Lemma 14. For all accessible configuration 〈 En | Rn 〉, En ∪Rn ⊆ T 2
1 ∪ T 2

2 .

The proof is by induction over n, and uses Lemma 13.
The first step of the termination proof is to show that Rω ∩ T 2

1 is finite
(Lemma 16). It is specific to our framework, due to the presence of X9.

Lemma 15. Under a strongly fair strategy, if l→ rn is created at step n in Rn
and l→ rm at step m in Rm, with n < m, then rm is a reduct of rn by R∞ .

Proof. The proof is by induction over the length of the derivation, and by case
analysis over the rule which has been applied.

– Orient applied on s = t cannot create a new rule p → v with an already
present left hand side, because the strongly fair strategy implies that s and
t are fully reduced, and the new left hand side p is a subterm of s or t.

– Simplify, Collapse and Deduce do not create a new rule.
– Compose obviously preserves the invariant.

Corollary 1. Under a strongly fair strategy, R∞ is finitely branching.

Proof. If R∞ is not finitely branching, there exist an infinite sequence of rules
(l → rn)n where l → rn first appears in 〈 En | Rn 〉. Thanks to Lemma 15,
since R∞ is included in ≺, the sequence (rn)n is strictly decreasing w.r.t ≺. The
well-foundedness of ≺ contradicts the infinity of (rn)n.

8 We assume that ⊥ is not encountered, otherwise, termination is obvious.
9 X may change the head function symbol of terms in an equational proof, which is

not the case of AC in standard ground AC-completion.

27

Lemma 16. Under a strongly fair strategy, the set of rules in Rω ∩T 2
1 is finite.

Proof. If l→ r belongs to the set Rω∩T 2
1 , l is reduct of a term l0 in E0 by R∞ .

Since R∞ is terminating (because it is included in ≺), and finitely branching
(above corollary), any term has finitely many reducts by R∞ . In particular
since E0 is finite, there are finitely many possible left-hand side. Moreover since
in Rω two distinct rules have distinct left-hand sides, Rω ∩ T 2

1 is finite.

Here is the second step of the termination proof, finiteness of Rω ∩T 2
2 , which

is mostly the same as in the usual AC-ground completion:

Lemma 17. The set of persistent rules in Rω which are in T 2
2 is finite.

Proof. The set Rω ∩ T 2
2 can be divided into a finite union of sets, according to

the top AC function symbol of the left hand-side of the rules. We shall prove
that for each u ∈ ΣAC , the corresponding subset is finite.

Let u be a fixed AC function symbol, and let u(l1, . . . , ln) → r be a rule
of Rω ∩ T 2

2 . By definition of T2, and by the soundness of R∞, each li is equal
modulo ACX,E0 to a term l0i in E0. Since li is irreducible by Rω (otherwise the
rule u(l1, . . . , ln)→ r would have collapsed), there is a rewriting proof li

 ∗
Rω
l0i .

Notice that two distinct rules in Rω have some distinct left-hand sides (other-
wise one would have collapsed the other) (this implies in particular that Rω is
finitely branching). Since Rω is included in a well-founded ordering, and is
finitely branching any term has a finite number of reducts. Since E0 is finite,
each li belongs to the finite set of reducts Red(E0) of E0 by Rω

. By Higman’s
lemma, if there is a infinite number of rules where the left-hand side is of the
form u(t1, . . . , tn), there exist two rules l → r and l′ → r′, such that the mul-
tiset of arguments {{l1, . . . , ln}} of l is included in the multiset of arguments
{{l′1, . . . , l′m}} of l′. This would imply that the second rule collapses by the first
one, which contradicts its persistence. Hence the wanted result.

When Rω has been proven to be finite, we show that once it is obtained,
Rω will “clean up” the configuration within a finite number of steps, hence the
termination:

Theorem 6. Under a strongly fair strategy, AC(X) terminates.

Proof. When the strategy is strongly fair, Rω is finite. Moreover each rule in Rω
is obtained within a finite number of steps. Once all persistent rules are present in
the rules of the configuration 〈 E | R 〉, the rule Orient always returns an empty
set of rules. If the measure of a configuration is the triple made of the number of
remaining critical pairs to generate, the multiset of terms in R (compared with
≺), and the number of equations on E, it strictly decreases. Qed.

28

	RR1538entete
	RR1538rapp

