
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

SPFLOW : MAKE YOUR SCIENTIFIC

WORKFLOWS EASIER TO USE

CHEN J / COHEN-BOULAKIA S / FROIDEVAUX C

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

07/2013

Rapport de Recherche N° 1564

SPFlow: Make your scientific workflows easier to use

[Demonstration Proposal]

Jiuqiang Chen
LRI, CNRS UMR 8623

Université Paris Sud, France
AMIB Group, INRIA Saclay
Lanzhou University, China

chenj@lri.fr

Sarah Cohen-Boulakia
LRI, CNRS UMR 8623

Université Paris Sud, France
AMIB Group, INRIA Saclay

cohen@lri.fr

Christine Froidevaux
LRI, CNRS UMR 8623

Université Paris Sud, France
AMIB Group, INRIA Saclay

christine.froidevaux@lri.fr

ABSTRACT
Bioinformatics experiments are usually represented using
scientific workflows in which tasks are chained together form-
ing very intricate and nested graph structures. In the mean-
time, the number of tools available to guide users in the de-
sign and execution of workflows has increased a lot. Such
tools all perform intrinsically complex operations on work-
flow graphs making them difficult to use on intricate struc-
tures. While scientific workflows systems deal with general
graph workflows (DAGs), several tools for workflow manage-
ment have chosen to impose restrictions, namely considering
series-parallel (SP) graphs to gain both in efficiency and us-
ability. There is thus a crucial need to provide systems able
to transform any DAG workflow into an SP workflow while
preserving the meaning of the original workflow: This is the
goal of the SPFlow approach that we demonstrate here.
Availability: SPFlow is available for use at
http://www.lri.fr/∼chenj/SPFlow

1. MOTIVATION
Scientific workflows management systems (e.g., [10, 7]) are
increasingly used to specify and manage bioinformatics ex-
periments represented by workflows that can be shared and
reused. A workflow specification is a framework for the ex-
ecution, specifying the set of tasks to be performed and the
order of tasks executions. According to the input data given
to the workflow, different workflow runs are obtained. Both
workflows and runs are represented as graphs. In this work,
our assumptions are based on the behavior of most of the
scientific workflow systems: runs have the same structure as
the workflow specifications; there is no cycle in the struc-
tures; every workflow graph has a source s and a target t,
such that every vertex is on a path from s to t; tasks are
deterministic: given a set of inputs a given task will always
produce the same outputs. Figure 1 provides (a) an example
of workflow specification from Taverna [10], (b) its represen-
tation as a graph and (c) an example of run.

Figure 1: (a) Taverna workflow; (b) specification
graph; (c) run graph

A significant number of tools have been developed to assist
the design of workflows, search for the workflows available
in repositories, help in the process of storing, querying and
visualizing provenance information, and (re)schedule execu-
tions. These tools all make intrinsically complex operations
on graph structures (e.g., search for (sub)graphs, comparing
graphs) and their use may become particularly difficult when
the workflow structure taken as input is too intricate. From
a more formal point of view, such complex graph operations,
if carried out on Directed Acyclic Graphs (DAGs) lead to
NP-hard problems. Instead, these problems can be solved
in polynomial time when specific restrictions are imposed,
such as considering series-parallel (SP) structures [12].

Several approaches [3, 8] have shown that using SP work-
flows allows to design more user-friendly workflows and pro-
vide more efficient execution settings. Others [1, 5], in
particular in the domain of provenance information man-
agement, have even chosen to restrict workflow graphs to
SP structures. However, workflows obtained using popular
workflow systems are DAGs with any structure. Developing
an approach able to rewrite any workflow DAG into an SP
graph would allow to better exploit all the workflow man-
agement tools. The rewriting should preserve the meaning
of the workflow which is captured by the provenance of the
outputs of its execution: Given some input data, the origi-
nal workflow and the rewritten workflow should provide the
same intermediate and final data. This is achieved by the
SPFlow approach introduced in [6] that we will demonstrate
in the present paper.

After a brief introduction of the workflow and provenance
models used in SPFlow, we will present the architecture of
the system and give a sketch for the demonstration.

2. SP WORKFLOWS AND PROVENANCE
2.1 Workflow Model
As stated in the previous section, a workflow specification is
a directed acyclic labeled multigraph (dag) with one single
source and one single target (st-dag). Vertices represent the
workflow tasks and edges represent the data flow between
tasks. Formal definitions are provided here.

Aworkflow specification is an st-dagGspec = (Vspec, Espec)
where Vspec is a set of labeled vertices and Espec is a multiset
of labeled edges that are ordered pairs of vertices of Vspec.

A workflow run is an st-dag Grun = (Vrun, Erun) whose
source is s(Grun) and target is t(Grun). Vertices and edges
are labeled using the functions Lvr : Vrun → LV R, where
LV R is a set of labels for vertices, and Ler : Erun → LER,
where LER is a set of labels for edges. We will note x̃ the
label of vertex x, i.e. Lvr(x) = x̃ and di the label of edge
ei, i.e. Ler(ei) = di.

Figure 1 (b) (resp. (c)) is the graph corresponding to the
workflow specification (resp. run) of Figure 1 (a).

Intuitively, SP-graphs can be easily decomposed into series
and parallel components.

The class of series-parallel graphs (SP-graphs) is re-
cursively defined as follows:
(i) The st-dag that contains two vertices s and t joined by a
single edge is an SP-graph (Basic SP graph);
(ii) Series and Parallel Composition: let G1 (source s1
and target t1) and G2 (source s2 and target t2) be two SP-
graphs: G obtained by identifying s2 = t1 is an SP-graph
with source s1 and target t2 (Series Composition); G ob-
tained by identifying s1 = s2, t1 = t2 is an SP-graph with
source s1 and target t1 (Parallel Composition).

Determining whether a graph has an SP structure can be
performed in linear time [12]. Moreover, it has been proven
that an st-dag is series-parallel if and only if it does not
contain a subgraph homeomorphic to the forbidden pat-
tern of Figure 2 (a). Presence of vertex u in the forbidden
pattern prevents from ranking the vertices within series and
parallel order, making the forbidden pattern being non SP.
Such a critical vertex is called a reduction node [2].

In Figure 1 (b, c), vertex #4 is a reduction node: such graphs
are thus non SP.

2.2 Provenance model
In this work, we are interested in the meaning of the work-
flow as given by the provenance of its execution outputs.
Two workflows have the same meaning if, given some input
data, they both produce the same intermediate and final
data i.e. they are provenance-equivalent. In this section, we
will present the underlying provenance model of SPFlow.

The provenance of a data item labeling an edge is the or-
dered sequence of tasks performed to produce this data, and

Figure 2: Forbidden pattern

input data to each task. Deep provenance describes the en-
tire sequence of steps that produced the data [3].

Formally, let Grun = (Vrun, Erun) be a run, with its sets
of labels for vertices and edges. We consider regular ex-
pressions built on LV R ∪LER, using operations “+” and “·”.
Both operations are associative, “+” is commutative and “·”
is distributive over “+”. Operation “·” allows to track the
succession of the tasks, while “+” denotes the alternative
data paths reaching a task. We consider here the semiring
(2(LV R∪LER)∗, ·,+) rather than the polynomial semiring [9]
because the execution order must be taken into account in
our context [6] (in our regular expressions, the “·” operation
is not commutative).

Let u ∈ Vrun, u 6= s(Grun), with Lvr(u) = ũ; f ∈ Erun one
outgoing edge of u with Ler(f) = d; ei ∈ Erun, 1 ≤ i ≤ p

the incoming edges of u, with Ler(ei) = di.
The Deep Provenance of f in Grun is recursively defined
by the regular expression:
DProv(f) = ũ · (d1 ·DProv(e1) + . . .+ dp ·DProv(ep))
The base case occurs when u =s(Grun) and f is an outgoing
edge of s: DProv(f) = s̃.

Note that given a run Grun and a vertex u, all the outgoing
edges of u have the same provenance, as they are all outputs
of the same task.

Consider the graph Gr of Figure 2 (a). DProv(e5) = ṽ · (d2 ·
DProv(e2)+d3 ·DProv(e3)) = ... = ṽ · (d2 · s̃+d3 · ũ ·d1 · s̃).

Output Provenance of a Run. Given a run Grun, its
output provenance, noted by OutProv(Gr), is defined by
the sum of the deep provenances of all the incoming edges
of the target.

Continuing with Figure 2 (a), the output provenance of Gr is
the sum of the provenances of e4 and e5. Using associativity
of “·” and “+” we get OutProv(Gr) = (d4 · ũ · d1 · s̃) + (d5 ·
ṽ · (d3 · ũ · d1 · s̃+ d2 · s̃)).

We want to transform a non SP workflow run into another
that has an SP structure and the same meaning as the orig-
inal workflow run. We thus require the two graphs to have
the same output provenance.

Provenance-equivalence Let Gr1, Gr2 be two runs. Gr1

and Gr2 are provenance-equivalent, noted Gr1
prov
⇔ Gr2,

iff OutProv(Gr1) = OutProv(Gr2).

Figure 3: Architecture of SPFlow

Consider graphs Gr (a) and G′

r (b) of Figure 2 where G′

r

(b) is obtained by using SPFlow on Gr (a). In G′

r: u is
duplicated into u′ with the same label (ũ= ũ′), edge e1 is
duplicated into e′1 with the same label (Ler(e1) = Ler(e

′

1) =
d1), and similarly for e4 and e′4.

Therefore OutProv(G′

r) = (d4 ·ũ·d1 ·s̃) + (d5 ·ṽ ·(d3 ·ũ·d1 ·s̃+

d2 · s̃)), which is exactly OutProv(Gr). Thus: Gr
prov
⇔ G′

r.

3. SPFLOW ARCHITECTURE
SPFlow transforms any workflow having a non SP structure
into a provenance-equivalent SP structured workflow. The
architecture of SPFlow is provided on Figure 3 and described
here after. SPFlow makes use of Workflow Specifications
and Provenance Information provided by users or workflow
systems. The current version of SPFlow is able to rewrite
real workflows from the Taverna system (other systems are
under consideration). The TavernaLoader module is thus
responsible for loading the workflow into the SPFlow inter-
nal graph structure. SPChecker then determines whether
or not the workflow taken in has an SP structure and pro-
vides a report with graph features, including the identifica-
tion of reduction nodes (if any). If the workflow is not SP, it
is sent to SPBuilder which then creates a new provenance-
equivalent workflow graph having some duplicated vertices
compared to the original workflow, following the process de-
scribed in [6]. Finally, the TavernaLoader module produces
the rewritten workflow into the Taverna XML format and
makes it available to the user.

Users communicate with the system by loading and inter-
acting with original and rewritten workflows.

4. DEMONSTRATION
Our demonstration will highlight the following features.

Loading Data: Users may load a workflow specification into
the system (see Figure 4). SPFlow will display the origi-
nal picture of the workflow from myExperiment [11] if avail-
able (left panel), determine (using SPChecker) the reduction
nodes (if any) and highlight them (central panel). A report
on graph features is produced (metadata on the workflow,
right panel).

Rewriting of the workflow : SPFlow (using SPBuilder) trans-
forms any non SP workflow into an SP workflow (see Figure
5). Both workflows will be displayed and duplicated vertices
highlighted.

Figure 4: Loading a workflow in SPFlow

Figure 5: Provenance information in SPFlow

Provenance information: By clicking on an edge between
two tasks, the user can visualize the provenance information
(see Figure 5) of the data flowing on that edge not only
on the initial workflow but also on the rewritten workflow
(showing that both workflows are provenance-equivalent).
The formal expression associated to provenance information
is also displayed (bottom panel).

Running rewritten workflows: Any workflow rewritten by
SPFlow can be opened in Taverna. We will show how it can
be run and we will demonstrate that both workflow versions
(non SP and SP) provide the same results for the same input
(equivalence property).

On the benefit of using SP-workflows: We will take the ex-
ample of the Zoom*userview system (ZOOM for short) [3]
that takes in a workflow and a set of tasks of interest for the
user (other tasks are usually formatting tasks) and provides
a user view, that is, a view of the workflow composed of
a set of composite tasks. Each composite task contains at
most one significant task and takes its meaning. The diffi-
culty for ZOOM lies in ensuring that no data dependencies
between significant composite tasks is introduced or lost by
the grouping process (i.e. consider two relevant tasks t1 and
t2: t1 consumes the data produced by t2 if and only if the
composite task containing t1 consumes the data produced
by the composite task containing t2).

In Figure 6, the user has specified two tasks of interest
to him (namely, blast-report and Fasta-sequence). Based

Figure 6: (A) non SP and (B) SP version of the
workflow in ZOOM. User views are displayed on the
right while full workflows are on the left.

on the original workflow (figure 6 (A)), ZOOM designs the
user view on the right, which is composed of three com-
posite tasks, one focused on blast-report (R-blast report
which contains M0, M5, M4 and M1), another on fastaSe-
quence (R-fastaSequence which contains only M2) and un-
fortunately one task with no significance for the user (NR-
1 which contains M6 and M3). Note that introducing the
tasks of NR-1 into one of the two significant composite tasks
would have introduced misleading data dependencies: e.g.,
if M3 and M6 were put into R-fastaSequence then from the
user view perspective the edge e3 would have been displayed
from R-fastaSequence to R-blast report, giving the feeling to
the user that data provided by R-fastaSequence is used by
R-blast report while it was not the case in the original work-
flow. It has been proved in [4] that such a situation (having
to introduce a composite task without any significance for
the user to preserve provenance) can be avoided when SP
structures are used while it is not possible for general DAGs.

In Figure 6 (B), the rewriting process of SPFlow has du-
plicated M6 and M3 from workflow (A) into M11 M8 and
M9 M12 in workflow (B). As a consequence, the user view
designed by ZOOM is only based on significant composite
tasks (R-blast report which contains M11, M13, M9, M7,
M15 andM14, and R-fastaSequence which containsM8, M12
and M10). Such a workflow is then more user-friendly. In
particular, each of the two composite tasks takes in now only
user input and is then clearly easier to share and (re)use in
another context.

Why would this demo be interesting for the scien-
tific database community? Recent keynote talks, tutori-
als and research papers from the scientific database commu-
nity show that (i) scientific workflows play a crucial role in
data integration, (ii) data is increasingly graph-structured,
and (iii) provenance is a particularly challenging topic.
Techniques to reduce the native complexity of classical op-
erations on graph structures and improve the readability of
the workflows are thus of increasing interest.
This demonstration is at the intersection of these topic ar-
eas, and provides a provenance-based rewriting technique
that is theoretically and practically interesting to the scien-
tific database community.

5. REFERENCES
[1] Z. Bao, S. Cohen-Boulakia, S. B. Davidson, A. Eyal,

and S. Khanna. Differencing provenance in scientific
workflows. In Proc. of ICDE, pages 808–819, 2009.

[2] W. W. Bein, J. Kamburowski, and M. F. M.
Stallmann. Optimal reductions of two-terminal
directed acyclic graphs. SIAM J. Comput.,
21(6):1112–1129, 1992.

[3] O. Biton, S. Cohen-Boulakia, S. B. Davidson, and
C. S. Hara. Querying and managing provenance
through user views in scientific workflows. In Proc. of
ICDE, pages 1072–1081, 2008.

[4] O. Biton, S. B. Davidson, S. Khanna, and S. Roy.
Optimizing user views for workflows. In Proc. of
ICDT, pages 310–323, 2009.

[5] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger,
C. T. Silva, and H. T. Vo. Vistrails: visualization
meets data management. In Proc. of SIGMOD, pages
745–747, 2006.

[6] S. Cohen-Boulakia, C. Froidevaux, and J. Chen.
Scientific workflow rewriting while preserving
provenance. In Proc. of IEEE Int. Conf. on E-Science
(e-Science), pages 1–9. IEEE Computer Society, 2012.

[7] J. Goecks, A. Nekrutenko, and J. Taylor. Galaxy: a
comprehensive approach for supporting accessible,
reproducible, and transparent computational research
in the life sciences. In Genome Biology, pages 438–462.
2011.

[8] A. González-Escribano, A. J. C. van Gemund, and
V. Cardeñoso-Payo. Performance implications of
synchronization structure in parallel programming.
Parallel Computing, 35(8-9):455–474, 2009.

[9] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In Proc. of PODS, pages 31–40,
2007.

[10] D. Hull, K. Wolstencroft, R. Stevens, C. A. Goble,
M. R. Pocock, P. Li, and T. Oinn. Taverna: a tool for
building and running workflows of services. Nucleic
Acids Research, 34(Web-Server-Issue):729–732, 2006.

[11] D. D. Roure, C. A. Goble, and R. Stevens. The design
and realisation of the myexperiment virtual research

environment for social sharing of workflows. Future
Generation Comp. Syst., 25(5):561–567, 2009.

[12] J. Valdes, R. E. Tarjan, and E. L. Lawler. The
recognition of series parallel digraphs. In STOC, pages
1–12, 1979.

	RR1564entete
	RR1564rapp

