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Résumé Ce travail introduit les réseaux auto-développants d’agent,
pour modéliser le parallélisme existant dans le développement cellulaire
biologique. Des agents à état fini exécutent des règle de réécriture locales
qui créent d’autres agents et connections. Un agent initial peut ainsi pro-
gressivement développer un réseau d’agents arbitrairement grand. Nous
étudions comment définir un modèle formel générique permettant une
exécution distribuée, et décentralisée. Il faut imposer que lorsque un
agent peut se réécrire, ses voisins ne le peuvent pas, et constituent ainsi
des points d’ancrage stable. Cette première définition présente cepen-
dant un gros désavantage : c’est le programmeur qui doit assurer que
son système de règle vérifie cette contrainte d’exclusion mutuelle entre
voisins. Nous proposons donc une deuxième définition permettant de
relaxer cette contrainte en faisant intervenir une simulation distribuée.
Cette définition permet d’écrire les règles de réécritures de façon plus
concise, car de plus haut niveau. Elle englobe également les modèles déjà
existant sur l’auto-développement.

This work introduces Self Developing Network of agents to model the
parallelism present in cellular biological development. Finite-state agents
execute a local graph rewriting rule that create other agents and links.
An initial ancestor agent can thus progressively develop a network of
agents. We investigate how to define a formal generic model enabling
a decentralized and distributed execution. One should make sure that
when an agent can rewrite, its neighbors cannot, and can thus be used as
stable gluing points. This first definition has a major drawback : it is the
programmer task to prove that his rule system checks this constraint of
mutual neighbor exclusion. We therefore put forward a second definition
that can relax this constraint by means of a distributed simulation. This
definition allows to write more concise rewriting rules, because of a higher
level of abstraction. It also include existing models of self-development.

Keywords: Self developing network, massive parallelism

1 Motivation and review.

The cells of a biological system have an intrinsic parallelism because they
exist in space and time. They can update in parallel with each other, and
constantly through time. The parallelism is available everywhere, every time.
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Moreover, cells can divide and create other cells thus increasing the available
parallelism. We believe that the central property at the source of this paral-
lelism is the ability of the system to self develop. It is not an external entity
that builds a biological system. Instead, cells themselves carry a program, and
duplicate according to it, in order to create other cells and exchange messages,
which in turns create other cells, and so on, until a whole organism is unfolded.
The goal of this work is to put forward a new formal model called “Self Deve-
loping Network” (SDN) that captures a similar pan-parallel property. An SDN
configuration consists of a network of finite state agents that update in parallel
in discrete time, and develop by producing other agents and connections. SDNs
not only specifies a network operating in parallel, they also program a parallel
development of that network. For example a 2D lattice of 2n × 2n nodes can
be developed by a process of iterative duplication, in only 2n steps, where each
step alternatively doubles the number of rows or columns.

Self development imposes to abandon the use of a global memory. This is
difficult, because programing with a BPBG 1 memory is very convenient : data
is stuffed in it without worrying where, and later it is addressed whenever it
is needed. Without global memory, each word of data that is created, has to
know in advance where and how it is going to be used. SDNs consider active
data : each data is stored as a register of an agent that has connections to
other agents. The connections encode where the data will be used by directly
pointing to the potential consumers. The agent’s state encodes how the data will
be used. Creation and deletion of data translates into creation and deletion of
agents, and connections. As for biological system, the resulting development is
a self development because the agents themselves are the actors.

Initially, the network has a minimal size, including an ancestor holding the
development program, and some fixed agents used for input and output. The
program let the ancestor generate new agents who also generate new agents,
and so on, until a functional circuit is developed, whose structure should reflect
the structure of the target problem. Alternatively, computation and computation
can be interleaved with development. Many formal models consider self creation
of computing elements.

Process algebra Dynamic creation of agents is a primitive operator for formal
model of process algebra, which are useful to prove theorem about distributed
algorithm, the Actor model [7] and [1] CSP [8], CCS [11]. PI-calculus [12].
Brane calculi [3] is used for simulating a single biological cell, where structure
is light : within a cell sub compartment, any molecules can interact with any
other. These models use a global name space because it is more simple and
natural. A process can communicate with any other, using its name or id, this
implicitly requires a shared memory for communication, which is not conducive
to scalable parallel computing. In our view of self development, the network used
for messages communication is explicitly instantiated at run time. If two agent
needs to communicate, a connection must be present. Each agent has to explicitly

1. Brave Passive Big Global
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manage a bounded number of connections carrying labels. It communicates by
modifying those labels.

Pointer machines. In the early 1950s, Kolmogorov and Uspensky[6] outlined
a concept of abstract machines that does use an explicit network representation :
A configuration is a graph, instructions can add or delete new nodes, and the
degree is bounded. This machine was designed with the same goal as Turing
machines : to define the concept of computation. Surprisingly, the way in which
the architecture is modified is not parallel : a single node is active at each time
step. The graph is used as a simple storage structure more generic than the one
dimensional Turing tape. This early work gave rise to several different machines
called ”pointer machines”, reviewed in [2]. In particular, the Parallel Pointer
Machine (PPM) introduced by Cook and Dymond [4] does use parallel deve-
lopment : The PPM consists in a collection of FSA having a fixed size array of
pointers to other FSA which determine an explicit architecture. An FSA a1 can
execute an instruction to create and initialize a new FSA, or to read the state
or copy the pointers from another FSA a2 it connects with. In our view, agents
should be able to update without accessing the state of neighbors, because this
is one of the key for a distributed implementation.

2 Node Graph Rewriting Systems (Node-GRS)

Self Developing Networks (SDNs) consider networks whose underlying graph
can be modified, the number of nodes and the set of edges can both evolve. The
formal tools to modify a graph is known and studied as Graph Rewriting rule
Systems [14] (GRS). A configuration is a labeled graph (node and edge). The
classic form of a graph rewriting rule includes a left member and a right member
which are both graphs. A rule application involves two phases : 1- Matching the
left member with a sub graph of the graph being rewritten, and 2- Removing this
sub-graph, adding the right member, and gluing it to the rest of the network.

SDNs can be informally defined as distributed GRS which can be executed
in a decentralized distributed way. Decentralized rule application is not easy in
the classic framework, since the graph has to be partitioned into disjoint sub-
graphs forming valid left members for different rules. Matching a sub-graph is
itself a difficult operation since it is a graph homomorphism, which is known to
be NP complete. The third volume of [14] is entirely dedicated to parallel GRS,
however this concept is distinct from distributed GRS : it considers only how to
formally construct a parallel composition of rules which does not directly imply
a distributed execution. A distributed execution can be defined using two simple
restrictions :

Firstly we consider node-GRS which impose that rules replace only one node
at a time. The nodes can themselves be considered as agents doing locally the
matching, adding, and gluing. The node’s label is called the agent’s state. The
link’s label are used by an agent to identify its links. The labels constitute the
agent’s context. The next section introduces a syntax and semantic for undirected
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node-rewriting rule that tries to capture all what’s possible to do locally, with
undirected links, and makes the foundation on which to ground SDN.

Secondly, an agent that rewrites must be guaranteed that its neighbors will
not, so that they can safely be used as stable anchors for receiving new connec-
tions. A GRS which guarantees that two neighbor agents can never be simulta-
neously ready is called emphneighbor exclusive, where ready means that one of
the rules is matched (if two rules are matched, one can either define a priority
or choose non deterministically).

Definition 1. A basic Self Developing Network (SDN) is a neighbor-exclusive
undirected node-GRS.

Definition 1 suffers an important drawbacks : it demands that the designer
of the rules engineers and proves the neighbor exclusivity. We would like to
extend the definition so as to include parallel node-GRS whose formal parallel
composition of rule can relax the neighbor exclusive requirement. In order to
continue ensuring a distributed execution, we demand that the parallel node-
GRS can be simulated by a basic SDN. The definition 6 of simulation enables to
see the simulated GRS as a software layer programmed on top of a distributed
GRS.

Definition 2. A higher order SDN is a parallel node-GRS that can be simulated
by a basic SDN.

Execution in a parallel node-GRS. A parallel node-GRS is defined by a paral-
lel composition allowing all ready nodes to update simultaneously. We consider
a decentralized update schedule, where each ready node decides whether it re-
writes or not, depending on some unknown other factors. A parallel derivation,

c1
A−→ c2 from a configuration c1 to a configuration c2 simultaneous rewrites

a subset A of the ready agents in c1. This also applies to neighbor exclusive
node-GRS since they are a particular kind or parallel node-GRS, where parallel
composition is not needed. The configurations of a system are those that can
be reached by a derivation starting from the initial configuration. Agents in the
initial configuration are called ancestors. All the other generated agents are des-
cendants. Some of the ancestors called hosts are external agents whose rewriting
is conducted externally. Each host is connected to the rest of the configuration
through a single connection called port which persists during the whole exe-
cution. The links labels can be used to store a message for communication, in
particular the port label is used for input and output to the hosts. It is important
to provide parallel inputs and outputs, so in general, there are several ports.

A parallel node GRS develops a circuit that can be reused and modified
indefinitely, depending on the hosts’ interaction. In our buffer example, the hosts
can push and pop values indefinitely. This generate infinite derivations. Such
derivation are implicitly assumed to use a fair update : an agent that is ready
cannot be indefinitely idle. If an agent has a choice between some rules infinitely
many times, fairness also means that all rules have a non zero probability of
being chosen and will be. Alternatively, if the hosts remain idle at some point,
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the execution can reach an idle configuration. Such a system can be used to
compute a function : the hosts will first input values through the ports, and
then output values computed from the developed circuit.

Definition 3. A parallel node-GRS execution is either an infinite derivation
with a fair update or a derivation terminating to an idle configuration

Cleaned up development. Consider an agent with a loop connection to it-
self : this agent is its own neighbors, when it rewrites, it can create new agent
with connection to itself. Since it is itself deleted, those connections will be left
dandling. To avoid this problem, we consider only loop-free execution.

Agents with no connections are useless, because they cannot influence the
input/output behavior of the machine. More generally, the network as a whole
should remain connected.

Proposition 1. A dynamic agent network always remain connected, if its initial
configuration is connected, and for each rules, the graph formed by neighbors of
an updating agent, plus the created agents and connection is connected.

3 Undirected node rewriting rule.

  
(a)

x  ω x  x x

(b)

x

(c)

Step 1
    2   2   23   3 

Step 2 Step 3 Step 4(d)

εε ε

ε ε ε ε ε

ω

ω ω ω ω ω ε 2ε

Figure 1. An undirected development rule implementing a buffer ; x ∈ N, ε and ω are
special labels. (a) Root agent (disc) (b) data agent (circle) (c) Host read, and write
(electrical ground) (d) Example of execution.

We called node-rewriting rule, a rule of node-GRS, that rewrites graph nodes
by nodes, independently. In this section we make precise a syntax and a semantic
for undirected rules refereed to in definition 1, for network with undirected links.

Firstly, an agent must decide independently whether it matches a given re-
writing rule or not. The decision should be local in order to be distributed :
thus we forbid agents to access the state of its neighbors. The agent’s local view
includes its own state qinQ (node label), and the labels l ∈ L of its connections.
The rule’s left member is specified by a multiset of labels C ∈ NL. A multiset
is a set with repetition, and can also be viewed as a function Ċ : L 7→ N where
Ċ(l) is the number of occurrence of l. A rule with left member C is matched, if
for each label l, the agent has at least Ċ(l) l-neighbors.
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The right member includes the number n of agents to be added, their states
q1, . . . , qn, and new connections specified by triplet (lnew, v1, v2, ), giving the
connection label lnew and the two extremities v1, v2 (unordered pair) which can
address either a newly created agent, or a neighbor. Newly created agents are
addressed by an index in < 1 . . . n >, and neighbors by the label of their connec-
tion l ∈ L. However there can be several l-neighbor having the same label l on
their connections, so the agent must make a prior ”individual bindings” to dis-
tinguish them. It knows that there is at least Ċ(l) of them, it chooses randomly
Ċ(l) connections labeled l and attribute a distinct index j = 1, . . . , Ċ(l) to each
of them. The selected neighbors are addressed by indexed labels, the set of thos
is noted C Ĉ.

There exists a third addressing mode called ”Collective binding” that binds
all the remaining not individually bound l-neighbors, for a given l. It creates
multiple connections to each of them, using a single connecting triplet. It can
be used only for one extremity in a connecting triplet, and creates multiple
connections to each of the collectively bound l neighbors. If it was used for both
extremities, the number of created links could be quadratic with respect to the
degree of a node. For example an agent with 10 links labeled l1 and 10 other links
labeled l1 could create 100 connections with a connecting triplet (lnew, l1, l2, ) .
Collective binding alone leads to deterministic rewriting. In summary, v1, v2
can be either an integer in < 1 . . . n > that addresses a newly created agent, an
indexed label in Ĉ that addresses an individually bound neighbor, or a label l,
that addresses all the not individually bound l-neighbors.

Definition 4. An Undirected node rewriting rule is q0, C → q1, ..qn, c1, ..cm
where C ∈ NL, qi ∈ Q, cj ∈ L× (< 1 . . . n > ∪Ĉ ∪ L)2

The role of this definition is formal : we will always describe our rules using a
more readable graphical notation. Fig. 1 (a)(b) represents an undirected develop-
ment rule implementing a buffer, it uses only individual binding for the moment
being. The left member locates bound neighbors by placing them around a light
gray disc showing the label of bound connections, the right member reproduces
the same disk, and assumes the bound neighbors conserve the same location on
that disc. The buffer agents have two states : root and data. The root-agent
updates by inserting a data-agent which stores an integer data item on its input
link. Data-agents update by suppressing themselves to make their item available
for reading. The root is ready when it has an integer on one edge and the markup
ω on the other edge, which distinguishes right from left. A data-agent is ready
when it has an integer on one edge, and the empty label ε on the other. Fig. 1 (d)
shows an execution. The agents are organized in a line starting with the writing
host, followed by the root, data-agents, and the reading host. The buffer initial
configuration needs to contain one data-agent. The buffer has no capacity limit,
since the creation of new data-agents augments the available memory on the fly.
Only the two extremities can be simultaneously ready, thus enabling to read and
write in parallel, while enforcing neighbor exclusion. This proves that the system
is a basic SDN. At step 2 and 4 the number 2 and 3 are stored by data-agent
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into to the buffer, the number 2 is retrieved at step 4, and can be read. In our
simulation, we will use the following property :

Proposition 2. Basic SDNs are confluent.

Because undirected rule do not access the state of neighbors, neighbor ex-
clusivity ensures confluence : the output of a given derivation does not depend
on the schedule of rule applications. If the system is mono ancestor, a deriva-
tion is summarized by a lineage tree whose root is the ancestor, and branch
nodes correspond to all the agents that were generated. Leaves contain either
an agent present in the final configuration, or an agent that was deleted. All the
agents generated can be uniquely identified by the path leading to them in the
lineage tree. If the system is not mono ancestor, we can also obtain a lineage
tree by considereing an ad hoc rule that generates the initial configuration from
a single ancestor, including the hosts. The branch corresponding to the host is
a degenerate tree, it is the sequence of input or output rule issued by the host.
Two different derivations are equivalent if their lineage tree is the same. This
holds for finite, as well as infinite derivation. In a lineage tree, the number of
sub-trees of a given node corresponds to the number of new agents created upon
rewriting. For a finite set of rule, it is upper-bounded by a constant since each
rules generates a fixed number of agents.

4 Directed node rewriting rule

  
(a)

x  x  x x

(b) x (c)

x

(d) Step 1
 

Step 2
 2  2  

Step 4
 3   2  3

Step 3

2

ε

ε
εε

εε ε ε ε ε

 y y

Figure 2. Buffer implemented as a directed system. (a) Root agent’s rule(b) Data
agent’s rule (c) Host’s rule (d) Example of execution.

We now consider more generic parallel node-GRS that include a mechanism
for parallel composition, so that neighbors can simultaneously rewrite. Such a
mechanism can be based on a ”Mutual Connecting Agreement” , which speci-
fies how to interconnect the agents produced by two neighbors that are simul-
taneously rewriting. We define such an agreement by orienting the links and
deciding that the owner of the link is the agent at the source, while the target
agent is considered to be pointed by the link. An agent canNOT modify incoming
links since it does not own them. NOT modify means not create connections to
the neighbors, and keep the link as is. It is achieved by preserving the updating
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agent instead of deleting it, and let it keep all its incoming links. The updating
agent can then be used as a stable gluing point for the neighbors owning a link
to it, and updating simultaneously. By convention, links which are owned but
are not bound in the left member, will also remain on the persisting agent. This
make definition of rules more compact since we are no longer obliged to describe
the whole label context.

Definition 5 (Directed node rewriting rule). Like an undirected rule, ex-
cept that the extremities (v1, v2) in a connecting triplet are ordered, the left mem-
ber includes a subset of labels E ⊂ L, and a persisting agent is identified.

The rule application works as follows : Created connection are oriented from
v1 to v2. Since an agent can modify only the output links, only neighbors connec-
ted through output links are considered for binding. However, an agent can test
the absence of input links, which is useful for synchronization. The subset of
label E ⊂ L specifies the labels of the input links that if present, will block the
updating. If E = L the rule is called owner-all and can suppress the agent itself,
because no input link needs to be preserved. If all rules are owner-all, the system
itself is called owner-all and become neighbor exclusive.

The link orientation leads to a more concise higher level representation : In
fig. 2 the buffer is programmed as a directed node-GRS, with a single ancestor
and no ω markup. Ownership is represented using a tiny black disk at the source,
and the persisting agent is identified by an extra circle around it (fig. 2 (a)). Note
that in this figure, the link labeled y is only indicated for clarity, it can be omitted
since it is an input link and will be kept by the persisting agent, by definition.

(a)

x x x

...

...

q
z

...a z ...

...a z
...a z

q
a

a z z

(b)
a

 * 

Figure 3. The bipartite transformation (a) Insertion of an edge-agent on each edge.
(b) Representation as node rewriting rules.

5 Simulation of Directed node-GRS by basic SDN.

We now want to prove that directed node-GRS are higher order SDN. Ac-
cording to definition 2, we must provide a distributed simulation, we first need
to define what is a simulation between parallel node-GRS.

Definition 6. A simulation of a parallel node-GRS S by another S′ if given by
a mapping φ from the configurations of S to those of S′ such that for any parallel
derivation c1 → c2 in S there exists an image derivation φ(c1)→ ∗φ(c2) in S ′.
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The mapping φ is called a morphism. As usual, → ∗ is the transitive closure
of →. If x is a derivation c1 → c2 → . . . → ck in S, φ maps it to a derivation
φ(c1) → ∗φ(c2) . . . → ∗φ(ck) in S′ noted φ(x), this can be extended to infinite
derivation such as executions. Since we consider non deterministic system, we
also want to make sure that that for any execution x′ in S′, there exist an inverse
image execution x in S, verifying φ(x) = x′ . We call that property faithfulness.

We use morphisms called transformation that are themselves parallel node-
GRS, such as the bipartite transformation shown in fig. 3, which inserts an
edge-agent on each oriented connections. The number of rules is infinite though,
because each neighbor needs to be individually bound. There is exactly one rule
for each possible neighborhood. If t is a transformation and c a configuration,
the image t̂(c) is obtained by applying the transformation rule in parallel on
every agents of c. If a is a single agent of c, t̂(a) designates the agents and
connections generated by rewriting a, and is called the support of a. The support
of each agent usually contains a distinguished agent called the master that sends
command to all the other agents of the support, called slaves. For example, the
slaves are the edge-agents in the bipartite transformation. Only the master’s rule
depends on the simulated node-GRS, while slaves execute a fixed rule. Master
slave transformation can in fact be considered has simply programming : the
simulating node-GRS is a software layer (a set of Macros) put on top of the
simulated node-GRS.

Theorem 1. Directed node-GRS are SDNs.
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(b) (d)
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(g)
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α
α
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Figure 4. Simulation of the directed buffer. (a,b) recoding of buffer root and data
agents (c)recoding of host’s rule (d)recoding of NOP rule (e,f,g,h,i) edge-agent’s fixed
rule.

Proof : Let S be a directed node-GRS, and c1 a configuration of S. We
define a simulating basic SDN S′ as follows : For each label l of S, S′ needs
four labels noted l, l̇, l, l̇, plus four new labels denoted by Greek letters α, β, χ, δ.
The morphism c1 7→ φ(c1) is the bipartite transformation. An edge agent has
two links, one to the owner, and one to the output agent. The original label l is
copied on both links, but with a dot above it (l̇) on the link towards the owner,

in order to encode the orientation. One step of parallel derivation c1
A−→ c2 in S
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δ

α β

δ
  ε 22

 22

  ε 2

33  ε ε

33Node update  
Edge update 1 3 3

  Edge update 2 3 3ε ε 22

α α

Figure 5. Simulation of the execution step 4 of figure 2 (d)

is simulated in two phases : In phase 1, node-agents execute a recoded version of
the original rule using edge-agents as gluing points. fig. 4 (a) (resp. (b),(c)) shows
the recoded rule for the buffer’s root (resp. data agent, host). For each created
connections labeled l, the recoded rule inserts a new edge-agent. If l connects a
neighbor to a new agent,(resp. two neighbors or two new agents) the labels of
the two links are (β, l) (resp . (l, l̇)). The label of preserved input connections is
forgotten and replaced by α. In phase 2, the edge-agents rewrite in two steps.
First one edge-agent per connections is restored with rule (e) (resp.(f)) if the
connection was created between a neighbors and new agent (resp. between two
neighbors). Second the label coding the orientation is restored with rule (g). The
role of underlined label l, l̇ is to prevent a node-agent firing before all its edge-
agents are done, which is the key that ensures a neighbor exclusive execution.

In phase 1, all the node-agents must update, including those representing idle
agents (either because they are not ready, or because they are not in the set A of

the considered transition c1
A−→ c2.) which must execute the recoded version of

the NOP rule (d). This rule must be valid for arbitrary many neighbors, it has to
use collective binding, which is represented graphically using the ’∗’ symbol. The
recoding of collective binding on owned link needs a new label χ. The simulation
does an iterative processing to insert arbitrary many edge-agents, this is realized
by rules (h) and (i) managing χ. The circle above the labels means that it can
be either a doted, or not doted label. Rule (i) ends the iteration, and has lower
priority than (h).

Last, we must prove faithfulness. Consider an execution x′ in the simulating
system. It has to be infinite, since agents can always execute the NOP rule.
Because of proposition 2 and the fact that the execution is fair, we can reorder
the derivation to complete the current simulation step before starting the next.
We obtain an equivalent execution x′′ so that x′′ = c′1 → ∗c′2 . . .→ ∗c′k . . . and c′i
is the bipartite configuration obtained after the ith simulation step, and lies in
the image of φ. Let ci = φ−1(c′i) be the inverse image, x = c1 → ∗c2 . . .→ ∗ck . . .
is a derivation in S, and by construction, φ(x) = x′′. We need to prove that x
is an execution. We can have either ci → ci+1 or repetitions : ci = ci+1 which
can be simplified. If the resulting sequence remains infinite, it is an execution
(its fair update is implied by the fair update of x′′), otherwise their exists a k
such that ci = ck for k > i, which means that node-agents in x” always do the
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recoded NOP rule after c′k. In this case, fairness implies that they could not fire
other rules which proves that none of the agent in ck are ready, and ck is indeed
idle.

6 Examples of Higher Order Self Developing Networks

The definition 2 is generic enough to include other high level formulations. It
also allows to classify well known parallel node-GRS, as specific type of SDNs.
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Figure 7. Simulation of one step of execution collapsing a tree of depth 2.

6.1 Other ways of defining SDNs.

Redirecting systems. The input connections can be redirected instead of pre-
served on a persistent agent, the neighbor at the other extremity will still not
perceive any difference.
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Definition 7 (Redirecting development rule). Like a directed rule, except
that input neighbors can also be bound but must be used exactly once in a connec-
ting triplet, with preserved label and orientation.

Redirecting systems contains directed systems. To distinguish input from output
neighbors, the context (and binding) is specified using oriented labels

−→
l ∈ −→L =

L × {0, 1}, which includes a label plus a Boolean coding the orientation of the
matched link. The condition on bound input neighbors says that input connec-
tions are redirected. Input connections can be redirected through individual or
collective binding. Redirection can either be local towards a newly created agent,
or transitive towards a neighbor. Input links cannot be redirected towards ano-
ther input neighbor, since that would change it to an output neighbor. A cycle
in the chains of redirection is forbidden, the redirection should organize in a set
of tree, the effect of redirecting is to collapse the tree by gathering all the leaves
on the root. An example of transitive redirection is shown fig. 6 (a), and its effect
in case of parallel update in fig. 7 (a).

Proposition 3. Transitive node-GRS are SDNs.

Proof : We simulate transitive node-GRS using directed node-GRS. A simulation
by a basic SDN can then be obtained by composition with a simulation of direc-
ted node-GRS by basic SDNs. The transformation is the bipartite transforma-
tion, node-agents have ownership of links. The simulation is neighbor exclusive,
it uses an owner-all update. One step of parallel execution needs two phases : In
phase 1, node-agents execute a recoded version of the original rule using edge-
agents as gluing points. Like the recoding used to prove theorem 1, a new edge
agent is inserted on each created link, with dotted label to represent direction.
The difference is that now, no underlined label are needed to enforce exclusion.
The simulating system needs two extra new labels χ and η : As before, χ is used
to implement an iterative processing needed for collective binding, while η is
used for redirection. In phase 2, edge-agents rewrite using a fixed rule fig. 6(e)
which collapses chained transitive redirection in a number of steps equal to the
depth of the tree.

Programmed orientation Above the orientation of links used to encode ow-
nership, one sometimes need to encode a programmed orientation. Consider for
example a chain of agents such as the one used for the buffer. A programmed
orientation can be used to distinguish left from right. It is simulated using two
”opposite” label (for example L and R for right and left), which are systemati-
cally negated when ownership is flipped. When the link is owned, the orientation
reads directly, but if the link is not owned, the opposite value must be taken.

Labeling of link extremities Those labels can be read, and modified, only by
the agent at the corresponding extremity. They are useful as a local memory per
links, and makes it easier for an agent to manage its links without interfering
with the neighbors. For example, an extremity flag can be used to distinguish the
father from the children in a temporary tree structure, or to locally number the
links. If a link is duplicated from one extremity, the extremity labels at the other
extremity get duplicated together with the link. Local labels can be incorporated
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directly in the simulation of directed systems, they will label only one of the two
edge of each edge-agents, the one corresponding to their extremity.

Mixed orientation In mixed graph, links can be either directed, or not. In the
same way, in a mixed SDN, ownership can be left undecided. Ownership is no any
more represented as an orientation of the link, but using extremity boolean flag
which independently labels each of the two extremity of a connection, by 0, or
1. The possible values for the pair of extremity of one link are (0, 1), (1, 0), (0, 0).
In the case of (0, 0), the link is not owned by neither of its two attached agents,
which cannot modify the link, except for a very specific modification which
consist in acquiring ownership by setting the ownership flag. A link cannot be
owned at both extremity, thus (1, 1) is forbidden. If by chance ownership is
acquired simultaneously at both extremities, a random choice is made. This
is a natural way of introducing non determinism in a SDN, useful to break
symmetries.

6.2 Classification of existing SDNs.

Ever Growing Network EdNCE graph grammar introduced by Engelfriet and
Rozenberg [14] describes a sub class of directed systems using only collective
bounding, and forbidding creation of connections between neighbors. Thus if two
nodes are not connected, they will never be in the future. When an agent get
removed, such as the data agents of the buffer, connecting neighbors together is
indispensable to maintain the connectedness. EdNCE grammars develops only
ever growing structures. Existing family of graph grammars, such as the algebraic
approach or hyper edge replacement grammar [14] allows unconnected nodes to
become connected, but they are not designed for distributed execution.

Acyclic network L-systems are grammars introduced by Lindemeyer [10] to
model the development of algae and plants. The object being rewritten is a string
using brackets representing a compact encoding of a tree. It can be seen as a
SDN, where the network is acyclic : in other words it is a tree. In the simplest
case of context free L-systems, each agent rewrites independently in parallel. A
simulation is done using edge-agents to synchronize the rewriting of all nodes.
In the general case, context sensitive L-systems still rewrites agent-wise, but
check the state of neighboring agents before applying a rule. For example, this
can model a flow of nutrients. The simulation must use an intermediate step
of communication so that each agent reconstruct internally the local subgraph
composed of one neighbor agent towards the trunk, and several neighbor agents
towards the branches. If the context spans more than second order neighborhood,
several such steps must be composed.

Network with a fixed number of nodes Self assembly system focus on main-
taining a specific subset of link for persistent pairwise communication, or for
progressive assembly of a structure, between robots or molecules. As a result,
a dynamic network is built and maintained. Klavins [9] use node-GRS to move
interacting robots so as to cover a given region. We believe it can be simulated
by SDN, if space is accounted for. Rules can create or delete connections (and
not agents), and trigger agent movement. This approach has been applied to
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interacting robots moving into space, and trying to achieve a particular mission,
such as cover a given region while still remaining near each other to be able
to communicate using radio signals. Self assembly also models nano-scale me-
chanism of molecules interacting with each other to create and duplicate macro
molecules[13].

Fixed network. If the rules neither creates nor deletes agents or connections,
the network is preserved. Such a degenerated self developing system is called
”‘static”’ and models a fixed network of finite state automata that can be called
Automata networks. Automata networks have not been studied very much as
a general framework, perhaps due to the difficulty of defining easily a transi-
tion for arbitrary neighborhood. Two specific restrictions make it easier to do,
and lead to widely studied models : 1-If we restrict the next state transition
function to make a commutative, associative reduction of the inputs, and apply
a threshold function, this leads to Artificial Neural Networks 2- If we restrict
the neighborhood to be the same for every automaton, this leads to Cellular
Automata. In both ANNs, and CAs, the connection’s label are also fixed, and
the agent directly read the neighbor’s state. A simulation uses edge agents to
copy the agent’s state. Static system can hardly be called self developing, since
nothing is developed. They model real hardware and allows us to reuse the same
machinery of master slave simulation in this context.

7 Deterministic SDN

A GRS is deterministic, if the update of a single agent always gives the same
configuration. An obvious source of non determinism, valid for grammars in ge-
neral, happens when a given context is matched by two rules : the choice between
the two has to be random unless a precedence is defined. There is a more subtle
source in the case of development. When binding individual neighbors, an agent
cannot distinguish between two neighbors, whose connection carry the same la-
bel l. Such neighbors are called local siblings. The resulting non determinism is
avoided only if the network produced by the application of the rules, remain
isomorphic when permuting two sibling neighbors. A simple way to obtain this
invariance is to use only collective bounding.

When considering the updating of many agents instead of a single one, a last
source of non determinism is due to decentralized execution : only a randomly
selected subset of all the ready nodes are rewritten at each step. In some cases, we
would like to obtain a confluence property to ensure that the system consistently
converges to the same configuration despite this randomness. Only confluent
system have an output that is defined independently from a schedule of update.
Since an SDN is a rewriting system, we can apply the general definition of
confluence. Because we have agents, the simpler concept of commutativity is
easier to deal with.

Definition 8. A development system is commutative if it is deterministic, and
for any two agents a1, a2, updating a1 before, after or simultaneously with a2
gives the same network.
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Commutative rewriting systems are confluent, so commutativity is stronger
than confluence. Basic SDNs are commutative (proposition 2.

Deterministic redirecting systems can be made commutative by adding ap-
propriate delays. Consider an agent a1 owning a connection c1 to a2. Let an
update of a1 creates a connection c2 to a2. From a2’s point of view, the label l of
c2 has appeared in its context. We say that c1 ”produces” l. If c2 is not owned by
a2, it can itself produce another label l′. By transitive closure l′ is also produced
by c1.

Proposition 4 (Commutative closure ). A transitive node-GRS becomes
commutative if agents wait for removal of input links that produce labels bound
by its matching rules.

Proof : Consider again an agent a1 owning a connection c to a2, and both a1 and
a2 are ready. The schedule of a1 and a2 ’s rewriting does not matter, because in
all cases, once a1 and a2 have finished rewriting, the links created by a1 through
c will all end up on the persisting copy of a2.

Corollary 1. The directed buffer is commutative

Proof : The commutative closure leaves the system unchanged : agents do not
need to wait since no link produce any labels.

8 Conclusion

This work first presents a minimal framework in which a distributed graph
rewriting can be defined : namely an undirected network, and a neighbor exclu-
sive node rewriting rule. The basic framework is extended by way of simulation,
in order to define a formal generic model called Self Developing Network (SDN).
We present a particular extension using directed link, that relax the neighbor
exclusion requirement The second half of this work [5] further enrich the model
using finite state automata, and proves an ”efficient” intrinsic universality result
in linear time, while a simulation by a Turing Machine needs exponential time.
This formalizes the specific power of SDN, and justify considering an unbounded
source of processing elements as a worthwhile line of research.

We acknowledge fruitful comments made by L. Maignan, and C. Eisenbeiss.
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