
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

SELF-STABILIZING PAXOS

BLANCHARD P / DOLEV S / BEAUQUIER J / DELAET S

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

02/2013

Rapport de Recherche N° 1558

Self-Stabilizing Paxos

[Full Paper]

Peva Blanchard
LRI, Université Paris-Sud XI

Orsay, France
blanchard@lri.fr

Shlomi Dolev
∗

Dept. of Computer Science
Ben-Gurion Univ. of the Negev

Beer-Sheva, 84105, Israel
dolev@cs.bgu.ac.il

Joffroy Beauquier
LRI, Université Paris-Sud XI

Orsay, France
jb@lri.fr

Sylvie Delaët
LRI, Université Paris-Sud XI

Orsay, France
delaet@lri.fr

ABSTRACT
We present the first self-stabilizing consensus and replicated
state machine for asynchronous message passing systems.
The scheme does not require that all participants make a
certain number of steps prior to reaching a practically infi-
nite execution where the replicated state machine exhibits
the desired behavior. In other words, the system reaches a
configuration from which it operates according to the speci-
fied requirements of the replicated state-machine, for a long
enough execution regarding all practical considerations.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems—Network operating systems; D.4.5 [Operating Sys-
tems]: Reliability—Fault tolerance

General Terms
Algorithms, Theory, Reliability

Keywords
Distributed Algorithms, Consensus, Replicated State-Machine,
Self-stabilization, Fault Tolerance, Paxos

1. INTRODUCTION
One of the most influential results in distributed computing
is Paxos, where repeated asynchronous consensus is used to
replicate a state machine using several physical machines.
The task is to use asynchronous consensus, where safety is

∗Partially supported by Deutsche Telekom, Rita Altura
Trust Chair in Computer Sciences, Intel, MFAT, MAGNET
and Lynne and William Frankel Center for Computer Sci-
ences.

guaranteed, and liveness is almost always achieved by using
an unreliable failure detector, to implement an abstraction of
very reliable single state machine on top of physical machines
that can crash, though usually at least several machines stay
alive at any particular moment. The extreme usefulness
of such an approach is proven daily by the usage of this
technique, by the very leading companies, to ensure their
availability and functionality.

Unfortunately Paxos is not self-stabilizing and therefore a
single transient fault may lead the system to stop function-
ing even when all the cluster machines operate. One ex-
ample is the corruption of the time-stamp used to order
operations in Paxos, where a single corruption of the value
of this counter to the maximal value will cause the system
to be blocked. In another scope, the occurrence of tran-
sient fault with the same nature caused the Internet to be
blocked for a while [9]. Self-stabilization is a property that
every on-going system should have, as self-stabilizing sys-
tems automatically recover from unanticipated states, i.e.,
states that have been reached due to insufficient error detec-
tion in messages, changes of bit values in memory [5], and
in fact any temporary violation in the assumptions made
for the system to operate correctly. The approach is com-
prehensive, rather than addressing specific fault scenarios
(risking to miss a scenario that will later appear), the de-
signer considers every possible configuration of the system,
where configuration is a cartesian product of the possible
values of the variables. Then the designer has to prove that
from every such a configuration, the system converges to
exhibit the desired behavior.

Self-stabilizing systems do not rely on the consistency of a
predefined initial configuration and the application of correct
steps thereafter. In contrast, self-stabilizing systems assume
that the consistency can be broken along the execution and
need to automatically recover thereafter. The designers as-
sume an arbitrary configuration and prove convergence, not
because they would like the system to be started in an ar-
bitrary configuration, but because they are aware that the
specified initial configuration and the defined steps consis-
tency maybe temporarily broken, and would like the system
to regain consistency. Therefore, although the system may

lose safety properties, the safety is automatically regained,
leading to a safer behavior than of non-stabilizing systems,
namely, initially safe and eventually safe [2].

Self-stabilizing consensus and replicated state machine for
shared memory system appeared in [6], the case of message
passing being left to future investigation. One approach to
gain a self-stabilizing consensus and replicated state machine
in message passing is to implement the read-write registers
used in [6], using message passing1. A self-stabilizing im-
plementation of such a single-writer multiple-reader regis-
ter appeared in [1]. Unfortunately, the implantation had
to assume that the writer is active forever. Thus, the im-
plementation of self-stabilizing Paxos under the original as-
sumptions was left open. In this paper we present the first
self-stabilizing Paxos in message passing systems.

The paper starts with a background and description of tech-
niques and correctness in a nutshell. Then we turn to a more
formal and detailed description.

2. SELF-STABILIZING PAXOS OVERVIEW
In this section, we define the Repeated Consensus Problem
and give an overview of the Paxos Algorithm. In addition,
we give arguments for the need of a self-stabilizing algorithm
that would solve the Repeated Consensus Problem. Doing
so, we investigate a new kind of self-stabilization, namely
the practical self-stabilization. Then, we informally describe
the main theorems of this paper.

2.1 Repeated Consensus Problem and Paxos
Algorithm

2.1.1 Repeated Consensus
The processors have to perform successive instances of con-
sensus on values proposed by some of them. Every processor
is assumed to have an integer variable s, namely the step
variable, that denotes the current consensus instance it is
involved in. In each consensus instance, processors decide
on a value. For example, in the context of replicated state
machines, the step variable denotes the current step of the
state machine, and at each step, a processor may decide to
apply a command to its copy of the state machine. Proces-
sors may have different views on what is the current step
since some of them may have progressed faster than others.
The Repeated Consensus Problem is defined by the follow-
ing conditions :

• (Safety) For every step s, if two processors decide on
values in step s, then the two decided values must be
equal.

• (Integrity) For every s, if a processor decides on some
value, then this must have been proposed in step s.

• (Liveness) Every non-crashed processor decides in ev-
ery step.

2.1.2 How Paxos Works ?
The original Paxos algorithm guarantees the safety and the
integrity property in an asynchronous complete network of

1A suggestion made by Eli Gafni.

processors communicating by message-passing such that less
than half of the processors are prone to crash failures. The
algorithm uses unbounded integers and also assumes that
the system starts in a consistent initial configuration. To
guarantee the liveness property, additional assumptions must
be made and are discussed below. The Paxos algorithm de-
fines three roles as follows :

• Proposer : it basically tries to impose a consensus
value for its current step. Note that there might be
more than one proposer in each step.

• Acceptor : it accepts consensus values according to
some specific rules. A value can be decided on for step
s when a majority of acceptors have accepted it in step
s.

• Learner : it learns when some value has been accepted
by a majority of acceptors for some step and decides
accordingly. In some implementations, the learner no-
tifies other learners for them to decide on the same
value for this step.

In practice, the actual mapping of the roles in the system
depends on the implementation. Here, we assume that every
processor is an acceptor while some of them can also be pro-
posers. In addition, every proposer is a learner that notifies
every other processor about decisions it takes. Every pro-
poser has its own idea of what should the value be for step
s. In each step s, a proposer tries to impose some consensus
value. However, its trial may succeed or fail according to the
activity of other proposers. When a trial fails, the proposer
may move to the next step because, for instance, the current
step has already been completed by another proposer, or it
may try again. Hence, every processor has an integer vari-
able t, namely the trial variable, that denotes the current
trial it is involved in. A Paxos tag is defined to be a cou-
ple (s t) where s denotes a step, i.e., a consensus instance,
and t a trial within this step. The Paxos algorithm assumes
that all the step variables and the trial variables are natural
integers, hence unbounded, and initially set to zero.

In Paxos, for every proposer, every trial is composed of two
phases. In phase one, the proposer first tries to recruit a
majority of acceptors by sending to all the acceptors its tag
(s t) (phase 1, message p1a) containing its current step and
its current trial, and waits for replies from a majority of ac-
ceptors. An acceptor always tries to participate in the last
step (consensus instance) and trial. Hence, upon receiving
the proposer tag (s t), the acceptor checks whether the tag
(s t) is lexicographically greater than the tag containing its
current step and current trial, (in which case the acceptor
agrees to be recruited by the proposer, i.e., to adopt the step
s and the trial t as its current step and current trial) and
replies (phase 1, message p1b) to the proposer with its cur-
rent tag (updated or not) and the last consensus value it has
accepted along with the tag at the time of its acceptation,
if any, or a null value otherwise. By adopting the tag (s t),
the acceptor also promises not to accept any value coming
with a tag less than (s t).

Upon receiving the replies from a majority of acceptors, the
proposer knows if it has managed to recruit all of them by

checking if the acceptors have adopted its tag. If it is not
the case, it is because some acceptor tag is not less than or
equal to the current tag of the proposer. Then the proposer
increments (lexicographically) its tag until it is greater than
every tag the proposer has received, and repeats phase one.
In case phase one is successful, the proposer also knows the
values that were lastly accepted by some majority of accep-
tors for the proposer’s current step along with the corre-
sponding tags. The proposer then adopts the value which
has the maximal tag, or keeps its own value if no values were
reported by the acceptors, before starting phase two.

The proposer sends (phase 2, message p2a) to all the accep-
tors, the successful tag with the consensus value obtained
as above and waits for replies from a majority of acceptors.
An acceptor with a tag smaller than or equal to the tag in
the message, receiving the proposed couple tag and consen-
sus value from the proposer, updates its variables (adopt-
ing the proposer’s tag, accepting the consensus value and
recording the corresponding tag), and acknowledges the pro-
poser (phase 2, message p2b). Once the proposer gets replies
from a majority of the processors, the proposer examines
the replies. In case the replies are all accepting the pro-
posed pair of tag and consensus value, the proposer sends
a decision message with the tag and the consensus value to
all the processors, otherwise, when at least one processor
replies with a bigger tag, the leader increments its tag and
restarts from phase one again.

2.1.3 Why Paxos Works ?
The integrity property is guaranteed by the fact that a de-
cided value always comes from a proposer in the system.
The difficulty lies in proving that the safety property is en-
sured. Roughly speaking, the safety correctness is yielded
by the claim that once a proposer has succeeded to com-
plete the second phase, the consensus value is not changed
afterwards for the corresponding step. Ordering of events in
a common processor that answers two proposers yields the
detailed argument. Consider λ1 being the first proposer to
finish phase two for step s, and consider the very next pro-
poser1 λ2 that also completes phase two for the same step s.
Note that the tag used by λ2, (s t2), must be greater than
the tag (s t1) used by λ1. There must be a common acceptor
α that answered λ2 in phase one of λ2 and answered λ1 in
phase two of λ1. Since t1 < t2, α has accepted the consensus
value of λ1 before replying to λ2 and in turn λ2 has received
the consensus value of λ1 along with the tag (s t1), which
leads to λ2 using the consensus value of λ1 in phase two of
λ2.

The liveness property, however, is not guaranteed. This is
obvious since the authors in [7] have proven that the Con-
sensus Problem is impossible in asynchronous systems prone
to at least one crash failure. However, a close look at the
behaviour of Paxos shows that only the liveness property
cannot be guaranteed and why it is so. Indeed, since ev-
ery proposer tries to produce a tag that is lexicographically
greater than a majority of the acceptor tags, two such pro-
posers may execute many trials for the same step without
ever succeeding to complete a phase two. For example, the

1In case where only one proposer has executed a successful
phase two, then the safety property for this step is trivial.

first proposer succeeds in phase one within step 0 with tag
(0 0), and then the second proposer succeeds in phase one
with tag (0 1). When the first proposer executes its phase
two with tag (0 0), it cannot recruit a majority of accep-
tors, and hence its phase two fails. The first proposer then
increments its tag to (0 2), executes a phase one and suc-
ceeds. Now the second proposer cannot succeed in its phase
two with the tag (0 1); it has to increment its tag to (0 3)
and executes another phase one. This execution can be it-
erated, and it shows that none of the two proposers is able
to complete a phase two, i.e., no decision is ever taken for
step 0. Intuitively though, it is clear that if there is a single
proposer in the system during a long enough period of time,
then the processors decide in every step, up to the last step
the proposer is involved in.

2.2 Practical Self-Stabilization
2.2.1 Bounded Integers and Self-Stabilization

As we pointed out in the previous section, the Paxos algo-
rithm uses unbounded integers to tag data. In practice, how-
ever, every integer handled by the processors is bounded by
some constant 2b where b is the integer memory size. Yet,
if every integer variable is initialized to a very low value,
the time needed for any such variable to reach the maxi-
mum value 2b is actually way larger than any reasonable
system’s timescale. For instance, counting from 0 to 264 by
incrementing every nanosecond takes roughly 500 years to
complete. Such a long sequence is said to be practically in-
finite. Hence, assuming that the integers are theoretically
unbounded is reasonable only when it is ensured, in prac-
tice, that every step and trial variables are initially set to
low values.

In the context of self-stabilization, however, a transient fault
may produce fake decision messages in the communication
channels, or make an acceptor accepting a consensus value
that was not proposed. Such transient faults only break the
Repeated Consensus conditions punctually and nothing can
be done except waiting. However, a transient fault may also
corrupt the Paxos step and trial variables in the processors
memory or in the communication channels, and set them to
a value close to the maximum value 2b. This leads to an
infinite suffix of execution in which the Repeated Consen-
sus conditions are never jointly satisfied. This issue is much
worrying than punctual breakings of the Repeated Consen-
sus specifications.

Intuitively though, if one can manage to get every integer
variable (step and trials) to be reset to low values at some
point in time, then there is consequently a finite execution
(ending with step or trial variables reaching the maximum
value 2b) during which the system behaves like an initialized
original Paxos execution that satisfies the Repeated Consen-
sus Problem conditions2. Since we use bounded integers, we
cannot prove the execution to be infinite, but we can prove
that this execution is as long as counting from 0 to 2b, which
is, in practice, as long as the length of execution assumed in
the original Paxos prior to exhausting the counters. This is
what we call practical self-stabilization.

2Modulo the unavoidable punctual breakings due to, e.g.,
fake decision messages.

2.2.2 What our Algorithm does
Clearly, most of the Paxos properties relies on a clever man-
agement of the tags (s t) at each processor. Since there
might be tags with step and trial values near the maximum
2b, there must be a mechanism to reset these fields to zero.
In the sequel (Section 3), we define a new kind of tag that en-
capsulates the Paxos tag. We can associate such a tag with a
specific step and trial value, and two tags can be compared.
Our algorithm is an adaptation of the Paxos algorithm that
uses this new tag structure.

As in the original Paxos algorithm, there are two functions,
νs and νt, to increment a tag. First, we can increment
the step, b ← νs(b), which can be translated in the orig-
inal Paxos as the operation (s t) ← (s + 1 0) of moving
to the next consensus instance. Or we can increment the
trial, b ← νt(b), which can be translated as the operation
(s t) ← (s t + 1) of moving to the next trial within the
same consensus instance. These increment functions1 im-
plement a kind of reset mechanism that is triggered only
when necessary. At each processor, the current tag under-
goes a sequence of modifications (increments, or adoption of
a tag from another processor, . . .). If one associates with
this sequence of tags (bi)i∈N, the corresponding sequence of
original Paxos tags (si ti)i∈N, then there will be, more or
less occasionally, several time instants at which the Paxos
tags (si ti) do not behave as in Paxos, e.g., a reset of the
variable, jumps, and alike. Between two such interrupts, the
projected sequence of Paxos tags (si ti) behaves exactly as
in Paxos.

The first main theorem (Section 6, Theorem 1) states that
there exists a processor λ that eventually performs a finite
execution σ within which the sequence of λ’s tags corre-
sponds to a sequence of Paxos tags that begins with low
step and trial values, and ends with the step or the trial
reaching the maximum value 2b. In other words, σ is a
practically infinite execution within which everything seems
like in the original Paxos, at least from the point of view of λ.
The second main theorem (Section 6, Theorem 3) makes the
link between the local execution σ occuring at the processor
λ and the safety property on the global system. Roughly
saying, it states that, within a practically infinite period of
time, if two processors decide on values p1 and p2, with tags
b1 and b2 respectively, such that b1 and b2 points to the
same step s, then either p1 = p2 or one of the decision event
happens after a practically infinite period of time.

3. TAG SYSTEM
This section is divided into two parts. In the first part, we
informally describe the actual tag system we will be using
in the algorithm. However, for didactic reasons, we first
describe a simpler tag system that works when there is a
single proposer, before adapting it to the case of multiple
proposers. The second part formally defines the notions of
bounded integer, label and tag.

3.1 Motivation
3.1.1 Single Proposer

We start by looking at Paxos tags (s t) where the step s and
trial t variables are integers bounded by a large constant

1Along with other mechanisms (see Section 3).

2b. Assume, for now, that there is a single proposer in the
system, and let’s focus on its tag. The goal of this proposer
is to succeed in imposing a consensus value for every step
ranging from 0 to 2b, or at least from a low step value to a
very high step value. The proposer can do a step increment,
(s t)← (s+ 1 0), or a trial increment within the same step,
(s t) ← (s t + 1). To impose some value in step s, it must
reach a trial t such that the tag (s t) is lexicographically
greater than every other processor tags in a majority of ac-
ceptors. Note that if the proposer reaches a step s such that
every other processor are in a step lower than s, then the
proposer will succeed in the trials (s 0), (s+ 1 0), . . . , (2b 0).
If every processor have tags with low step and trial values,
then the proposer soon manages to produce a sequence of
tags like σ = (s 0), (s + 1 0), . . . , (2b 0) starting with a low
step value, i.e., a practically infinite sequence of steps.

With an arbitrary initial configuration, some processors may
have tags with step or trial value set to the maximum 2b,
thus the proposer will not be able to produce a greater tag,
thus it cannot reach a sequence like σ. To deal with this
issue, we introduce a third field, namely the label field, such
that a tag is now defined by a triple (l s t) where s and
t are the step and trial fields, and l a label, which is not
an integer but whose type is voluntarily not explicited here.
We simply assume that it is possible to increment a label,
and that two labels are comparable. The proposer has now
three possibilities to increment its tag. It can first do a
step increment, (l s t) ← (l s + 1 0) or a trial increment,
(l s t)← (l s t+ 1); in both cases the label is constant. The
proposer can also increment its label and resets its step and
trial fields to zero, (l s t) ← (l′ 0 0) with l′ greater than
l. Incrementing the label can be thought as resetting the
step and trial variable to zero. Now imagine that initially
the label that the proposer uses is greater than every other
label in the acceptor tags, and that the proposer step and
trial values are equal to zero. Then, the proposer manages to
succeed in a practically infinite number of steps that mimicks
the behaviour of the original Paxos tags.

Therefore, for the proposer to reach a long sequence that
mimicks the original Paxos, it is only needed to ensure that
the proposer is always able to produce a label that is greater
than any label in some finite set of labels, namely the labels
of the acceptors. Whenever the proposer notices an acceptor
label which is not less than or equal to the proposer current
label (such an acceptor label is said to cancel the proposer
label), it records it in a history of labels. The history is only
required to be large enough to contain every label in the sys-
tem. When the proposer increments its label, it produces a
label that is greater than every label in its history. Doing so,
the proposer eventually manages to produce a label greater
than every other label in the system, and starts an execu-
tion with initially low step and trial values that mimicks the
behaviour of Paxos tag.

The label type cannot be an integer, otherwise we would
postpone the problem of handling two bounded integers to
the problem of handling three bounded integers. Actually,
according to the previous remarks, it is sufficient to have
some finite set of labels along with a comparison operator
and a function that takes any finite (bounded by some con-
stant) subset of labels and produces a label that is greater

than every label in this subset. Such a device is called a
finite labeling scheme. An implementation of such a finite
labeling scheme was suggested in [1], and is formally pre-
sented in Appendix A.1. Roughly saying, a label is a fixed
length vector of integers from a bounded domain in which
the first integer is called sting and the others are called an-
tistings. A label l1 is greater than a label l2, noted l1 ≺ l2,
if the sting of l1 does not appear in the antistings of l2 but
not vice versa. Given a finite set of labels l1,. . . ,lr, we can
build a greater label l by choosing a sting not present in
the antistings of the li, and choosing the stings of the li as
antistings in l.

3.1.2 Multiple Proposers
In the case of multiple proposers, the situation is a bit more
complicated. Indeed, in the previous case, the single pro-
poser is the only processor to produce labels, and thus it
manages to produce a label greater than every acceptor la-
bel once it has collected enough information in its label his-
tory. If multiple proposers were also producing labels, none
of them would be ensured to produce a label that every other
proposer will use. Indeed, the first proposer can produce a
label l1, and then a second proposer produces a label l2 such
that l1 ≺ l2. The first proposer then sees that the label l2
cancels its label and it produces a label l3 such that l2 ≺ l3,
and so on.

To avoid such interferences between the proposers, we as-
sume that the set of proposer identifiers is totally ordered
and we define a tag to be a vector, say a, whose entries
are indexed by the proposer identifiers. Each entry a[µ] of
the tag a contains a tuple (l s t id cl) where l is a label, s
and t are step and trial bounded integers, id is the identifier
of the proposer that owns the tag, and cl is either a label
that cancels l or the null value1 denoted by ⊥. The iden-
tifier of the proposer that owns the tag is included, so that
two proposers never share the same content in any entry of
their respective tags. The canceling field tells the proposer
whether the corresponding label has been canceled by some
label. The role of cancellation is explained below.

Therefore, a proposer, say λ, has the possibility to use one
of the entries of its tag, say a, to specify the step and trial
it is involved in. However, the entry used must be valid,
i.e., the entry must contain a null canceling field value along
with step and trial values strictly less than the maximum
value 2b. The entry actually used by the proposer is de-
termined by the lowest proposer identifier µ such that the
entry corresponding to µ is valid. The entry a[µ] is referred
to as the first valid entry in the tag. If the first valid entry
is located at the left of the entry indexed by the proposer
identifier, i.e., the identifier µ is less than the proposer iden-
tifier λ, then the proposer can increment the step and trial
values stored in the entry a[µ], but it cannot increment the
label in the entry a[µ]. The proposer can only increment
the label, and thus reset the corresponding step and trial
variables, stored in the entry indexed by its own identifier.
In addition, whenever the entry indexed by the proposer
identifier λ becomes invalid, the proposer λ produces a new
label in the entry a[λ] and resets the integer variables to zero
and the canceling field to the null value ⊥; this makes a[λ]

1Which means that the label l is not canceled.

a valid entry in the proposer tag. The important point is
that, from a global point of view, the proposer identified by
λ is the only proposer to introduce new labels in the entries
indexed by λ in tags of the system. Besides, this also shows
that any proposer λ has to record in its label history only
the canceling labels that are stored in the entry λ of tags.

A comparison relation is defined on tags so that every pro-
cessor (proposer or acceptor) always try to use the valid
entry with the lowest identifier. A tag b1 is less than b2
when either the first valid entry of b1 is located at the right
of the first valid entry of b2, or both first valid entries are in-
dexed by the same identifier µ and the tuple b1[µ].(l s t id)
is lexicographically less than the tuple b2[µ].(l s t id). If
there is no valid entry in both tags, or if the labels are not
comparable, then the tags are not comparable.

3.2 Formal Definitions
Definition 1 (Bounded Integer) Given a positive inte-
ger b, a b-bounded integer, or simply a bounded integer, is
any non-negative integer less than or equal to 2b.

Definition 2 (Finite Labeling Scheme) A finite label-
ing scheme is a 4-tuple L = (L,≺, d, ν) where L is a fi-
nite set whose elements are called labels, ≺ is a partial re-
lation on L that is irreflexive (l 6≺ l) and antisymmetric
(6 ∃(l, l′) l ≺ l′ ∧ l′ ≺ l), d is an integer, namely the dimen-
sion of the labeling scheme, and ν is the label increment
function, i.e., a function that maps any finite set of at most
d labels to a label such that for every subset A in L of at
most d labels, for every label l in A, we have l ≺ ν(A). We
denote the reflexive closure of ≺ by 4.

Remark 1. The definition of a finite labeling scheme im-
poses that the relation ≺ is not transitive. Hence, it is not
an order relation.

Definition 3 (Canceling Label) Given a label l, a can-
celing label for l is a label cl such that cl 64 l.

Definition 4 (Tag System) A tag system is given by a 4-
tuple (b,Π, ω,L) where b is positive integer, Π is the totally
ordered finite set of processor identifiers, ω is a special sym-
bol such that ω 6∈ Π and L is a finite labeling scheme. In
addition the order on Π is extended as follows : for every
µ ∈ Π, µ < ω.

Definition 5 (Tag) Given a tag system (b,Π, ω,L), a tag
is a vector a[µ] = (l s t id cl) where µ and id are identifiers,
l is a label, cl is either the null value noted ⊥ or a canceling
label for l, and s and t are b-bounded integers respectively
called the step and trial fields. The entry indexed by µ in
the tag a, or simply the entry µ in a, refers to the entry
a[µ]. The entry µ is said to be valid when the corresponding
canceling field is null, a[µ].cl = ⊥, and both the correspond-
ing step and trial values are strictly less than the maximum
value, i.e., a[µ].s < 2b and a[µ].t < 2b.

Definition 6 (First Valid Entry) Given a tag a, the first
valid entry in the tag is defined by

χ(a) = min ({µ ∈ Π | a[µ] is valid} ∪ {ω})

Figure 1: Comparison of tags

Definition 7 (Comparison of Tags) Given two tags a and
a′, we note a ≺ a′ when either χ(a) > χ(a′) or χ(a) =
χ(a′) = µ < ω and1 a[µ].(l s t id) < a′[µ].(l s t id). We
note a ' a′ when χ(a) = χ(a′) and a[χ(a)] = a′[χ(a)]. We
note a 4 a′ when either a ≺ a′ or a ' a′.

4. SYSTEM SETTINGS
All the basic notions we use (state, configuration, execu-
tion, asynchrony, . . .) can be found in, e.g., [3, 10]. Here,
the model we work with is given by a system of n asyn-
chronous processors in a complete communication network.
Each communication channel between two processors is a
bidirectional asynchronous communication channel of finite
capacity C [4].

Every processor has an identifier. The set of identifiers is
totally ordered. If α and β are two processor identifiers, the
couple (α, β) denotes the communication channel between α
and β. A configuration is the vector of states of every pro-
cessor and communication channel. If γ is a configuration
of the system, we note γ(α) (resp. γ(α, β)) for the state of
the processor α (resp. the communication channel (α, β)) in
the configuration γ. We informally2 define an event as the
sending or reception of a message at a processor or as a lo-
cal state transition at a processor. Given a configuration, an
event induces a transition to a new configuration. An execu-
tion is denoted by a sequence of configurations (γk)0≤k<T ,
T ∈ N ∪ {+∞} related by such transitions3.

Consider an execution E = (γk)0≤k<T . A subexecution F
in E is the empty sequence or a segment F = (γk)k0≤k<k1
(0 ≤ k0 ≤ k1 ≤ T) of consecutive configurations in E. The
local execution at processor λ is the projected sequence E(λ)
of states of λ, i.e. E(λ) = (γk(λ))0≤k<T . A local subexecu-
tion at λ in E is the empty sequence or the projected se-
quence of states F (λ) = (γk(λ))k0≤k<k1 (0 ≤ k0 ≤ k1 ≤ T)
from a subexecution F of E. A subexecution (resp. local
subexecution) σ1 is included in a subexecution (resp. local
subexecution) σ2 if it is a segment of consecutive configura-
tions (resp. states) in σ2.

We use the“happened-before”strict partial order introduced
by Lamport [8]. Informally, if e and f are two events that
occur on the same processor, then e ; f if and only if e
occurs before f . If e is the sending of a message and f
the reception of that message (not necessarily occuring on
the same processor), then e ; f . The full relation ; is the
transitive closure of these basic cases. A formal presentation

1Lexicographical comparison using the corresponding rela-
tion on labels, integers and processor identifiers.
2For a formal definition, refer to, e.g., [3, 10].
3For sake of simplicity, the events and the transitions are
omitted.

is presented in [8]. In our case, when e ; f , we say that e
happens before f , or f happens after4 e.

The initial configuration of every execution is arbitrary and
at most f processors are prone to crash failures. A quorum is
any set of at least n− f processors. For any execution E, we
note Live(E) the set of processors that do not crash during
E, and we note Crashed(E) the complement of Live(E).
We make the following resilience assumption.

Assumption 1 (Resilience) The maximum number of crash
failures f satisfies n ≥ 2 · f + 1. Thus, there always exists
a responding majority quorum and any two quorums have a
non-empty intersection.

In addition, every processor has access to a read-only boolean
variable Θα, e.g., from an unreliable failure-detector (Sec-
tion 7) that satisfies the following condition.

Assumption 2 (Module Θ) For every infinite execution
E∞ = (γk)k∈N, there is a non-empty set P(E∞), namely the
proposers in E∞, of processors in Live(E∞), such that

∀λ ∈ P(E∞), ∀k ∈ N, Θk
λ = true (1)

∀λ ∈ Live(E∞) s.t. λ 6∈ P(E∞)

∃k0, ∀k ≥ k0, Θk
λ = false

(2)

where Θk
α denotes the value of the read-only variable Θα in

the configuration γk.

5. THE ALGORITHM
In this section, we describe the self-stabilizing Paxos al-
gorithm. We first present the variables before giving an
overview of the algorithm. The last section describes the
details of the algorithm. The pseudo-code of the algorithms
is given in Appendix A.3. In the sequel, we refer to the
following datastructure.

Definition 8 (Fifo History) A fifo history H of size d on
a set V , is a vector of size d of elements of V along with an
operator + defined as follows. Let H = (v1, . . . , vd) and v
an element in V . If v does not appear in H, then H + v =
(v, v1, . . . , vd−1), otherwise H + v = H.

We define the tag storage limit K and the canceling label

storage limit Kcl by K = n+Cn(n−1)
2

and Kcl = (n+ 1)K.
We consider a tag system (b,Π, ω,L,≺, d, ν) such that Π
is the set of processor identifiers and the labeling scheme
dimension is equal to (K + 1)Kcl.

5.1 Variables
The state of a processor α is defined by the following vari-
ables : the processor tag aα, the processor proposal pα (a
consensus value), the canceling label history Hcl

α (fifo label
history of size M = (K+1)Kcl), the accepted proposal record
rα and the label history Hα described as follows. The ac-
cepted proposal record rα is a vector indexed by the proces-
sor identifiers. For each identifier µ, the field rα[µ] contains
either the null value ⊥ or a couple composed of a tag and

4Note that the sentences “f happens after e” and “e does
not happen before f” are not equivalent.

consensus value. The variable Hα is a vector indexed by the
processor identifiers. For each identifier µ, the field Hα[µ] is
a fifo label history of size K.

5.2 Tag Procedures
Algorithm 1 defines a procedure clean that cleans the can-
celing fields of a given tag as follows. The procedure takes
as input a processor identifier λ and a tag a. After the com-
pletion of the procedure, for every entry µ in the tag a, if the
canceling field a[µ].cl is not null, then its value is a cancel-
ing label for the label in a[µ].l. In addition, every identifier
value in a[µ].id is equal to λ. The second procedure fill_cl

updates the canceling fields of two given tags x and y as fol-
lows. After the completion of the procedure, for any µ ∈ Π,
if the label x[µ].l or x[µ].cl (not equal to ⊥) cancels y[µ].l,
then y[µ].cl is not null. And if x[µ].l = y[µ].l with one of the
integer fields in x[µ] being equal to the maximum value 2b,
then both step and trial fields y[µ].cl are equal to 2b. The
previous remarks also hold when exchanging x and y.

Algorithm 2 defines the function check_entry whose argu-
ments are a processor identifier λ, a tag x, and an history
of labels L. This function checks whether the entry x[λ] is
valid or not. If this entry is invalid, it stores the label value
x[λ].l in the history L, produces1 a new label in x[λ] with the
labels in the history L and resets the step and trial fields to
zero. Algorithm 2 also defines the step increment function,
νs, and the trial increment function, νt. Both functions
arguments are a processor identifier λ, a tag x, and a fifo
history of labels L, and they both return a tag (the incre-
mented tag). First, a copy y of the tag x is created. Then
the tag y is cleaned with the procedure clean. The step in-
crement function then increments the step in the first valid
entry of y and resets the corresponding trial field to zero.
The trial increment function only increments the trial field
in the first valid entry of y. Then, in both functions, it is
checked whether the entry y[λ] is valid or not, and updated
accordingly thanks to the function check_entry. Both func-
tions return the tag y.

5.3 Algorithm Overview
Each processor can play two roles, namely, the acceptor role
and the proposer role. A processor α plays both2 the accep-
tor role and the proposer role as long as Θα is equal to true.
When Θα is equal to false, the processor α only plays the
acceptor role.

The current step and trial of a processor are determined
by the step and trial values in the first valid entry of its
tag. A proposer tries to impose some proposal for its cur-
rent step. To do so, it executes the following two phases
(cf. Algorithm 4).

(Phase 1). The proposer, say λ, reads a new proposal
and tries to recruit a quorum of acceptors by broadcasting
a message (phase 1, message p1a) with its tag aλ (Algo-
rithm 4, line 7). It waits for the replies from a majority of
acceptors. When an acceptor α receives this p1a message, it
either adopts the proposer tag if the proposer tag is greater

1With the label increment function from the finite labeling
scheme (cf. Definition 2).
2One can think of having two threads on the same processor.

than its own tag aα, or leaves its tag unchanged otherwise.
The acceptor replies (phase 1, message p1b) to the proposer
with its tag (updated or not) and the proposal, either null
or a couple (tag, consensus value), stored in its accepted
proposal variable rα[χ(aα)].

Upon receiving the acceptor replies, the proposer λ knows
if it has managed to recruit a majority of acceptors. In
that case, the proposer λ can move to the second phase.
Otherwise, λ has received at least one acceptor reply whose
tag is not less than or equal to the proposer tag of λ. At each
reception of such an acceptor tag, the proposer λ modifies
its tag in order for the proposer tag to be greater than the
acceptor tag received. When messages are received from
at least half of the processors, the proposer begins another
phase one with its updated tag.

(Phase 2). When the proposer λ reaches this point, it has
managed to recruit a quorum of acceptors and it knows all
the latest proposals that they accepted for the entry χ(aλ).
Assume for instance that the proposer tag points to step s,
i.e., the step value in the first valid entry µ of the proposer
tag is equal to s. Then (Algorithm 4, line 11 to line 23)
the proposer λ first checks that the tags associated with the
received proposals all share the same first valid entry and
the same corresponding label as the tag of λ. If it is not the
case, then λ moves to the next step, i.e., it uses the step in-
crement function to update its tag aλ and goes to phase one.
Otherwise, it looks for non-null proposals for step s and if
there are some, it copies the proposal with the maximum tag
(among those that point to step s) in its proposal variable. If
there are more than two different proposals associated with
this maximum tag, then λ increments its proposer tag with
the step increment function and starts a new phase one. In
any other case, it keeps its original proposal.

Next, the proposer λ sends to all the acceptors a message
(phase 2, message p2a) containing its tag along with the
proposal it has computed (Algorithm 4, line 26) and waits
for the replies of a majority of acceptors. When an acceptor
α receives this p2a message, if the proposer tag is greater
than or equal to its own tag, then the acceptor adopts the
proposer tag and stores the proposal in the variable rα. Oth-
erwise, the acceptor leaves its tag and the accepted proposals
record unchanged. Next, it replies (phase two, message p2b)
to the proposer with its tag (updated or not).

After having received the replies from a majority of accep-
tors, the proposer λ knows if a majority have accepted its
proposal. In that case, it broadcasts a decision message con-
taining its proposer tag and the successful consensus value
(Algorithm 4, line 28). At the reception of this message,
any acceptor with a tag less than or equal to the proposer
tag decides on the given proposal. The proposer λ can then
move to the next step. Otherwise, the proposer λ has re-
ceived tags that are not less than or equal to the proposer
tag, and thus λ updates its proposer tag accordingly, and
starts another phase one.

Remark 2. By“α adopts the tag b”, we mean that α copies
the content of the first valid entry in b to the same entry in

α’s acceptor tag1, i.e., aα[χ(b)] ← b[χ(b)]. Furthermore,
every time a processor α modifies its tag, it also does the
following. If the label l, in some entry µ of the tag, is re-
placed by a new label, then the label l is stored in the label
history Hα[µ] that corresponds to the identifier µ and a label
that cancels the new label is looked for in the label history
Hα[µ], updating the corresponding canceling field accord-
ingly. If the label in the entry α, i.e., the only entry in
which the proposer α can create a label, gets canceled, then
the associated canceling label is stored in the canceling label
history Hcl

α . Any new label produced in the entry α of the
tag at processor α is also stored in Hcl

α . In addition, for ev-
ery µ, the accepted proposal rα[µ] is cleared, i.e., rα[µ]← ⊥,
whenever there is a label change in the entry aα[µ]. A non-
null field rα[µ] = (b, p) is also cleared whenever the label in
the entry b[µ] is different than the label in the entry aα[µ],
or the labels are equal but the entry b[µ] is lexicographically
greater than the entry aα[µ]. Finally, any processor α al-
ways checks that the entry α of its tag is valid, and updates
it accordingly with the function check_entry.

Remark 3. Note that the relation ≺ on labels is not an or-
der (neither a partial order), since it is not transitive. This
implies the existence of cycle of labels like, e.g., l1 ≺ l2 ≺
l3 ≺ l1. Indeed, the purpose of the label history Hα[µ] is to
avoid such cycling on labels in the entry µ. The mechanism
ensures that, in any entry µ of the tag, the label field can-
not undergo a cycle of labels whose length is less than the
tag storage limit of the system. However, longer cycles are
possible but this implies that the processor µ has produced
new labels. This is due to the fact that no processor α ever
adopts in any entry µ of one of its tag, a label that comes
from the label history Hα[µ]. The label history Hα[µ] only
serves as a source of canceling labels for the entry µ.

5.4 Algorithm Details.
We focus on the reception of a proposer message by an ac-
ceptor (Algorithm 3). Say an acceptor α receives a message
〈p1a, λ, b〉 from proposer λ. The acceptor α first records in
the canceling label history Hcl

α any label in the entry b[α]
that cancels the label aα[α].l in the acceptor tag (line 4).
Using the procedure fill_cl presented in Algorithm 1, the
acceptor α updates the canceling fields of both tags aα and
b. Then, it checks the validity of the entry aα[α] with the
procedure check_entry and updates it accordingly (line 5).
If the updated tags satisfy aα ≺ b, then α adopts the tag
b, i.e., it copies the content of the first valid entry b[χ(b)] to
the entry aα[χ(b)] in a (line 7). If there has been a change
of label in the entry aα[χ(b)], then the accepted proposal
variable rα[χ(b)] is cleared, the old label is stored in the
history Hα[χ(b)], and α looks in this history for labels that
cancel the new label aα[χ(b)].l, updating the correspond-
ing canceling field accordingly (lines 9 to 11). Next, the
acceptor checks for every identifier µ if either the tag b in
the accepted proposal rα[µ] uses a label different than the
label in the entry aα[µ], or if the tuple aα[µ].(l s t id) is
less than the tuple b[µ].(l s t id); in such a case, the entry
rα[µ] is cleared. In any case, whether it adopts the tag b or
not, the acceptor α replies to the proposer λ with a message

1Note that only the entry aα[χ(b)] is modified. In fact, we
have aα ' b and not aα = b.

〈p1b, α, aα, rα[χ(aα)]〉 where aα is its updated (or not) ac-
ceptor tag and rα[χ(aα)] is the lastly accepted proposal for
the entry χ(aα) (line 18).

When an acceptor α receives a p2a message or a decision
message containing a proposal (b, p), the procedure is sim-
ilar. It first updates the canceling label history Hcl

α , the
canceling fields of aα and b, and checks the validity of the
entry aα[α] (lines 21 and 22). The difference with the previ-
ous case is that the condition to accept the proposal (b, p) is
aα 4 b. In this case, the acceptor α adopts the tag b, updat-
ing the canceling field and the label history as in the case of a
p1a message, stores the couple (b, p) in its accepted proposal
variable rα[χ(b)] and, in case of a decision message, decides
on the couple (b, p) (lines 24 and 25). In addition, if there
has been a change of label in the entry aα[χ(b)], then2 the
old label is stored in the history Hα[χ(b)], and α looks in this
history for labels that cancel the new label aα[χ(b)].l, up-
dating the corresponding canceling field accordingly (lines 27
and 28). We say that the acceptor α has accepted the pro-
posal (b, p). Next, the acceptor checks for every identifier µ
if either the tag b in the accepted proposal rα[µ] uses a label
different than the label in the entry aα[µ], or if the tuple
aα[µ].(l s t id) is less than the tuple b[µ].(l s t id); in such
a case, the entry rα[µ] is cleared. In case of a p2a message,
whether it accepts the proposal or not, the acceptor α replies
to the proposer λ with a message 〈p2b, α, aα〉 containing its
updated (or not) acceptor tag (line 35). In case of a decision
message, the acceptor does not reply.

At the end of any phase, a proposer executes a procedure
named the preempting routine (Algorithm 5) that mainly
consists in waiting for the replies from a majority of accep-
tors and suitably incrementing the proposer tag. The phase
is considered successful if the routine returns ok and failed
otherwise. In this routine, the processor λ waits for n − f
replies from the acceptors. Note that, although the pseudo-
code suggests λ receives only acceptor replies (Algorithm 5,
line 5), the processor λ, as an acceptor, also processes mes-
sages (p1a or p2a) from other proposers. The variable asent
stores the value of aλ that λ has sent at the beginning of the
phase. The variable b is an auxiliary variable that helps fil-
tering messages and is reset to asent at the beginning of each
new loop (line 4). For each message with tag aα and pro-
posal rα received from a processor α, the procedure updates
the canceling fields of both b and aα (line 6).

If the current phase is a phase one, then a reply is considered
positive when the acceptor α has adopted the tag λ sent, i.e.,
when3 aα ' b. If the current phase is a phase two, the reply
is considered positive when the acceptor α has adopted the
tag λ has sent and has accepted the corresponding proposal,
i.e, aα ' b and pλ = rα[χ(b)].p. The condition C+ (line 7)
summarizes these two cases. A reply is considered negative
when the received acceptor tag is not less than or equal to
the tag the proposer λ has sent, i.e., a an acceptor tag aα
such that aα 64 b (condition C−, line 8). The procedure dis-
cards any acceptor reply that does not satisfy the conditions
C+ nor C−. The variable M counts the number of positive
replies. The routine returns ok if all the replies are positive,

2In this case, the variable rα[χ(b)] is not cleared.
3Recall that aα ' b means χ(aα) = χ(b) and aα[χ(b)] =
b[χ(b)]

i.e., M = n− f , and nok otherwise (lines 36 and 37).

At each negative reply received, the routine updates the vari-
able aλ so that it is always greater than the tag received.
Precisely, it updates the canceling label historyHcl

λ (line 13),
the canceling fields of aα and aλ (line 14) and checks the va-
lidity of the entry aλ[λ] (line 15). Recall that this implies
χ(aλ) ≤ λ. Then, the routine checks if aα is less than or
equal to aλ. If it is so, then the routine does not mod-
ify aλ. Otherwise (lines 16 to 30), it checks if aα has its
first valid entry located at the left of aλ’s first valid en-
try, i.e., χ(aα) < χ(aλ). In that case, the content of the
entry aα[χ(aα)] is copied1 to the entry aλ[χ(aα)] and the
trial value is incremented. In addition, the previous label in
aλ[χ(α)].l is stored in the label historyHλ[χ(α)] and possible
canceling labels for the new label in aλ[χ(α)].l are searched
for in Hλ[χ(α)] (lines 19 to 22). If the first valid entry χ(aα)
in aα is not located at the left of aλ’s first valid entry, then
necessarily χ(aα) = χ(aλ) = µ, since aα 64 aλ. In that case,
the routine compares the content of the entries indexed by
µ in aα and aλ (lines 24 to 30). Note that, since the routine
has updated the canceling fields, the corresponding labels
are equal2. If both entries aα[µ] and aλ[µ] share the same
step value, then aλ is updated with the time increment func-
tion νt (line 27). Otherwise, the step increment function is
used (line 30).

6. PROOFS
6.1 Basics
Lemma 1 Any phase of the proposer algorithm eventually
ends.

Proof. Let φ be a phase executed by some proposer λ.
At the beginning of φ, the proposer λ has broadcast a mes-
sage with its proposer tag aλ, along with a consensus value p
in case of a p2a message. Assumption 1 (Section 4) ensures
that at least n− f acceptors eventually reply. The only rea-
son why φ would be endless is λ discarding real replies from
these acceptors in the preempting routine. For each such ac-
ceptor α, when it receives the message sent by λ, it first up-
dates the canceling fields in aα and aλ. Let a, b respectively
be the updated versions of aα, aλ, and µ = χ(a). According
to the acceptor Algorithm 3, if the acceptor α adopts the tag
b then we have a ' b, and in case of a p2a message, it also ac-
cepts the consensus value, i.e., rα[χ(a)] = (b, p); otherwise,
we must have a 64 b. These two cases correspond exactly
to the conditions C+ and C− in the Algorithm 5. In other
words, real replies are not discarded by λ, and since there
are at least n− f such replies, phase φ eventually ends.

Given any configuration γ of the system and any processor
idenditifer µ, let S(γ) and Scl(µ, γ) be two sets as follows.
The set S(γ) is the set of every tag present either in a proces-
sor memory or in some message in a communication channel,
in the configuration γ. The set Scl(µ, γ) denotes the collec-
tion of labels l such that either l is the value of the label

1Note that since the canceling fields have been updated with
the procedure fill_cl, necessarily the labels aα[χ(α)].l and
aλ[χ(α)].l are different.
2Otherwise, one would cancel the other and contradict the
definition of the first valid counter.

field x[µ].l for some tag x in S(γ), or l appears in the label
history Hα[µ] of some processor α, in the configuration γ.

Lemma 2 (Storage Limits) For every configuration γ and
every identifier µ, we have |S(γ)| ≤ K and |Scl(µ, γ)| ≤ Kcl.
In particular, the number of label values x[µ].l with x in S(γ)
is less than or equal to K.

Proof. Consider a configuration γ. For each processor
α, there is one tag value (tag aα) in the processor state γ(α)
of α. For each communication channel (α, β), there are at
most C different messages in the channel state γ(α, β); all
these messages have one tag each. Hence, the maximum
number of tags present in the configuration γ is n plus C
times the number of communication channels. The network
being complete, the number of communication channels is

Cn(n−1)
2

, thus we have K ≥ |S(γ)|. For every α, the max-
imum size of the history Hα[µ] is K. Hence, the size of
Scl(µ, γ) is bounded above by K (labels x[µ].l for x in S(γ))
plus K times the number of processors (labels from Hα[µ]
for every processor α), i.e., (n + 1) ·K = Kcl.

6.2 Tag Stabilization - Definitions
Definition 9 (Interrupt) Let λ be any processor and con-
sider a local subexecution σ = (γk(λ))k0≤k≤k1 at λ. We note
akλ for the value of λ’s tag in γk(λ). We say that an inter-
rupt has occurred at position k in the local subsexecution σ
when one of the following happens

• µ < λ, type [µ,←] : the first valid entry moves to µ
such that µ = χ(ak+1

λ) < χ(akλ), or the first valid entry

does not change but the label does, i.e., µ = χ(ak+1
λ) =

χ(akλ) and akλ[µ].l 6= ak+1
λ [µ].l.

• µ < λ, type [µ,→] : the first valid entry moves to µ
such that µ = χ(ak+1

λ) > χ(akλ).

• type [λ,max] : the first valid entry is the same but
there is a change of label in the entry λ due to the
step or trial value having reached the maximum value
2b; we then have χ(ak+1

λ) = χ(akλ) = λ and akλ[λ].l 6=
ak+1
λ [λ].l.

• [λ, cl] : the first valid entry is the same but there is a
change of label in the entry λ due to the canceling of the
corresponding label; we then have χ(ak+1

λ) = χ(akλ) =

λ and akλ[λ].l 6= ak+1
λ [λ].l.

For each type [µ, ∗] (µ ≤ λ) of interrupt, we note |[µ, ∗]| the
total number (possibly infinite) of interrupts of type [µ, ∗]
that occur during the local subexecution σ.

Remark 4. If there is an interrupt like [µ,←], µ < λ, oc-
curs at position k, then necessarily there is a change of label
in the field aλ[µ].l. In addition, the new label l′ is greater
than the previous label l, i.e., l ≺ l′. Also note that, if
χ(akλ) = λ, the proposer λ never copies the content of the
entry λ of a received tag, say a, to the entry λ of its proposer
tag, even if akλ[λ].l ≺ a[λ].l. New labels in the entry λ are
only produced with the label increment function applied to
the union of the current label and the canceling label history
Hcl
λ .

Definition 10 (Epoch) Let λ be a processor. An epoch σ
at λ is a maximal (for the inclusion of local subexecutions)
local subexecution at λ such that no interrupts occur at any
position in σ except for the last position. By the defini-
tion of an interrupt, every tag values within a given epoch
σ at λ have the same first valid entry, say µ, and the same
corresponding label, i.e., for any two processor states that
appear in σ, the corresponding tag values a and a′ satisfies
χ(a) = χ(a′) = µ and b[µ].l = b′[µ].l. We note µσ and lσ
for the first valid entry and associated label common to all
the tag values in σ.

Definition 11 (h-Safe Epoch) Consider an execution E
and a processor λ. Let Σ be a subexecution in E such that
the local subexecution σ = Σ(λ) is an epoch at λ. Let γ∗ be
the configuration of the system right before the subexecution
Σ, and h be a bounded integer. The epoch σ is said to be
h-safe when the interrupt at the end of σ is due to one of the
integer fields in aλ[µσ] having reached the maximum value
2b. In addition, for every processor α (resp. communication
channel (α, β)), for every tag x in γ∗(α) (resp. γ∗(α, β)),
if x[µσ].l = lσ then the step and trial values in x[µσ].l have
values less than or equal to h.

Remark 5. If there is an epoch σ at processor λ such that
µσ = λ and λ has produced the label lσ, then necessarily, at
the beginning of σ, the step and trial value in bλ[λ] are equal
to zero. However, other processors may already be using the
label lσ with arbitrary corresponding step and trial values.
The definition of a h-safe epoch ensures that the epoch is
truly as long as counting from h to 2b.

6.3 Tag Stabilization - Results
Lemma 3 Let λ be any processor. Then the first valid entry
of its proposer tag is eventually always located at the left of
the entry indexed by λ, i.e., χ(aλ) ≤ λ.

Proof. This comes from the fact that whenever the en-
try aλ[λ] is invalid, the processor λ produces a new label in
aλ[λ] and resets the step, trial and canceling field (cf. pro-
cedure check_entry, Algorithm 2). Once χ(aλ) ≤ λ, every
consequent tag values is obtained either with the step or trial
increment functions (νs or νt), or by copying the content of
a valid entry µ < λ of some tag to the entry aα[µ]. Hence
the first valid entry remains located before the entry λ.

Remark 6. Thanks to this lemma, for every processor λ,
it is now assumed, unless stated explicitly, that the entry
χ(aλ) is always located before the entry λ, i.e., χ(aλ) ≤ λ.

Lemma 4 (Cycle of Labels) Consider a subexecution E,
a processor λ and an entry µ < λ in the tag variable aλ.
The label value in aλ[µ].l can change during the subexecution
E and we note (li)1≤i≤T+1 for the sequence of successive
distinct label values that are taken by the label aλ[µ].l in
the entry µ during the subexecution E. We assume that the
first T labels l1, . . . , lT are different from each other, i.e., for
every 1 ≤ i < j ≤ T , li 6= lj.

• If T > K, then at least one of the label li has been

produced1 by the processor µ during E.

• If T ≤ K and lT+1 = l1, then when the processor λ
adopts the label lT+1 in the entry µ of its tag aλ, the
entry µ becomes invalid.

Proof. First note that a processor adopts a new label in
the entry µ of one of its tag, only when the old label is less
than the new label. Hence, we have for every 1 ≤ i ≤ T ,
li ≺ li+1 and, in particular, if l1 = lT+1, l2 64 lT+1. Assume
T > K. Since in every configuration there is at most K tags
in the system, and µ is the only source of labels in the entry
µ, the fact that λ has seen more than K different label values
in the entry µ is possible only if µ has produced at least one
label during E. If T ≤ K and l1 = lT+1, i.e., there is a cycle
of length T , then when λ adopts the label lT+1 = l1, the
label history Hλ[µ] contains the whole sequence l1, . . . , lT

since its size is K. Hence, λ sees the label l2 that cancels
the label lT+1, and the entry µ becomes invalid.

Lemma 5 (Counting the Interrupts) Consider an infi-
nite execution E∞ and let λ be a processor identifier such
that every processor µ < λ produces labels finitely many
times. Consider an identifier µ < λ and any processor
ρ ≥ λ. Then, the local execution E∞(ρ) at ρ induces a
sequence of interrupts such that

|[µ,←]| ≤ Rµ = (Jµ + 1) · (K + 1)− 1 (3)

where Jµ is the number of times the processor µ has produced
a label since the beginning of the execution.

Proof. We note (akρ)k∈N the sequence of ρ’s tag values
appearing in the local execution E∞(ρ). Assume on the
contrary that |[µ,←]| is greater than Rµ. Note that after an
interrupt like [µ,←], the first valid entry χ(aρ) is equal to µ.
In particular, the entry µ is valid after such interrupts. Also,
the label value in the entry aλ[µ].l does not change after
an interrupt like [µ,→]. We define an increasing sequence
of integers (f(i))1≤i≤Rµ+1 such that the i-th interrupt like

[µ,←] occurs at f(i) in the sequence (akρ)k∈N. The sequence

li = a
f(i)+1
ρ [µ].l is the sequence of distinct labels successively

taken by aρ[µ].l. We have li ≺ li+1 for every 1 ≤ i ≤ Rµ.

Divide the sequence (li)1≤i≤Rµ+1 in successive segments uj ,
1 ≤ j ≤ Jµ+1, of size K+1 each. For any j, if all the K+1
labels in uj are different, then, by Lemma 4, the processor µ
has produced at least one label. Since the processor µ pro-
duces labels at most Jµ many times, there is some sequence
uj0 within which some label appears twice. In other words,
in uj0 there is a cycle of length less than or equal to K. By
Lemma 4, this implies that the entry µ becomes invalid after
an interrupt like [µ,←]; this is a contradiction.

Theorem 1 (Existence of a 0-Safe Epoch) Consider an
infinite execution E∞ and let λ be a processor such that ev-
ery processor µ < λ produces labels finitely many times. We
note |λ| for the number of identifiers µ ≤ λ, Jµ for the num-
ber of times a proposer µ < λ produces a label and we define

Tλ = (
X
µ<λ

Rµ + 1) · (|λ|+ 1) · (Kcl + 1) · (K + 1) (4)

1Precisely, it has invoked the label increment function to
update the entry µ of its tag aµ.

where Rµ = (Jµ + 1) · (K + 1) − 1. Assume that there are
more than Tλ interrupts at processor λ during E∞ and con-
sider the concatenation Ec(λ) of the first Tλ epochs, Ec(λ) =
σ1 . . . σTλ . Then Ec(λ) contains a 0-safe epoch.

Proof. By Lemma 5, we have
P
µ<λ |[µ,←]| ≤

P
µ<λRµ

in the local execution E∞(λ), a fortiori in the execution
Ec(λ). By the pigeon-hole principle, there must be a lo-
cal subexecution E1(λ) = σi . . . σi+X−1 in Ec(λ), where
X = (|λ|+ 1) · (Kcl + 1) · (K + 1), that contains only inter-
rupts like [µ,→], [λ,max] or [λ, cl]. Naturally, the number
of interrupts like [µ,→] in E1(λ) is less than or equal to |λ|.
Hence, another application of the pigeon-hole principle gives
a local subexecution E2(λ) = σj . . . σj+Y−1 in E1(λ) where
Y = (Kcl + 1) · (K + 1) that contains only interrupts like
[λ,max] or [λ, cl].

Assume first that within E2(λ), there is a subexecution
E3(λ) = σk . . . σk+Z−1 where Z = K + 1 in which there are
only interrupts like [λ,max]. Since K + 1 ≤ M the size of
the canceling label history1, we have lσk , . . . , lσh−1 ≺ lσh ,
for every k < h < k + Z. In particular, all the labels
lσk , . . . , lσk+Z−1 are different. Since Z = K + 1 and since
there is at most K tags in a given configuration, there is nec-
essarily some k ≤ h < k+Z such that the label lσh does not
appear2 in the configuration γ∗ that corresponds to the last
position in σh−1. Also, by construction, we have µσh = λ
and σh ends with an interrupt like [λ,max]. Hence, σh is
0-safe.

Now, assume that there is no subexecution E3 in E2 as in the
previous paragraph. This means that if we look at the suc-
cessive interrupts that occur during E2(λ), between any two
successive interrupts like [λ, cl], there is at most K interrupts
like [λ,max]. Since the length of E2(λ) is (Kcl +1) · (K+1),
there must be at least Kcl + 1 interrupts like [λ, cl]. Let
E4(λ) be the local subexecution that starts with the epoch
associated with the first interrupt like [λ, cl] and ends with
the epoch associated with the interrupt [λ, cl] numbered Kcl.
Let σ in E2(λ) be the epoch right after E4(λ). By construc-
tion, there is at most Kcl · (K + 1) epochs in E4(λ) which
is the size M of the history Hcl

λ . Hence, at the beginning
of σ, the history Hcl

λ contains all the labels the processor
λ has produced during E4 as well as all the Kcl (exactly)
labels it has received during E4. Since there is at most Kcl

candidates label for canceling in the system, necessarily, in
the first configuration of σ, the history Hcl

λ contains every
candidates label for canceling present in the whole system.
And since lσ is greater, by construction, than every label in
the history Hcl

λ , lσ was not present in the entry λ of some
tag in the configuration that precedes σ and it cannot be
canceled by any other label present in the the system. In
addition, by construction, E2 only contains interrupts like
[λ,max] or [λ, cl]. From what we said about lσ, the interrupt
at the end of σ is necessarily [λ,max]. In other words, the
epoch σ is a 0-safe epoch.

1Recall that the canceling label history also records the label
produced in the entry λ.
2Note that λ is the only processor to produce labels in entry
λ, so during the subexecution that correspond to an epoch
σh at λ, the set of labels in the entry λ of every tag in the
system is non-increasing.

Remark 7. Note that the epoch found in the proof is not
necessarily the unique 0-safe epoch in Ec(λ). The idea is
only to prove that there exists a practically infinite epoch.
If the first epoch σ at λ ends because the corresponding
label lσ in the entry µσ gets canceled, but lasts a practically
infinite long time, then this epoch can be considered, from an
informal point of view, safe. One could worry about having
only very “short” epochs at λ due to some inconsistencies
(canceling labels, or entries with high values in the step and
trial fields) in the system. Theorem 1 shows that every time
a “short” epoch ends, the system somehow loses one of its
inconsistencies, and, eventually, the proposer λ reaches a
practically infinite epoch. Note also that a 0-safe epoch and
a 1-safe or a 2-safe epoch are, in practice, as long as each
other. Indeed, any h-safe epoch with h very small compared
to 2b can be considered practically infinite. Whether h can
be considered very small depends on the concrete timescale
of the system.

Remark 8. Besides, every processor α always checks that
the entry α is valid, and, if not, it produces a new label in
the entry aα[α] and resets the step, trial and canceling label
field. Doing so, even if α’s first valid entry µ is located before
the entry α, the processor α still works to find a “winning”
label for its entry α. In that case, if the entry µ becomes
invalid, then the entry α is ready to be used, and a safe
epoch can start without waiting any longer.

6.4 Practical Safety - Definitions
To prove the safety property within a subexecution, we have
to focus on the events that correspond to deciding a pro-
posal, e.g., (b, p) at processor α. Such an event may be due
to corrupted messages in the communication channels an
any stage of the Paxos algorithm. Indeed, a proposer se-
lects the proposal it will send in its phase two thanks to the
replies it has received at the end of its phase one. Hence,
if one of these messages is corrupted, then the safety might
be violated. However, there is a finite number of corrupted
messages since the capacity of the communication channels
is finite. Hence, violations of the safety do not happen very
often. To formally deal with these issues, we define the no-
tion of scenario that corresponds to specific chain of events
involved in the Paxos algorithm.

Definition 12 (Scenario) Consider a subexecution E =
(γk)k0≤k≤k1 . A scenario in E is a sequence U = (Ui)0≤i<I
where each Ui is a collection of events in E. In addition,
every event in Ui happens before every event in Ui+1. We
use the following notations

• ρ p1a−−→ (S, b) : The proposer ρ broadcasts a message p1a
containing the tag b. Every acceptor in the quorum S
receives this message and adopts3 the tag b.

• (S, b)
p1b−−→ ρ : Every processor α in the quorum S sends

to the proposer ρ a p1b message telling they adopted the
tag b, and containing the last proposal rα[χ(aα)] they
accepted. These messages are received by ρ.

3Recall that this means it copies the entry b[χ(b)] in the
entry aβ [χ(b)].

• ρ p2a−−→ (Q, b, p) : The proposer ρ broadcasts a p2a mes-
sage containing a proposal (b, p). Every acceptor in the
quorum Q accepts the proposal (b, p).

• (Q, b, p)
p2b−−→ ρ : Every acceptor α in the quorum Q

sends to the proposer ρ a p2b message telling that it has
accepted the proposal (b, p). The proposer ρ receives
these messages.

• ρ dec−−→ (α, b, p) : the proposer ρ sends a decision mes-
sage containing the proposal (b, p). The processor α
receives this message, accepts and decides on the pro-
posal (b, p).

Definition 13 (Simple Acceptation Scenario) Given S
a quorum of acceptors, b a tag, p a consensus value, ρ a pro-
poser and α an acceptor, a simple acceptation scenario U of
the first kind is defined as follows.

(U0) A proposer ρ broadcasts a p1a message with tag b.

(U1) Every processor β from a quorum S receives this p1a
message, adopts the tag b and replies to ρ a p1b mes-
sage containing its tag aβ ' b and the lastly accepted
proposal rβ [χ(aβ)].

(U2) The proposer ρ receives these messages at the end of its
Paxos phase one, moves to the second phase of Paxos,
and sends a p2a message to a processor α telling it to
accept the proposal (b, p).

(U3) The processor α receives the p2a message and accepts
the proposal (b, p).

Given quorums S and Q, b a tag, p a consensus value, ρ a
proposer and α an acceptor, a simple acceptation scenario
V of the second kind is defined as follows.

(V0) A proposer ρ broadcasts a p1a message with tag b.

(V1) Every processor β from a quorum S receives this p1a
message, adopts the tag b and replies to ρ a p1b mes-
sage containing its tag aβ ' b and the lastly accepted
proposal rβ [χ(aβ)].

(V2) The proposer ρ receives these messages at the end of its
Paxos phase one, moves to the second phase of Paxos,
and sends a p2a message to every processor in Q telling
it to accept the proposal (b, p).

(V3) Every processor in Q receives the p2a message, accepts
the proposal and replies to the proposer ρ with a p2b
message.

(V4) The proposer ρ receives the replies from the acceptors
in Q, and sends to the acceptor α a decision message
containing a proposal (b, p).

(V5) The acceptor α receives the decision message, accepts
and decides on the proposal (b, p).

With the notations introduced, we have

(1-st kind) ρ
p1a−−→ (S, b)

p1b−−→ ρ
p2a−−→ (α, b, p) (5)

(2-nd kind) ρ
p1a−−→ (S, b)

p1b−−→ ρ
p2a−−→

(Q, b, p)
p2b−−→ ρ

dec−−→ (α, b, p) (6)

If the kind of scenario is not relevant, we note

S ; (α, b, p) (7)

Remark 9. A simple acceptation scenario is simply a basic
execution of the Paxos algorithm that leads a processor to
either accept a proposal, or decide on a proposal (accepting
it by the way).

Definition 14 (Fake Message) Given a subexecution E =
(γk)k0≤k≤k1 , a fake message relatively to the subexecution
E, or simply a fake message, is a message that is in the
communication channels in the first configuration γk0 of the
subexecution E.

Remark 10. This definition of fake messages comprises
the messages at the beginning of E that were not sent by
any processor, but also messages produced in the prefix of
execution that precedes E.

Definition 15 (Simple Fake Acceptation Scenario) Given
a subexecution E, we note © → X if there exists an event
e in X that corresponds to the reception of a fake message
relatively to E. With the previous notation, a simple fake
acceptation scenario relatively to E is one of the following
scenario.

© p2a−−→ (α, b, p) (8)

© p1b−−→ ρ
p2a−−→ (α, b, p) (9)

© dec−−→ (α, b, p) (10)

© p2b−−→ ρ
dec−−→ (α, b, p) (11)

© p2a−−→ (Q, b, p)
p2b−−→ ρ

dec−−→ (α, b, p) (12)

© p1b−−→ ρ
p2a−−→ (Q, b, p)

p2b−−→ ρ
dec−−→ (α, b, p) (13)

If the exact type is not relevant, we note ©; (α, b, p).

Remark 11. A simple fake acceptation scenario is some-
how similar to a simple acceptation scenario except the fact
that at least one fake message (relatively to the given subex-
ecution) is involved during the scenario.

Definition 16 (Composition) Consider two simple sce-
narios U = X ; (α1, b1, p1), where X =© or X = (S1, b1),
and V = S2 ; (α2, b2, p2) such that the following conditions
are satisfied.

• The processor α1 belongs to S2

• Let e2 be the event that corresponds to α1 sending a p1b
message in scenario V . Then the event “α1 accepts the
proposal (b1, p1)” is the last acceptation event before
e2. In addition, the proposer involved in the scenario
V selects the proposal (b1, p1) as the highest-numbered
proposal at the beginning of the Paxos phase two. In
particular, p1 = p2.

Figure 2: Composition of scenarios of the 1-st kind
(red) and the 2-nd kind (blue) - Time flows down-
ward, straight lines are local executions, arrows rep-
resent messages.

• All the tags involved share the same first valid entry,
the same corresponding label and step value.

Then the composition of the two simple scenarios is the con-
catenation the scenarios U and V . This scenario is noted

X ; (α1, b1, p1)→ S2 ; (α2, b2, p2) (14)

Note that the trial value is strictly increasing along the sim-
ple scenarios.

Definition 17 (Acceptation Scenario) Given a subexe-
cution E, an acceptation scenario is the composition U of
simple acceptation scenarios U1, . . . , Ur where U1 is either
a simple acceptation scenario or a simple fake acceptation
scenario relatively to E. We note

X ; (α1, b1, p)→ S2 ; (α2, b2, p) . . . Sr ; (αr, br, p) (15)

An acceptation scenario whose first simple scenario is not
fake relatively to E is called real acceptation scenario rel-
atively to E. An acceptation scenario whose first simple
scenario is fake relatively to E is called fake acceptation
scenario relatively to E. Given an event e that corresponds
to some processor accepting a proposal, we note Sc(e) the
set of acceptation scenarios that ends with the event e.

Remark 12. Given an acceptation event or a decision event,
there is always at least one way to trace back the scenario
that has lead to this event. If one of these scenarios involve
a fake message, then we cannot control the safety property
for the corresponding step. Besides, note that all the tags
involved share the same first valid entry µ, the same corre-
sponding label l, step value s and consensus value p. Also,
the trial value is increasing along the acceptation scenario.

Definition 18 (Scenario Characteristic) The character-
istic of an acceptation scenario U in which all tags have first
valid entry µ, corresponding label l, step value s and consen-
sus value p, is the tuple char(U) = (µ, l, s, p).

Definition 19 (Fake Characteristics) Consider a subex-
ecution E = (γk)k0≤k≤k1 . Given a scenario characteristic
(µ, l, s, p), we note E(E,µ, l, s, p) the set of events in E that
correspond to accepting a proposal (b, p) with χ(b) = µ and

Figure 3: Scenario S ; (β, b, p) in Z(F, λ, σ) - Time
flows downward, straight lines are local executions,
curves are send/receive events, arrows represent
messages.

b[µ].(l s) = (l s). A characteristic (µ, l, s, p) is said to be
fake relatively to E if there exists an event e in E(E,µ, l, s, p)
such that the set Sc(e) contains a fake acceptation scenario
relatively to E. We note FC(E) the set of fake characteris-
tics relatively to E.

Definition 20 (Unsafe Steps) If we fix the identifier µ
and the label l, we define the set of unsafe step values US(E,µ, l)
as the set of values s such that there exists a consensus value
p with (µ, l, s, p) ∈ FC(E).

Remark 13. Given an identifier µ and the label l, an un-
safe step s is a step in which an accepted proposal might be
induced by fake messages, and thus, we cannot control the
safety for this step.

Definition 21 (Observed Zone) Consider an execution E.
Let λ be a proposer and let Σ be a subexecution such that the
local execution σ = Σ(λ) at λ is a h-safe epoch. We note F
the suffix of the execution that starts with Σ. Assume that
λ executes at least two trials during its epoch σ. Let Q0, Qf

be the first and last quorums respectively whose messages are
processed by the proposer λ during σ. For each processor α
in Q0 (resp. Qf), we note e0(α) (resp. ef (α)) the event
that corresponds to α sending to λ a message received in the
trial that corresponds to Q0 (resp. Qf).

The zone observed by λ during the epoch σ, noted Z(F, λ, σ),
is the set of real acceptation scenarios relatively to F de-
scribed as follows. A real acceptation scenario relatively to
F belongs to Z(F, λ, σ) if and only if it ends with an ac-
ceptation event that does not happen after the end of σ and
its first simple acceptation scenario U = (S, b) ; (β, b, p) is
such that there exists an acceptor α in S ∩Q0 ∩Qf at which
the event e0(α) happens before the event e that corresponds
to sending a p1b message in U , and the event e happens
before the event ef (α) (cf. Figure 3).

Remark 14. The observed zone models a globally defined
time period during which we will prove, under specific as-
sumptions, the safety property (cf. Theorem 4).

6.5 Practical Safety - Results

Lemma 6 (Fake Acceptation Scenarios) Consider a fake
message m, and two acceptation scenarios of charactestics
(µ, l, s, p) and (µ′, l′, s′, p′) that begins with the reception of
m. Then both scenarios share the same characteristics, i.e.,
(µ, l, s, p) = (µ′, l′, s′, p′).

Proof. We have two scenarios that begins with the re-
ception of m. Focus on the first simple scenario of each
acceptation scenario. Assume, for instance, that the mes-
sage m is a p1b message and both simple fake acceptation
scenarios are as follows

© p1b−−→ ρ
p2a−−→ (α, b, p) (16)

© p1b−−→ ρ′
p2a−−→ (α′, b′, p′) (17)

Since once a message is received, it is not in the commu-
nication channels anymore, the event “reception of m at ρ”
and “reception of m at ρ′” must be the same. In particular
ρ = ρ′. Thanks to the messages it has received, the proces-
sor ρ computes a proposal (b, p) and broadcasts it. Hence,
the processors α and α′ receives (and accepts) the same pro-
posal (b, p). Hence, (b, p) = (b′, p′). By definition, χ(b) = µ,
b[µ].(l s) = (l s) and χ(b′) = µ′, b[µ′].(l s) = (l′ s′). There-
fore, (µ, l, s, p) = (µ′, l′, s′, p′). The other cases are analo-
gous.

Theorem 2 (Fake Characteristics) Given a subexecution
F , we have

|FC(F)| ≤ C
n(n− 1)

2
(18)

∀µ, l, |US(F, µ, l)| ≤ C
n(n− 1)

2
(19)

Proof. On the contrary, note r = |FC(F)| and assume

that r > Cn(n−1)
2

. We note c1, . . . , cr the distinct val-
ues in FC(F), and ci = (µi, li, si, pi). By definition, for
each ci, there is an event ei ∈ FC(F, µi, li, si) and a sce-
nario Ui in Sc(ei) that begins with a simple fake accep-
tation scenario. Let mi be the fake message consumed in
this simple fake acceptation scenario. Since there are at

most Cn(n−1)
2

fake messages in the starting configuration
of F , and since the set of fake messages is non-increasing
(channels do not produce messages), there are two indices
1 ≤ i < j ≤ r such that mi = mj . By Lemma 6, the scenar-
ios Ui and Uj have the same characteristic, i.e., ci = cj ; con-
tradiction. The second inequation is straightforward since
|US(F, µ, l)| ≤ |FC(F)|

Lemma 7 (Epoch and Cycle of Labels) Consider an ex-
ecution E. Let λ be a processor and consider a subexecution
Σ such that the local execution σ = Σ(λ) is an epoch at λ.
We note F the suffix of the execution E that starts with Σ.
Consider a processor ρ and a finite subexecution G in F as
follows : G starts in Σ and induces a local execution G(ρ)
at ρ such that it starts and ends with the first valid entry of
the tag aρ being equal to µσ and containing the label lσ, and
the label field in the entry aρ[µσ] undergoes a cycle of labels
during G(ρ). Assume that, if µσ < λ, then the processor µσ
does not produce any label during G. Then µσ = λ and the
last event of σ happens before the last event of G(ρ).

Proof. By Lemma 4, since the entry aρ[λ] remains valid
after the readoption of the label l at the end of G(ρ), the

proposer µσ must have produced some label l′ during G
(hence µσ = λ) that was received by ρ duringG. Necessarily,
the production of l′ happens after the last event of σ at λ,
thus the last event of G(ρ) at ρ also happens after the last
event of σ at λ.

Theorem 3 (Weak Practical Safety) Consider an exe-
cution E. Let λ be a processor and let Σ be a subexecution
such that the local execution σ = Σ(λ) at λ is an h-safe. We
note F the suffix of the execution that starts with Σ. Con-
sider a step value s and the two following simple scenarios

U1 = ρ1
p1a−−→ (S1, b1)

p1b−−→ ρ1
p2a−−→

(Q1, b1, p1)
p2b−−→ ρ1

dec−−→ (α1, b1, p1) (20)

U2 = (S2, b2) ; (α2, b2, p2) (21)

with characteristics (µσ, lσ, s, p1) and (µσ, lσ, s, p2) respec-
tively. In addition, we assume that bi[µσ].t > h and τ1 ≤ τ2
where τi = bi[λ].(t id). We note ei for the acceptation event
(αi, bi, pi). Assume that both events e1 and e2 occur in F
and s 6∈ US(F, µσ, lσ). In addition, assume that, if µσ < λ,
then the processor µσ does not produce any label during F .
Then either p1 = p2 or the last event of σ happens before
one of the event e1 or e2.

Proof. We assume that both events e1 and e2 do not
happen after the last event of σ and we prove that p1 = p2.
Since s is not in US(F, µσ, lσ), every scenario in Sc(e1) or
Sc(e2) are real acceptation scenarios relatively to F . We
note γ∗ the configuration right before the subexecution Σ.
We prove the result by induction on the value of τ2.

(Bootstrapping). We first assume that τ2 = τ1. In partic-
ular, ρ1 = τ1.id = τ2.id = ρ2. If p1 6= p2, this means that ρ1

has sent two p2a messages with different proposals and the
same tag1. Note e and f the events that correspond to these
two sendings. None of the events e and f occurs in the ex-
ecution prefix A, otherwise, since e1 and e2 occur in F , the
configuration γ∗ would contain a tag x with x[µσ].l = lσ and
x[µσ].t > h; this is a contradiction since σ is h-safe. Hence,
e and f occur in F . Then, there must be a cycle of labels in
the entry aρ1 [µσ] between the e and f . By Lemma 7, this
implies that the last event of σ happens before the event e1
or e2; this is a contradiction. Hence, p1 = p2.

(Induction). Now, τ2 is any value such that τ1 < τ2 and
we assume the result holds for every value τ such that τ1 ≤
τ < τ2. Pick some acceptor β in Q1 ∩ S2. From its point of
view, there are two events f1 and f2 at β that respectively
correspond to the acceptation of the proposal (b1, p1) in the
scenario U1 (reception of a p2a message), and the adoption
of the tag b2 in the scenario U2 (reception of a p1a message).
First, the events f1 and f2 do not occur in the execution pre-
fix A. Otherwise there would exist a tag value x in γ∗ such
that x[µσ].l = lσ and x[µσ].t > h; this is a contradiction,
since σ is h-safe. Hence, f1 and f2 occur in the suffix F .

We claim that f1 happens before f2. Otherwise, since τ2 >
τ1, there must be a cycle of labels in the field aβ [µσ].l. By
1Modulo '.

Lemma 7, this implies that the last event of σ happens before
the event f1, and thus before the event e1; contradiction.
Hence, f1 happens before f2. We claim that the p1b message
the acceptor β has sent contains a non-null lastly accepted
proposal rβ [µσ] = (b, p) such that χ(b) = µσ, b[µσ].(l s) =
(lσ s) and τ1 ≤ b[µσ].(t id) < τ2. Otherwise, there must be
a cycle of labels between f1 and f2, which implies that f2,
and thus e2, happens after the end of σ.

Now, the proposer ρ2 receives a set of proposals from the
acceptors of the quorum S2, including at least one non-null
proposal from β. It first checks that every tag received uses
the entry µσ and the label lσ and that there is no two differ-
ent proposals with two tags that share the same content in
entry µσ before continuing to the second phase of Paxos, and
if it is not the case, it updates its proposer tag and executes
another phase one of Paxos. Hence, since ρ2 has moved to
the second phase of Paxos, it means that no such issue has
happened. Then, it selects among the proposals whose tags
point to the step s the proposal (bc, pc) with the highest tag.
In particular, χ(bc) = µσ, bc[µσ].(l s) = (lσ s). Since ρ2 has
received the proposal (b, p) from β, we have τ1 ≤ τc < τ2,
where τc = βc[µσ].(t id). Let βc be the proposer in S2 which
has sent to ρ2 the proposal (bc, pc) in the p1b message. There
is an event fc in F that corresponds to βc accepting the pro-
posal (bc, pc). Otherwise there would exist a tag value x in
γ∗ such that x[µσ].l = lσ and x[µσ].t > h; this is a con-
tradiction, since σ is h-safe. Next, since s 6∈ US(F, µσ, lσ),
χ(bc) = µσ, and bc[µσ].(l s) = (lσ s), the set Sc(e2) does
not contain any fake acceptation scenario relatively to F ,
thus neither the set Sc(fc). We can pick a real scenario
in Sc(fc) and apply the induction hypothesis, which shows
that pc = p1. Hence, p1 = p2, since pc is the consensus value
the proposer ρ2 sends during the corresponding Paxos phase
two.

Corollary 1 (Weak Practical Safety) Consider an exe-
cution E. Let λ be a processor and let Σ be a subexecu-
tion such that the local execution σ = Σ(λ) at λ is an
h-safe epoch. We note F the suffix of the execution that
starts with Σ. Consider a step value s and two decision
events ei = (αi, bi, pi), i = 1, 2, such that χ(bi) = µσ,
bi[µσ].(l s) = (lσ s) and bi[µσ].t > h. Assume that both
events e1 and e2 occur in F and s 6∈ US(F, µσ, lσ). In addi-
tion, assume that, if µσ < λ, then the processor µσ does not
produce any label during F . Then either p1 = p2 or the last
event of σ happens before one of the event e1 or e2.

Proof. Since e1 and e2 are decision events, and since s
is not in US(F, µσ, lσ), there are two real acceptation sce-
narios in Sc(e1) and Sc(e2) relatively to F respectively that
contains simple acceptation scenarios of the second kind as
follows :

U1 = ρ1
p1a−−→ (S1, c1)

p1b−−→ ρ1
p2a−−→

(Q1, c1, p1)
p2b−−→ ρ1

dec−−→ (β1, c1, p1) (22)

U2 = ρ2
p1a−−→ (S2, c2)

p1b−−→ ρ2
p2a−−→

(Q2, c2, p2)
p2b−−→ ρ2

dec−−→ (β2, c2, p2) (23)

with characteristics (µσ, lσ, s, p1) and (µσ, lσ, s, p2) respec-
tively and trial values ci[µσ].t greater than h. We note

τi = ci[µσ].(t id). Whether τ1 ≤ τ2 or τ2 ≤ τ1, Theorem 3
gives the result.

Theorem 4 (Practical Safety) Consider an execution E,
a proposer λ proposer and a subexecution Σ such that the
local execution σ = Σ(λ) at λ is a h-safe epoch for some
bounded integer h. We note F the suffix of execution that
starts with Σ. Assume that the observed zone Z(F, λ, σ) is
defined and that, if µσ < λ, then the processor µσ does
not produce any label during F . Consider two scenarios
U1, U2 in Z(F, λ, σ) with characteristics (µ1, l1, s1, p1) and
(µ2, l2, s2, p2) such that µσ ≤ min(µ1, µ2) and both scenar-
ios contain simple acceptation scenarios with tags whose as-
sociated trial values are greater than h. Then (µ1, l1) =
(µ2, l2) = (µσ, lσ), and if s1 = s2 then p1 = p2.

Proof. Assume that the scenario U1 is such that µ1 >
µσ. Let V = (S, b) ; (β, b, p) be its first simple accepta-
tion scenario. By definition of the observed zone Z(F, λ, σ),
there exists an acceptor α in S ∩Q0 ∩Qf such that we have
the happen-before relations e0(α) ; e ; ef (α), where e is
the event that corresponds to α sending a p1b message in
the scenario V . At e0(α) and ef (α), messages are sent to λ
and are processed during σ. Hence, the corresponding tag
values of the variable aα must use the entry µσ and the label
lσ. Otherwise, the message either is not processed or causes
an interrupt at processor λ. Now, at event e, the first valid
entry of the variable aα is µ1 > µσ which implies that the
entry µσ is invalid. Hence, between e0(α) and ef (α), the en-
try aα[µσ] becomes invalid and valid again. There must be
a cycle of labels in the label field aα[λ].l. Lemma 7 implies
that the last event of σ happens before ef (α); by the defi-
nition of ef (α), this is a contradiction. Therefore µ1 = µσ.
If l1 6= lσ, then there must also be a cycle of labels in the
entry aα[µσ] between e0(α) and ef (α), which leads to a con-
tradiction again, thanks to the same argument. Therefore,
l1 = lσ. Of course, the previous demonstration also shows
that (µ2, l2) = (µσ, lσ). If s1 = s2, then Corollary 1, the
fact that the trial values associated to the scenarios U1 and
U2 are greater than h and the fact that the two acceptation
events in scenarios U1 and U2 do not happen after the end
of σ imply that p1 = p2.

Remark 15. In the case µσ < λ , assuming that µσ does
not produce any label during F means that the proposer λ
should be the live processor with the lowest identifier. To
deal with this issue, one can use a failure detector.

7. FAILURE DETECTOR
7.1 Overview
Liveness for some step s in Paxos is not guaranteed un-
less there is a unique proposer for this step s. The original
Paxos algorithm assumes that the choice of a distinguished
proposer for a given step is done through an external mod-
ule. It is not necessary for this external module to be a
proper leader election module. It is only needed that some
processor be the unique proposer for a “long enough” period
of time. Of course, in a purely asynchronous system, there
is no canonical definition of what is a “long enough” period
of time.

Usually, failure detectors are used to deal with this issue.
The exact implementation of a failure detector is hidden

from the user point of view, and usually assumes some con-
ditions such as synchrony or partial synchrony, that depend
mostly on the concrete representation of the system. Hence,
the solution of the initial problem is solved without refering
to a more concrete representation of the system. For the
system builders, the real question then concerns the possi-
bility to implement a failure detector that satisfies the initial
problem requirements. In the context of self-stabilization, it
is not obvious that a failure detector is implementable in
any settings. Hence, in the sequel, we present an implemen-
tation of a self-stabilizing failure detector that works under
a partial synchronism assumption.

7.2 Self-Stabilizing Failure Detector
Each processor α has a vector Lα indexed by the proces-
sor identifiers; each entry Lα[µ] is an integer whose value
is comprised between 0 and some predefined maximum con-
stant W .

Every processor α keeps broadcasting a hearbeat message
〈hb, α〉 containing its identifier (e.g., by using [4]). When
the processor α receives a heartbeat from processor β, it sets
the entry Lα[β] to zero, and increments the value of every
entry Lα[ρ], ρ 6= β that has value less than W . The detector
output at processor α is the list Fα of every identifier µ such
that Lα[µ] = W . In other words, the processor α assesses
that the processor β has crashed if and only if Lα[β] = W .

Assumption 3 (Interleaving of Heartbeats) For any two
live processors α and β, between two receptions of heartbeat
〈hb, β〉 at processor α, there are strictly less than W recep-
tions of heartbeats from other processors.

Under this condition, for every processor α, if the processor
β is alive, then eventually the identifier β does not belong
to the list Fα. The connection with the external module Θ
in Section 4 can be defined as follows

Θα = true⇔ α = min(µ; Lα[µ] < W) (24)

Under Assumption 3, we see that the module Θ eventually
satisfies the conditions in Assumption 2, Section 4.

8. CONCLUSION
The original Paxos algorithm provides a solution to the
problem, for a distributed system, to reach successively sev-
eral consensus on different options, e.g., the different re-
quests to apply in the case of a distributed database. A
proper tagging system using natural integers is defined so
that, although the liveness property, i.e., the fact that, in ev-
ery consensus instance, every processor eventually decides,
is not guaranteed, the safety property is ensured : no two
processors decide on different values in the same consensus
instance. The original formulation, however, does assume a
consistent initial state and assumes that consistency is pre-
served forever by applying step transitions from a restricted
predefined set of step transitions. This line of consistency
preserving argument is fragile and error prone in any prac-
tical system that should exhibit availability and functional-
ity during very long executions. Hence, there is an urgent
need for self-stabilizing on-going systems, and in particular
for the very heart of asynchronous replicated state machine
systems used by the leading companies to ensure robust ser-
vices. One particular aspect of self-stabilizing systems is

the need to re-examine the assumption concerning the use
of (practically) unbounded time-stamps. While in practice
it is reasonable for Paxos to assume that a bounded value,
represented by 64 bits, is a natural (unbounded) number, for
all practical considerations, in the scope of self-stabilization
the 64 bits value may be corrupted by a transient fault to its
maximal value at once, and still recovery following such a
transient fault must be guaranteed. More generally, the de-
signer of self-stabilizing systems, does not try to protect its
system against specific “bad” scenarios. She assumes that
some transient faults, whatever their origin is, corrupt (a
part of) the system and ensures that the system recovers
automatically after such fault occurrences.

Using the finite labeling scheme presented, we have defined a
new kind of tag system that copes with such transient faults.
The tag is defined as a vector indexed by the processor iden-
tifiers and such that each entry contains a label, a step and
a trial value. Incrementing the label becomes a way to prop-
erly reset the step and trial values in a given entry of a tag.
Each processor is responsible for producing labels only in
the entry that corresponds to its identifier. Therefore, once
it collects enough information about the labels present in its
attributed entry, a processor is able to produce a label that
no other processor can cancel. Hence, in a tag, there might
be several entries with “winning” labels, and the owner of
the tag uses the entry with the lowest identifier. The first
part of the proof (Sections 6.2 and 6.3) aims at proving that
if a processor is active for a long enough period of time, then
this processor reaches a practically infinite local execution,
namely an epoch, during which its tag behaves exactly as
in the original Paxos algorithm (Theorem 1). This result
mainly holds thanks to the fact that each processor main-
tains histories of labels that allow the detection of cycle of
labels.

The second part of the proof (Sections 6.4 and 6.5) focuses
on the global point of view. We show that, given a proposer
λ which has reached a practically infinite local execution, a
specific kind of safety is ensured. Indeed, if there are two
decisions on proposals with tags that have the same first
valid entry and the same label as the proposer λ, and if
the two tags point to the same step then the two consen-
sus values are equal, or one of the decision happens after a
practically infinite period of time (Theorem 3). However,
due to either fake messages (messages that were not sent by
any processor) or messages produced within the stabilization
period, the safety and integrity property might be violated
during the practically safe period. Theorem 2 shows that
the number of decisions due to fake messages (or messages
produced within the stabilization period) is bounded. Fi-
nally, Theorem 4 shows that the safety property is satisfied
within a globally defined period, namely the zone observed
by λ during its epoch, given that λ is the live processor with
the lowest identifier (for the sake of simplifying the proof).
We presented (Section 7) an implementation of a tunable
self-stabilizing failure detector that works under a partial
synchrony assumption. Such a device is mandatory to en-
sure the liveness property of the consensus problem. The
implementation we presented also highlights the fact that
the distinguished proposer must have the lowest possible
identifier, in order for our self-stabilizing Paxos algorithm
to behave efficiently. Note, however, that once every live

processors use the same first valid entry and the same corre-
sponding label, then the proposer can be any live processor,
as this execution is exactly analogous to an initialized Paxos
execution.

9. REFERENCES
[1] N. Alon, H. Attiya, S. Dolev, S. Dubois,

M. Potop-Butucaru, and S. Tixeuil. Pragmatic
self-stabilization of atomic memory in message-passing
systems. In SSS, pages 19–31, 2011.

[2] S. Delaët, S. Dolev, and O. Peres. Safe and eventually
safe : Comparing self-stabilizing and non-stabilizing
algorithms on a common ground. In T. Abdelzaher,
M. Raynal, and N. Santoro, editors, Principles of
Distributed Systems, volume 5923 of Lecture Notes in
Computer Science, pages 315–329. Springer Berlin /
Heidelberg, 2009.

[3] S. Dolev. Self-stabilization. MIT Press, 2000.

[4] S. Dolev, A. Hanemann, E. M. Schiller, and
S. Sharma. Self-stabilizing end-to-end communication
in (bounded capacity, omitting, duplicating and
non-fifo) dynamic networks - (extended abstract). In
SSS, pages 133–147, 2012.

[5] S. Dolev and Y. A. Haviv. Self-stabilizing
microprocessor: Analyzing and overcoming soft errors.
IEEE Transactions on Computers, 55:385–399, 2006.

[6] S. Dolev, R. I. Kat, and E. M. Schiller. When
consensus meets self-stabilization. J. Comput. Syst.
Sci., 76:884–900, December 2010.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32:374–382, April 1985.

[8] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[9] E. C. Rosen. Vulnerabilities of network control
protocols: an example. SIGCOMM Comput. Commun.
Rev., 11(3):10–16, July 1981.

[10] G. Tel. Introduction to Distributed Algorithms.
Cambridge University Press, 2001.

APPENDIX
A. APPENDIX
A.1 Construction of a Finite Labeling Scheme
We show how to construct a finite labeling scheme (L,≺
, d, ν). First, consider the set of integers X = {1, 2, ...,K}
with K = d2 + 1. We define the set L to be the set of every
tuple (z,A) where z ∈ X is the sting, and A ⊂ X with
|A| ≤ d is called the antistings. The relation ≺ is defined as
follows

l = (z,A) ≺ l′ = (z′, A′)⇔ (z ∈ A′) ∧ (z′ 6∈ A) (25)

The function ν is defined as follows. Given r labels (s1, A1),
. . . , (sr, Ar) with r ≤ d, the label ν(l1, . . . , lr) = (s,A) is
given by

s = min {X − (A1 ∪ · · · ∪Ar)} (26)

A = {s1, . . . , sr} (27)

The function is well-defined since r ≤ d and |A1∪· · ·∪Ar| ≤
d2 < |X|. In addition, for every i, we have s 6∈ Ai and
si ∈ A, thus (si, Ai) ≺ (s,A).

A.2 Pigeonhole Principle
Lemma 8 Consider a sequence u = (ui)1≤i≤N such that
∀1 ≤ i ≤ N,ui ∈ {0, 1}, and N = (n + 1)m for some
n,m ∈ N− {0}. Assume that the cardinal of {i | ui = 1} is
less than or equal to n. Then there exists 1 ≤ i0 ≤ N such
that for every i0 ≤ i ≤ i0 +m− 1, ui = 0.

Proof. Divide the sequence u in successive subsequences
σj , 1 ≤ j ≤ n+ 1 such that each σj length is m. If for every
1 ≤ j ≤ n+ 1, the sequence σj contains at least one 1, then
the number of 1 appearing in u is at least n+ 1, which leads
to a contradiction. Hence, there is some j0 such that the
sequence σj only contains 0.

A.3 Algorithms
Algorithm 1: Tags - Procedures

1 function clean(λ : processor identifier, a : tag)
2 foreach µ ∈ Π do
3 if a[µ].cl 4 a[µ].l then a[µ]← ⊥
4 a[µ].id← λ

5 end

6 end
7 function fill_cl(x, y : tags)
8 xc ← x, yc ← y
9 foreach µ ∈ Π do

10 if yc[µ].(l or cl) 64 x[µ].l then
x[µ].cl← yc[µ].(l or cl)

11 if yc[µ].l = x[µ].l ∧ yc[µ].(s or t) = 2b then
12 x[µ].(s t)← (2b 2b)
13 idem by exchanging (x,xc) and (y, yc)

14 end

15 end

Algorithm 2: Tags - Increment functions

1 function check_entry(λ : identifier, x : tag, L : history
of labels)

2 if x[λ] is invalid then
3 L← L+ x[λ].l
4 x[λ].(l s t id)← (ν(L) 0 0 λ)
5 x[λ].cl← ⊥
6 end
7 function ν∗(λ : identifier, x : tag, L : label history)
8 y ← x
9 clean(λ, y)

10 if χ(y) ≤ λ then
11 (case νs) y[χ(y)].(s t)← (1 + y[χ(y)].s 0)

12 (case νt) y[χ(y)].t← 1 + y[χ(y)].t

13 check_entry(λ, y, L)
14 return y

15 end

Algorithm 3: Acceptor α

1 switch receive() do
2 case 〈p1a, λ, b〉
3 aold ← aα
4 if b[α].(l or cl) 64 aα[α].l then

Hcl
α ← Hcl

α + b[α].(l or cl)

5 fill_cl(aα, b), check_entry(α, aα, H
cl
α)

6 if aα ≺ b then
7 aα[χ(b)]← b[χ(b)]
8 if aold[χ(b)].l 6= aα[χ(b)].l then
9 rα[χ(b)]← ⊥

10 Hα[χ(b)]← Hα[χ(b)] + aold[χ(b)].l
11 if ∃l ∈ Hα[χ(b)], l 64 aα[χ(b)].l then

aα[χ(b)].cl← l

12 end
13 foreach µ ∈ Π do
14 c← rα[µ].b
15 if

c[µ].l 6= aα[µ].l ∨ aα[µ].(l s t id) ≺ c[µ].(l s t id)
then

16 rα[µ]← ⊥
17 end
18 send(λ, 〈p1b, α, aα, rα[χ(aα)]〉)
19 case 〈p2a, λ, b, p〉 or 〈decision, λ, b, p〉
20 aold ← aα
21 if b[α].(l or cl) 64 aα[α].l then

Hcl
α ← Hcl

α + b[α].(l or cl)

22 fill_cl(aα, b), check_entry(α, aα, H
cl
α)

23 if aα 4 b then
24 aα[χ(b)]← b[χ(b)], rα[χ(b)]← [b, p]
25 if it is a decision message then decide(b, p)
26 if aold[χ(b)].l 6= aα[χ(b)].l then
27 Hα[χ(b)]← Hα[χ(b)] + aold[χ(b)].l
28 if ∃l ∈ Hα[χ(b)], l 64 aα[χ(b)].l then

aα[χ(b)].cl← l

29 end
30 foreach µ ∈ Π do
31 c← rα[µ].b
32 if

c[µ].l 6= aα[µ].l ∨ aα[µ].(l s t id) ≺ c[µ].(l s t id)
then

33 rα[µ]← ⊥
34 end
35 if it is a p2a message then send(λ, 〈p2b, α, aα, rα〉)
36 endsw

Algorithm 4: Proposer λ - Main loop

1 loop As long as Θλ = true
2 p← input()

3 aλ ← νs(λ, aλ, H
cl
λ)

4
5 [Ph. 1]
6 pλ ← p
7 ∀α ∈ Π, send(α, 〈p1a, λ, aλ〉)
8 if PR(1) returns nok then go to [Ph. 1]
9

10 [Ph. 2]
11 let µ = χ(aλ), and Γ be the set of non-null proposals

rα[µ] received at the end of [Ph. 1] in
12 if Γ 6= ∅ then
13 if ∀x, y ∈ Γ, χ(x.a) = χ(y.a) = µ ∧ x.a[µ].l =

y.a[µ].l = aλ[µ].l then
14 Γ0 ← {(a, p) ∈ Γ | a =

max (b|∃q, (b, q) ∈ Γ, b[µ].s = aλ[µ].s)}
15 if Γ0 contains more than one element then
16 aλ ← νs(λ, aλ, H

cl
λ)

17 go to [Ph. 1]

18 else
19 we note Γ0 = {(a, p)}
20 pλ ← p

21 else
22 aλ ← νs(λ, aλ, H

cl
λ)

23 go to [Ph. 1]

24 end

25 end
26 ∀α ∈ Π, send(α, 〈p2a, λ, aλ, pλ〉)
27 if PR(2) returns nok then go to [Ph. 1]
28 ∀α ∈ Π, send(α, 〈decision, λ, aλ, pλ〉)
29 end loop

Algorithm 5: Proposer λ - Preempting Routine

1 function PR(φ : phase 1 or phase 2)
2 N ← ∅, M ← 0, asent ← aλ
3 while |N | < n− f do
4 b← asent
5 〈pφb, α, aα, qα〉 ← receive(〈pφb, ∗, ∗, ∗〉)
6 fill_cl (aα, b)

7 C+ = (aα ' b) ∧ (φ = 2⇒ pλ = qα.p))

8 C− = (aα 64 b)
9 if α 6∈ N then

10 if C+ ∨ C− then N ← N ∪ {α}
11 if C+ then M ←M + 1
12 else
13 if aα[λ].(l or cl) 64 aλ[λ].l then

Hcl
λ ← Hcl

λ + aα[λ].(l or cl)
14 fill_cl(aα, aλ)

15 check_entry(λ, aλ, H
cl
λ)

16 let µ = χ(aα) in
17 if aα 64 aλ then
18 if µ < χ(aλ) then
19 Hλ[µ]← Hλ[µ] + aλ[µ].l
20 aλ[µ]← aα[µ]
21 if ∃l ∈ Hλ[µ], l 64l aλ[µ].l then

aλ[µ].cl← l

22 aλ ← νt(λ, aλ, H
cl
λ)

23 else
24 (we have χ(aλ) = µ and

aλ[µ].l = aα[µ].l)
25 if aα[µ].s = aλ[µ].s then
26 aλ[µ].t← aα[µ].t

27 aλ ← νt(λ, aλ, H
cl
λ)

28 else
29 aλ[µ].s← aα[µ].s

30 aλ ← νs(λ, aλ, H
cl
λ)

31 end

32 end

33 end

34 end

35 end
36 if M = n− f then return ok
37 else return nok

38 end

	RR1558entete
	RR1558rapp

