
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

DATA-FLOW COVERAGE FOR TESTING IN

CIRCUS

CAVALCANTI A / GAUDEL M C

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

12/2013

Rapport de Recherche N° 1567

Data-flow coverage for testing in Circus

Ana Cavalcanti1 and Marie-Claude Gaudel2

1 University of York, Department of Computer Science
York YO10 5DD, UK

2 LRI, Université de Paris-Sud and CNRS
Orsay 91405, France

revised version 12/2013

Abstract. Circus is a state-rich process algebra for refinement based
on Z and CSP. In previous work, we have defined a testing theory for
Circus, and some selection criteria based on its exhaustive test set. Here,
we consider a different class of criteria, based on the text of the models,
rather than directly on their operational semantics. In particular, we
consider data-flow based coverage. In adapting the classical results on
coverage of programs to abstract Circus models, we define a notion of
specification traces, consider models with data anomalies, and cater for
the internal nature of state and state changes. Our main results are a
framework for data-flow based coverage, a novel criterion suited to state-
rich process models, and a notion of instantiation of traces.

Abstract. Circus est une algèbre de processus avec une notion d’état
interne, qui combine le pouvoir de Z pour modéliser des types abstraits
de données et les constructions de CSP pour spécifier des comportements
réactifs et concurrents. Circus permet aussi de décrire des raffinements
vers des modèles concrets ou même des programmes. Les modèles ab-
straits impliquent couramment du nondéterminisme, qui peut venir des
opérations sur les données ou des choix internes de comportement, du
fait qu’on ignore les détails de l’implémentation.

Précédemment, nous avons établi une théorie du test pour Circus. Cette
théorie est de nature symbolique : pour capturer la logique des types
de données et les comportements conditionnels (gardes), nous utilisons
une notion de “trace symbolique contrainte”, directement dérivée de
la sémantique opérationnelle du langage. Cette notion sert de base à
la définition de tests symboliques associés à un modèle. Une notion
d’instantiation définit comment obtenir des tests concrets.

Du fait que cette approche est conduite par la sémantique opérationnelle
du langage, elle a permis de définir des jeux de tests exhaustifs et de prou-
ver cette exhaustivité. Dans ce cadre, nous avons défini plusieurs critères
de sélection de sous-ensembles des jeux de tests exhaustifs comme la cou-
verture des traces symboliques contraintes bornées, ou la couverture des
synchronisations.

Dans ce rapport, nous considérons une classe de critères de sélection de
tests basés sur le texte du modèle Circus plutôt que sur sa sémantique
opérationnelle, plus spécifiquement la couverture des flots de données.

Nous nous donnons une notion de “trace de spécification” qui collecte, en
plus des évènements de communication, des opérations internes sur les
données et des conditions (gardes). Sur la base de ces traces, nous formal-
isons les notions de définitions, usages, et sous-chemins sans définition
pour Circus. Pour illustrer l’application de ce cadre, nous donnons les
définitions des critères classiques de couverture basés dur le flot de données
(all-defs, all-uses, et all-du-paths) transposés à la sélection de traces de
spécification. De plus, nous formalisons un nouveau critère, mieux adapté
à Circus, qui prend en compte les flots de données internes. Enfin, nous
montrons comment construire des traces symboliques contraintes à partir
des traces de spécification, et donc les tests symboliques correspondants.
Les traces de spécification définies dans ce rapport peuvent être utilisées
pour d’autres critères de sélection, qu’ils soient basés ou non sur les flots
de données, car elles prennent en compte l’essentiel de la structure des
modèles.

1 Introduction

This report presents a framework for data-flow based test selection [18] from
Circus models; we revisit some classical criteria for coverage, and present a novel
criteria especially suited for Circus models.

Circus [4] is a state-rich process algebra that combines freely the power of
Z [23] to model abstract data types and their operations, and the CSP [20]
constructs to specify reactive behaviour. As such, Circus is a process algebra for
refinement. Nondeterminism is common in abstract models and arises both from
data operations and from internal choices in patterns of interaction.

Data-flow coverage in the context of Circus requires adjustments. Firstly, due
to the rich predicative data language of Circus, a concrete flow graph is likely
much too big to be explicitly considered. Thus, the tests are not based on paths
of a flow graph, but on specification traces. Second, data-flow anomalies must be
accepted, because repeated definitions and definitions without use are routinely
used in Circus abstract models. Finally, the state of a Circus process is hidden,
and so not all definitions and uses, and, therefore, not all data flows, are visible.

A notable feature of the Circus testing theory [3] is its symbolic nature. To
capture the predicative data models and guards, we have the notion of con-
strained symbolic traces and corresponding symbolic tests. An additional notion
of instantiation defines how we can obtain concrete tests. It is in this symbolic
setting that we consider here coverage based on data flows.

We state the notion of specification traces, which include, besides commu-
nication events, internal data operations and guards. Based on these traces, we
formalise notions of definitions, uses, and definition-clear paths for Circus. To
illustrate the use of this framework, we define the conventional data-flow cov-
erage criteria all-defs, all-uses, and all-du-paths to select specification traces. In
addition, we formalise a novel criteria inspired by [21] to cater for internal data
flows. Finally, we consider how to construct constrained symbolic traces, and
thus, corresponding symbolic tests from the specification traces. This is relevant

2

for all selection criteria based on specification traces (and not only data-flow cri-
teria). Given the formal setting of our work, based on the operational semantics
of Circus and additional transition systems in [2], we can prove unbias of the
selected tests. This means that they cannot reject correct systems.

In the next section, we give an overview of the notations and definitions
used in our work. Section 3 presents our framework and Section 4 our new
criterion. Section 5 addresses the general issue of constructing tests from selected
specification traces. Finally, we consider related works in Section 6 and conclude
in Section 7, where we also indicate lines for further work.

2 Background material

This section describes Circus, its operational semantics, and data-flow coverage.

2.1 Circus notation

A Circus model defines channels and processes like in CSP. Figure 1 presents an
extract from the model of a cash machine. It uses a given set CARD of valid
cards, a set Note of the kinds of notes available (10, 20, and 50), and a set
Cash == bag Note to represent cash. The definitions of these sets are omitted.

The first paragraph in Figure 1 declares four channels: inc is used to request
the withdrawal using a card of some cash, outc to return a card, cash to provide
cash, and refill to refill the note bank in the machine. The second paragraph is
an explicit definition for a process called CashMachine.

The first paragraph of the CashMachine definition is a Z schema CMState
marked as the state definition. Circus processes have a private state, and interact
with each other and their environment using channels. The state of CashMachine
includes just one component: nBank , which is a function that records the avail-
able number of notes of each type: at most cap.

State operations can be defined by Z schemas. For instance, DispenseNotes
specifies an operation that takes an amount a? of money as input, and outputs
a bag notes! of Notes, if there are enough available to make up the required
amount. DispenseNotes includes the schema ∆CMState to bring into scope the
names of the state components defined in CMState and their dashed counterparts
to represent the state after the execution of DispenseNotes. To specify notes!,
we require that the sum of its elements (Σ notes!) is a?, and that, for each kind
n of Note, the number of notes in notes! is available in the bank. DispenseNotes
also updates nBank , by decreasing its number of notes accordingly.

Another schema DispenseError defines the behaviour of the operation when
there are not enough notes in the bank to provide the requested amount a?; the
result is the empty bag [[]] . The Z schema calculus is used to define the total
operation Dispense as the disjunction of DispenseNotes and DispenseError .

State operations are called actions in Circus, and can also be defined using
Morgan’s specification statements [14] or guarded commands from Dijkstra’s
language [7]. CSP constructs can also be used to specify actions.

3

[CARD]
channel inc : CARD × N1; outc : CARD ; cash : Cash; refill
Note == {10, 20, 50}
Cash == bag Note

process CashMachine =̂ begin

state CMState == [nBank : Note→ 0 . . cap]

DispenseNotes
∆CMState
a? : N1

notes! : Cash

Σ notes! = a?
∀n : Note • (notes!] n) ≤ nBank n ∧ nBank ′ n = (nBank n)− (notes!] n)

DispenseError
ΞCMState
a? : N1; notes! : Cash

¬ ∃ns : Cash • Σ ns = a? ∧ ∀n : Note • (ns] n) ≤ nBank n
notes! = [[]]

Dispense == DispenseNotes ∨ DispenseError

•



µ X •



inc?c?a→
X
u
outc!c→X
u

var notes : Cash •
Dispense; (notes 6= [[]])N cash!notes → Skip

@
(notes = [[]])N Skip


 ;outc!c→X

@
refill → (nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap } ; X




end

Fig. 1. Cash machine model

4

For instance, the behaviour of the process CashMachine is defined by a re-
cursive action at the end after the ‘•’. A recursion µ X • F (X) has a body
given by F (X), where occurrences of X are recursive calls. In our example, the
recursion first offers a choice between an input inc?c?a, which accepts a card c
and a request to withdraw the amount a, and a synchronisation on refill , which
is a request to fill the nBank . The actions that offer these communications are
combined in an external choice (@) to be exercised by the environment.

If refill is chosen, an assignment changes the value of nBank to record a
number cap of notes of all kinds. If inc?c?a is chosen, then we have an inter-
nal (nondeterministic) choice of possible follow-on actions: recursing immedi-
ately (without returning the card or producing the money), returning the card
via an output outc!c before recursing, or considering the dispensation of cash
before returning the card and recursing. In the dispensation, a local variable
notes is declared, the operation Dispense is called, and then an external choice
of two guarded actions is offered. If there is some cash available (notes 6= [[]]),
then it can dispensed via cash!notes. Otherwise the action terminates (Skip).
Here, nondeterminism comes from the fact that the specification does not go
into details of bank management (stolen cards, bank accounts, and so on).

This example shows how Z and CSP constructs can be intermixed freely. A
full account of Circus and its semantics is given in [17]. The Circus operational
semantics is briefly discussed and illustrated in the next section.

2.2 Circus operational semantics and tests

The Circus operational semantics [3] is distinctive in its symbolic account of state
updates. As usual, it is based on a transition relation that associates configura-
tions and a label. For processes, the configurations are processes themselves; for
actions A, they are triples of the form (c | s |= A).

The first component c of those triples is a constraint over symbolic variables
used to define labels and the state. These are texts that denote Circus predicates
(over symbolic variables). We use typewriter font for pieces of text. The second
component s is a total assignment x := w of symbolic variables w to all state
components x in scope. State assignments can also include declarations and
undeclarations of variables using the constructs var x := e and end x. The state
assignments define a specific value (represented by a symbolic variable) for all
variables in scope. The last component of a configuration is an action A.

The labels are either empty, represented by ε, or symbolic communications
of the form c?w or c!w, where c is a channel name and w is a symbolic variable
that represents an input (?) or an output (!) value.

We define the notion of traces in the expected way. Due to the symbolic
nature of configurations and labels, we obtain constrained symbolic traces, or
cstraces, for short. These are pairs formed by a sequence of labels, that is, a
symbolic trace, and a constraint over the symbolic variables used in the labels.

For a process begin state [x : T] • A end, the cstraces over an alphabet a

are those of its main action A, starting from a state in which x takes any value

5

w0 constrained by w0 ∈ T . This is the set cstracesa(w0 ∈ T, x := w0, A) defined
below using the operational semantics (transition relation −→) [3].

Definition 1.

cstracesa(begin state[x : T] • A end) =
cstracesa(w0 ∈ T, x := w0, A)

cstracesa(c1, s1, A1) ={
st, c2, s2, A2 | αst ≤ a ∧ (c1 | s1 |= A1)

st−→ (c2 | s2 |= A2)
• (st,∃(αc2 \ αst) • c2)

}
The parameter a determines the alphabet of the cstraces. Symbolic variables
used in the evaluation of the operational semantics to represent internal values
of the state are not included in the alphabet. As said above, a contains variables
that denote values that are visible in the observation of a process.

Example 1. Some of the cstraces of the process CashMachine are as follows.

(〈 〉, True) and (〈 refill, inc.α0.α1, outc.α2〉, α0 ∈ CARD ∧ α1 ∈ N1 ∧ α2 = α0)

The first is the empty cstrace (empty symbolic trace with no constraint). The
second records a sequence of interactions where a request for a refill is followed
by a request for a withdraw of an amount α1 using card α0, followed by the
return of a card α2. The constraint captures those arising from the declaration
of inc, namely, α0 is a CARD and α1, a positive number. It also captures the
fact that the returned card is exactly that input (α2 = α0). 2

In the Circus testing theory, we take the view that, in specifications, diver-
gences are mistakes, and in programs, they are observed as deadlocks. We, there-
fore, consider a theory for divergence-free models and systems under test (SUT).

As usual for process-algebra, tests of the Circus theory are constructed from
traces. The cstraces define a set of traces: those that can be obtained by instan-
tiating the symbolic variables so as to satisfy the constraint.

Example 2. Corresponding to the empty cstrace, we have just the empty (con-
crete) trace 〈 〉. On the other hand, there are infinite instantiations of the second
cstrace in the previous example. For instance, we have the following traces.

〈refill , inc.0.10, outc.0〉 〈refill , inc.0.50, outc.0〉 〈refill , inc.1.30, outc.1〉

Here, we take 0 and 1 to be values in the set CARD . 2

Accordingly, we have symbolic tests constructed from cstraces, and a notion of
instantiation to construct concrete tests involving specific data. This approach
is driven by the operational semantics of the language and led to the definition
of symbolic exhaustive test sets and to proofs of their exhaustivity.

We observe that cstraces capture the constraints raised by data operations
and guards, but not their structure. In [2], we have defined different transition
systems whose labels capture the structure of the Circus model, and thus makes
it possible to consider coverage of this structure.

6

Label ::= Pred | Comm | LAct
Comm ::= ε | CName | CName!Exp | CName?VName | CName?VName : Pred
LAct ::= VName∗ : [Pred ,Pred] | Schema | VName := Exp

| var VName : Exp | var VName := Exp | end VName

Fig. 2. Syntax of specification labels.

Example 3. The following is a cstrace of CashMachine that captures a withdraw
request followed by cash dispensation.

(〈 inc.α0.α1, cash.α2〉,
α0 ∈ CARD ∧ α1 ∈ N1 ∧ Σα2 = α1 ∧ ∀ n : Note • (α2] n) ≤ cap)

The constraint defines the essential properties of the cash α2 dispensed, but not
the fact that these properties are established by variable declaration followed by
a schema action call, and a guarded action. 2

So, while cstraces are useful for trace-selection based on constraints, they do not
support selection based on the structure of the Circus model. To this end, in [2]
we have presented a collection of transition systems whose labels are pieces of
the model: guards (predicates), communications, or simple Circus actions. The
syntactic category of Labels is defined in Figure 2; the sets Pred , Exp, CName,
VName, and Schema are those of the Circus predicates, expressions, channel and
variable names, and Z schemas [16, 1].

In this paper, we use the transition relation =⇒RP , called just =⇒ here,
to define a notion of specification traces, used to consider data-flow coverage
criteria. This is in contrast to what is done for sequential imperative programs
where data flow graphs are considered.

2.3 Data-flow coverage

Data-flow coverage criteria were originally developed for sequential imperative
languages based on the notion of definition-use associations [18]. The motivation
was to check, via some test, that a variable has been assigned a correct value by
causing the execution of a path in a data-flow graph from the point of assignment
to a point where the assigned value is used.

Definition-use associations are traditionally defined in terms of data-flow
graph as triples (d , u, v), where d is a node in which the variable v is defined,
that is, some value is assigned to it, u is a node in which the value of v is used,
and there is a definition-clear path with respect to v from d to u. In this con-
text, the strongest data-flow criterion, all definition-use paths, requires that, for
each variable, every definition-clear path (with at most one iteration by loop)
is executed. In order to reduce the number of tests required, weaker strategies
such as all-definitions and all-uses have been defined.

7

(c | s |= A)
〈 〉⇒⇒ (c | s |= A)

(c1 | s1 |= A1)
l

=⇒ (c2 | s2 |= A2)

(c1 | s1 |= A1)
〈 l〉⇒⇒ (c2 | s2 |= A2)

(c1 | s1 |= A1)
spt1⇒⇒ (c2 | s2 |= A2) (c2 | s2 |= A2)

spt2⇒⇒ (c3 | s3 |= A3)

(c1 | s1 |= A1)
spt1
a

spt2⇒⇒ (c3 | s3 |= A3)

Table 1. Annotated transition relation: specification traces

When using these criteria, it is often assumed that the data-flow graph has
unique start and end nodes and there is no data-flow anomaly [6]. This means
that on every path from the start to the end node, there is no use of a variable
v not preceded by some node with a definition of v , and that after such a node,
there is always some other node with a use of v . These restrictions mainly aim
at facilitating the comparison of the criteria. They are acceptable for sequential
imperative programs and ensure that there is always some test sets satisfying
the criteria. With our definitions such anomalies just lead to empty test sets.

Abstract specifications involving concurrency and communications, however,
require adjustments to the notions underlying data-flow analysis and cover-
age (see, for instance [21] and [11]). We discuss some of them in Section 6 and
in our work, as already said, we do not assume absence of anomalies.

3 Data-flow coverage in Circus

Here, we define the specification traces resulting from the transition relation =⇒.
We then state the notions of definition and use of Circus variables and discuss
the issue of anomalies. Afterwards, we define classical coverage criteria.

3.1 Specification traces

It is straightforward to define traces (sequences) of specification labels based on
=⇒. The transition relation⇒⇒ annotated with such traces is defined in Table 1.

Example 4. For CashMachine, for instance, the following traces of specification
labels, as well as their prefixes, are reachable according to ⇒⇒.

〈inc?c?a, outc!c, inc?c?a, var notes〉
〈inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes, outc!c)〉 2

We need, however, to consider enriched labels that include a tag to distinguish
the various occurrences of communications and actions in the Circus specifica-
tion. This is needed because data-flow coverage criteria are based on individual
definitions or uses of a given variable occurring in the specification (or program).

8

Example 5. In the CashMachine, there are two occurrences of a use outc!c of
the c variable: one at line 4 of the main action, and one at line 8. In the traces
shown in Example 4, the two occurrences of outc!c; they are syntactically the
same, but correspond to different occurrences of this piece of syntax in the model.
Since we cannot consider repeated occurrences of labels to correspond to a single
definition or use of a variable, we use tags to distinguish them. 2

The tag can, for instance, be related to the position of the guards, communica-
tions, or actions in the text or in the abstract syntax tree of the model.

To get tagged labels, we just need a straightforward generalisation of the
definition of =⇒, where a label is tagged: a pair containing a label (in the sense
of the description in Section 2.2) and a tag. The value of the tag can come
from information in its abstract syntax tree, for example. This is akin to the
type annotation in an input d?x : T, where T is the type of the channel d , an
information produced by the type checking of the specification. The set of tagged
specification labels is TLabel == Label × Tag . We take the type Tag of tags as
a given set, and do not specify a particular representation of tags.

We observe in Figure 2 that we write specification statements in the form
f : [pre, post], where the frame f is the list of variables potentially changed by
the action specified, whose pre and postconditions are given by pre and post .
This is the form adopted in Circus, coming from the refinement calculus [14].
(In the operational semantics of Circus, we consider a specification pre ` post ,
because in that context the frame plays no role. Here, we keep the frame, since
it readily identifies the variables defined by this piece of the specification.)

For a process P , we define the set sptraces(P) of sptraces of P : specification
traces whose last label is observable, that is, a non-silent communication. This
excludes traces that do not lead to new tests with respect to their prefixes,
because they just include extra guards or data operations whose effect does not
affect a later communication (since there is no later communication).

Definition 2.

sptraces(begin state[x : T] • A end) = sptraces(w0 ∈ T, x := w0, A)

sptraces(c1, s1, A1) = {spt, c2, s2, A2 |
(c1 | s1 |= A1)

spt⇒⇒ (c2 | s2 |= A2) ∧ spt 6= 〈 〉 ∧ obs(last spt) • spt}

where obs(l, t)⇔ l ∈ Comm ∧ l 6= ε

Without loss of generality, we consider a process begin state[x : T] • A end,
with state components x of type T and a main action A. Its sptraces are those
of A, when considered in the state in which x has some value identified by the
symbolic variable w0, which is constrained to satisfy w0 ∈ T . For actions A1,
the set sptraces(c1, s1, A1) of its sptraces from the state characterised by the
assignment s1 and constraint c1 is defined as those that can be constructed using
⇒⇒ from the configuration (c1 | s1 |= A1) and whose last label is observable.

9

Example 6. Some sptraces of CashMachine are as follows. (In examples, we omit
tags when they are not needed, and below we distinguish the two occurrences of
outc!c by the tags tag1 and tag2.)

〈inc?c?a, (outc!c, tag1)〉 〈inc?c?a, (outc!c, tag1), inc?c?a〉
〈inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes〉
〈inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes, (outc!c, tag2)〉

We note that the first specification trace in Example 4 is not an sptrace. 2

The conversion of sptraces to constrained symbolic traces, which it the subject
of Section 5, provides a way of obtaining symbolic tests from the specification
traces. In what follows, we consider data-coverage criteria to select a subset of
the sptraces of a given process P . Each of the criteria are based on the notions
of definitions and uses of a given variable x , which we formalise next.

3.2 Definitions and uses

In an sptrace, a definition is a tagged label, where the label is a communication
or an action that may assign a new value to a Circus variable, that is, an input
communication, a specification statement, a Z schema where some variables are
written, an assignment, or a var declaration, which, in Circus causes an initiali-
sation. Formally, the set defs(x, P) of definitions of a variable x in a process P can
be identified from the set of sptraces of P as follows, where we use the function
defs(x, spt) that characterises the definitions of x in a particular sptrace spt.

Definition 3. defs(x, P) =
⋃
{ spt : sptraces(P) • defs(x, spt) }

The set defs(x, spt) can be specified inductively as follows.

Definition 4. defs(x, 〈 〉) = ∅
defs(x, tla spt) = ({tl} ∩ defs(x)) ∪ defs(x, spt)

The empty trace has no definitions. If the trace is a tagged label tl followed by
the trace spt, we include tl if it is a definition of x as characterised by defs(x).
The definitions of spt are themselves given by defs(x, spt).

The tagged labels in which x is written (defined) can be specified as follows.

Definition 5. defs(x) = { tl : TLabel | x ∈ defV(tl) }

The set defV(tl) of such variables for a label tl is specified inductively. We
adopt here the convention that g stands for an element of Pred , that is, a guard
label, d for a channel name, an element of CName, e an expression, an element
of Expr , and A for a list of label actions, elements of LAct . We use subscripts
when we need more of these meta-variables. The tags play no role here, and we
ignore them in the definition of defV.

10

Definition 6.

defV(g) = defV(ε) = defV(d) = defV(d!e) = defV(end y) = ∅
defV(d?x, t) = defV(d?x : c, t) = { x } defV(f : [pre, post]) = { f }
defV(Op) = wrtV (Op) defV(x := e) = { x }
defV(var x : T) = { x } defV(var x := e) = { x }

A Morgan specification statement f : [pre, post] is a pre-post specification that
can only modify the variables explicitly listed in the frame f .

The set wrtV (Op) of written variables of a schema Op is defined in [4, page 161]
to include the variables that are potentially modified by the schema, and its
identification is not a purely syntactic issue. This set includes the variables v in
the state of Op that are not constrained by an equality v ′ = v in Op. Following
the usual over-approximation in data-flow analysis, we can take the pessimistic,
but conservative, view that Op potentially writes to all variables in scope and
avoid the requirement for theorem proving.

Example 7. Coming back to the CashMachine (and ignoring tags) we have:

defs(c, CashMachine) = {inc?c?a}
defs(a, CashMachine) = {inc?c?a}
defs(notes, CashMachine) = {var notes : Cash, Dispense}
defs(nBank, CashMachine) = {Dispense,

nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap }}

2

The notion of (externally visible) use is simpler: a tagged label with an output
communication. Formally, the set e-uses(x, P) of uses of a variable x in a process
P can be identified from its set of sptraces.

Definition 7. e-uses(x, P) =
⋃
{ spt : sptraces(P) • e-uses(x, spt) }

The set e-uses(x, spt) of uses of x in a trace spt can be specified as follows.

Definition 8. e-uses(x, 〈 〉) = ∅
e-uses(x, tla spt) = ({tl} ∩ e-uses(x)) ∪ e-uses(x, spt)

Finally, the general notion of uses of a variable x is defined below.

Definition 9. e-uses(x) = {d : CName; e : Exp; t : Tag | x ∈ FV (e) • (d!e, t)}

These are labels (d!e, t) where x occurs free in the expression e. We use FV (e)
to denote the set of free variables of an expression e.

At this point, we consider e-uses, but not the classical notion of p-uses, which
relates to uses in predicates and, in the context of Circus, are not observable. We
introduce a notion of internal uses (i-uses) later on in Section 4.1. In a Circus
model, internal uses of a variable are its occurrences in predicates (of guards and
data operations, for example) and also in assigning expressions.

11

Example 8. We have e-uses(c, CashMachine) = {(outc!c, tag1), (outc!c, tag2) }
and e-uses(notes, CashMachine) = {cash!notes}. There are no other externally
visible uses in CashMachine. 2

We observe that a label cannot be both a definition and a use of a variable,
because a use is an output communication, which does not define any variable.
Besides, a label can be neither a definition nor a use (this is the case for refill)
and then not considered for data-flow coverage.

The property clear-path(spt, df, u, x) characterises the fact that the trace spt
has a subsequence that starts with the label df, finishes with the label u, with no
definition of the variable x . (We note that, although we consider subsequences of
a trace rather than paths of a graph, for consistency with classical terminology,
we use the term clear path, rather than clear subsequence, anyway.)

Definition 10.

clear-path(spt, df, u, x)⇔ ∃ i : 1 . .# spt • spt i = df ∧
∃ j : (i + 1) . .# spt • spt j = u ∧
∀ k : (i + 1) . . (j − 1) • spt k 6∈ defs(x, P)

Example 9. We consider the sptraces below.

〈inc?c?a, var notes, Dispense, notes = [[]] , (outc!c, tag2)〉
〈inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes, (outc!c, tag2)〉

They have a clear path from inc?c?a to (outc!c, tag2) with respect to c. 2

A e-use u of a variable x is said to be reachable by a definition df of x if there
is a trace spt such that clear-path(spt, df, u, x).

3.3 Data-flow anomalies and Circus

Three data-flow anomalies are usually identified: (1) a use of a variable without
a previous definition; (2) two definitions without an intermediate use; and (3) a
definition without use. While these all raise concerns in a program, it is not the
case of (2) and (3) in a Circus model. Because a variable declaration is a variable
definition that assigns an arbitrary value to a variable, it is common to follow it
up with a second definition that restricts that value.

In addition, it is not rare to use a communication d?x to define just that the
value x to be input via the channel d is not restricted (and also later not used).
In an abstract specification, a process involving such a communication might,
for example, be combined in parallel with another process that captures another
requirement concerned with restricting these values x , while the requirement
captured by the process that defines d?x is not concerned with such values.

As we can see in the following sections, the data-coverage criteria that we
consider are based on the set of definitions of a variable x . When a definition
involved in any of the above anomalies is considered, it imposes no restriction
on the set of tests under consideration for coverage. In practical terms, no tests
are required as a consequence of the presence of such definitions.

12

3.4 all-defs

The first data-coverage criterion that we consider, all-defs, requires that all def-
initions are covered, and followed by one (reachable) use, via any (clear) path.
We formalise coverage criterion by identifying the sets of sptraces SSPT that
satisfy that criterion. For all-defs, the formal definition is as follows.OK

Definition 11. For every variable name x and process P, a set SSPT of sp-
traces of P provides all-defs coverage if, and only if,

∀ df : defs(x, P) •
(∃ spt : sptraces(P); u : e-uses(x, P) • clear-path(spt, df, u, x))⇒

(∃ spt : SSPT ; u : e-uses(x, P) • clear-path(spt, df, u, x))

It requires that, if there is an sptrace spt that can contribute to coverage, then at
least one is included in SSPT . Since, as already explained, data-flow anomalies
are acceptable, this set may be empty.

Example 10. As explained in Examples 7 and 8, in CashMachine, inc?c?a is
the only definition of c, and its two uses are (outc!c, tag1) and (outc!c, tag2).
There is a trivial clear path between inc?c?a to (outc!c, tag1), where the use
immediately follows the definition. Also, as indicated in Example 9, there are
two clear paths from inc?c?a to (outc!c, tag2). Accordingly, examples of sets
of sptraces that provide all-defs coverage are the three singletons below.

{〈inc?c?a, (outc!c, tag1)〉 }
{〈inc?c?a, var notes, Dispense, notes = [[]] , (outc!c, tag2)〉}
{〈inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes, (outc!c, tag2)〉}

Other sets that provide all-defs coverage are the supersets of the above sets, and
the sets that include any of the extensions of the sptraces above. 2

3.5 all-uses

The all-uses criterion requires that all definition-use pairs are covered by at least
one clear path, if possible.

Definition 12. For every variable name x and process P, a set SSPT of sp-
traces of P provides all-uses coverage if, and only if,

∀ df : defs(x, P); u : e-uses(x, P) •
(∃ spt : sptraces(P) • clear-path(spt, df, u, x))⇒

(∃ spt : SSPT • clear-path(spt, df, u, x))

Example 11. Sets of sptraces that provide all-uses coverage are obtained by tak-
ing the first one of Example 10 and one of the other ones.

{ 〈inc?c?a, (outc!c, tag1)〉,
〈inc?c?a, var notes, Dispense, notes = [[]] , (outc!c, tag2)〉}
{ 〈inc?c?a, (outc!c, tag1)〉,
〈inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes, (outc!c, tag2)〉}

These sets have two elements since there is one definition of c, and two uses. 2

13

3.6 all-du-paths

The all-du-paths criterion requires that all definition-use pairs are covered by all
possible paths. Our notion of path, as already said, is based on sptraces.

Definition 13. For every variable name x and process P, a set SSPT of sp-
traces of P provides all-du-paths coverage if, and only if,

∀ df : defs(x, P); u : e-uses(x, P); p : all-du-sub-path(x, P, df, u) •
∃ spt : SSPT ; spt1, spt2 : seq TLabel • spt = spt1 a p a spt2

The traces spt1 and spt2 are an initialisation and a finalisation trace that deter-
mine an sptrace of P that covers p. The set all-du-sub-path(x, P, df, u) contains
all the paths in P , according to its set of sptraces, that start with df, finish with
u, and is clear of definitions of x in between.

Definition 14.

all-du-sub-path(x, P, df, u) =
{ spt : sptraces(P); i : 1 . .# spt ; j : (i + 1) . .# spt |

spt i = df ∧ spt j = u ∧ ∀ k : (i + 1) . . (j − 1) • spt k 6∈ defs(x, P))
• (i . . j) � spt }

Example 12. A set of sptraces that provides all-du-paths coverage is obtained
by selecting the three sptraces of example 10

{ 〈inc?c?a, (outc!c, tag1)〉,
〈inc?c?a, var notes, Dispense, notes = [[]] , (outc!c, tag2)〉
〈inc?c?a, varnotes, Dispense, notes 6= [[]] , cash!notes, (outc!c, tag2)〉}

2

Example 13. When considering data-flow coverage of the variable notes, we
observe that it is defined in the Dispense schema and it has one use only,
cash!notes at line 8 of the main action. There is a unique def-clear path be-
tween them. Thus a single sptrace is sufficient to provide coverage according
to any of the three criteria: it just needs to contain the two consecutive labels
corresponding to this definition and this use as indicated below.

〈. . . , inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes, . . .〉

For instance, the singleton below provides all-defs, all-uses and all-du-paths cov-
erage with respect to the variable notes.

{〈inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes, (outc!c, tag2)〉}

2

14

This mostly concludes our discussion of the standard data-flow coverage criteria.
We note, however, that the CashMachine variables are c, a, notes, and nBank ,
and that nBank and a are used internally only. Thus, there is no def-clear path
from their definition to an external use, and given the definitions of all-defs,
all-uses and all-du-paths, every set of sptraces provides coverage with respect to
these criteria and these variables. They contribute, however, to our next more
elaborate criterion, which takes the nature of Circus models into account, em-
phasizing dependencies between different variables.

In addition, the structure of schemas is not taken into account. For instance,
Dispense is a disjunction, and the criteria above do not force the coverage of the
two cases, even if the last one achieves it due to the existence of two definition-
clear paths that cover them. Coverage of the structure of Z schemas could be
another selection criterion by itself, or combined with data-flow analysis.

4 sel-var-df-chain-trace

The definition of this criterion is based on the notion of a var-df-chain, which we
introduce first (Section 4.1). Afterwards, we formalise this novel criterion (Sec-
tion 4.2), and lastly we apply it to the CashMachine (Section 4.3). Roughly, the
idea is to identify sptraces that include chains of definition and associated inter-
nal uses of variables, such that each variable affects the next one in the chain.
For state-rich models, we expect an interesting number of such chains.

4.1 var-df-chain

A suffix of an sptrace spt starting at position i (that is, (i . . # spt) � spt) is
in the set var-df-chain(x, P) of var-df-chains of P for x if it starts with a label
spt i that defines x and subsequently has a clear path to a label spt j . This label
must either be a use of x , and in this case it must be the last label of spt, or
affect the definition of another variable y , and in this case spt must continue
with a var-df-chain for y. The continuation is determined by (j . . # spt) � spt ,
the subsequence of spt from the position j .

Definition 15.

var-df-chain(x, P) =
{ spt : sptraces(P); i : 1 . .# spt ; j : (i + 1) . .# spt | spt i ∈ defs(x, P) ∧ (∀ k : (i + 1) . . (j − 1) • spt k 6∈ defs(x, P)) ∧(

(spt j ∈ e-uses(x, P) ∧ j = # spt) ∨
(∃ y • affects(x, y, spt j) ∧ (j . .# spt) � spt ∈ var-df-chain(y, P))

)
• (i . .# spt) � spt

}

A variable x affects the definition of another variable y in a tagged label tl if it
is an internal use of x and a definition of y .

Definition 16. affects(x, y, tl) = x ∈ i-useV(tl) ∧ y ∈ defs(tl)

15

An internal use of a variable is an occurrence of it in a guard or action. (This
notion of internal use subsumes the classical notion of p-uses.) The set i-useV(tl)
of variables used in a tagged label tl, internally, is defined as follows.

Definition 17.

i-useV(g) = FV (g) i-useV(ε) = i-useV(d) = ∅
i-useV(d!e) = i-useV(d?x) = ∅ <<<<<<< .minei-useV(d?x : g) = FV (g) \ {x} ======= i-useV(d?x : c) = FV (c) \ {x} >>>>>>> .r3463
i-useV(f : [pre, pos]) = FV (pre) ∪ FV (pos)
i-useV(Op) = FV (Op) i-useV(x := e) = FV (e)
i-useV(var x : T) = ∅ i-useV(var x := e) = FV (e)
i-useV(end y) = ∅

We observe that not all free occurrences of a variable constitute an internal use
of it. For example, an assignment to a variable is not an use of it.

4.2 The criterion

We observe that var-df-chains are not sptraces, but suffixes of sptraces. So,
coverage is provided by sptraces that have such suffixes, rather than by the
var-df-chains themselves. In particular, sel-var-df-chain-trace coverage requires
that every chain in a model is covered by at least one sptrace.

Definition 18. For every variable name x and process P, a set SSPT of sp-
traces of P provides sel-var-df-chain-trace coverage if, and only if,

∀ spt1 : var-df-chain(x, P) •
∃ spt2 : SSPT ; spt3 : seq TLabel • spt2 = spt3 a spt1

The specification trace spt3 is an initialisation trace that leads to the chain.
This is the most demanding of the criteria in this report as shown below.

Theorem 1 For every set SSPT of sptraces, if it provides sel-var-df-chain-trace
coverage, then it provides all-du-paths coverage. Additionally, if it provides all-
du-paths coverage, then it provides all-uses coverage. Finally, if it provides all-
uses coverage, then it provides all-defs coverage.

The proof of this theorem uses our detailed formalisation of all definitions. It
establishes subset inclusion for each pair of the sets of sets of sptraces that
provide coverage according to Definitions 11, 12, 13 and 18.

Proof.
Case sel-var-df-chain-trace ensures all-paths(
∀ spt1 : var-df-chain(x, P) •
∃ spt2 : SSPT ; spt3 : seq TLabel • spt2 = spt3 a spt1

)
⇔

16



∀ spt1 : seq TLabel ; spt4 : sptraces(P);
i : 1 . .# spt4; j : (i + 1) . .# spt4 •



spt4 i ∈ defs(x, P) ∧
(∀ k : (i + 1) . . (j − 1) • spt4 k 6∈ defs(x, P)) ∧

(spt4 j ∈ e-uses(x, P) ∧ j = # spt4) ∨∃ y •affects(x, y, spt4 j) ∧
(j . .# spt) � spt4 ∈ var-df-chain(y, P))


 ∧

spt1 = (i . .# spt4) � spt4


⇒
∃ spt2 : SSPT ; spt3 : seq TLabel • spt2 = spt3 a spt1




[definition of var-df-chain(x, P)]

⇒

∀ spt1 : seq TLabel ; spt4 : sptraces(P);
i : 1 . .# spt4; j : (i + 1) . .# spt4 •


spt4 i ∈ defs(x, P) ∧
(∀ k : (i + 1) . . (j − 1) • spt4 k 6∈ defs(x, P)) ∧
spt4 j ∈ e-uses(x, P) ∧ j = # spt4 ∧
spt1 = (i . .# spt4) � spt4

⇒
∃ spt2 : SSPT ; spt3 : seq TLabel • spt2 = spt3 a spt1




[predicate calculus]

⇔



∀ spt4 : sptraces(P); i : 1 . .# spt4; p : seq TLabel •


∃ df : defs(x, P); u : e-uses(x, P) • spt4 i = df ∧ spt4 (# spt4) = u ∧

(∀ k : (i + 1) . . (# spt4 − 1) • spt4 k 6∈ defs(x, P)) ∧
p = (i . .# spt4) � spt4




⇒
∃ spt : SSPT ; spt1 : seq TLabel • spt = spt1 a p)




[property of sets]

⇔



∀ spt4 : sptraces(P); i : 1 . .# spt4;
df : defs(x, P); u : e-uses(x, P); p : seq TLabel •
 spt4 i = df ∧ spt4 (# spt4) = u ∧

(∀ k : (i + 1) . . (# spt4 − 1) • spt4 k 6∈ defs(x, P)) ∧
p = (i . .# spt4) � spt4

⇒
∃ spt : SSPT ; spt1 : seq TLabel • spt = spt1 a p




[predicate calculus]

17

⇔



∀ spt4 : sptraces(P); i : 1 . .# spt4; j : i . .# spt4;
df : defs(x, P); u : e-uses(x, P); p : seq TLabel •
 spt4 i = df ∧ spt4 j = u ∧

(∀ k : (i + 1) . . (j − 1) • spt4 k 6∈ defs(x, P)) ∧
p = (i . . j) � spt4

⇒
(∃ spt : SSPT ; spt1 : seq TLabel • spt = spt1 a p)




[{spt : sptraces(P); i : 1 . .# spt | P(spt ,# spt) • (i . .# spt) � spt} =]

[{spt : sptraces(P); i : 1 . .# spt ; j ; i . .# spt | P(spt , j) • (i . . j) � spt}]
[since sptraces(P) is prefix closed]

⇔



∀ spt4 : sptraces(P); i : 1 . .# spt4; j : (i + 1) . .# spt4;
df : defs(x, P); u : e-uses(x, P); p : seq TLabel •
 spt4 i = df ∧ spt4 j = u ∧

(∀ k : (i + 1) . . (j − 1) • spt4 k 6∈ defs(x, P)) ∧
p = (i . . j) � spt4

⇒
(∃ spt : SSPT ; spt1 : seq TLabel • spt = spt1 a p)




[df 6= u by defs(x, P) ∩ e-uses(x, P) = ∅]

⇒



∀ spt4 : sptraces(P); i : 1 . .# spt4; j : (i + 1) . .# spt4;
df : defs(x, P); u : e-uses(x, P); p : seq TLabel •
 spt4 i = df ∧ spt4 j = u ∧

(∀ k : (i + 1) . . (j − 1) • spt4 k 6∈ defs(x, P)) ∧
p = (i . . j) � spt4

⇒(
∃ spt : SSPT ; spt1, spt2 : seq TLabel •
spt = spt1 a p a spt2

)



[take spt2 = 〈 〉]

⇔



∀ df : defs(x, P); u : e-uses(x, P); p : seq TLabel •


∃ spt : sptraces(P); i : 1 . .# spt ; j : (i + 1) . .# spt •

spt i = df ∧ spt j = u ∧
(∀ k : (i + 1) . . (j − 1) • spt k 6∈ defs(x, P)) ∧
p = (i . . j) � spt

⇒
(
∃ spt : SSPT ; spt1, spt2 : seq TLabel •
spt = spt1 a p a spt2

)




[predicate calculus]

⇔
(
∀ df : defs(x, P); u : e-uses(x, P); p : all-du-sub-path(x, P, df, u) •
∃ spt : SSPT ; spt1, spt2 : seq TLabel • spt = spt1 a p a spt2

)
[definition of all-du-sub-path(x, P, df, u)]

Case all-paths ensures all-uses(
∀ p : all-du-sub-path(x, P, df, u) •
∃ spt : SSPT ; spt1, spt2 : seq TLabel • spt = spt1 a p a spt2

)

18

⇔



∀ p : seq TLabel •


∃ spt : sptraces(P); i : 1 . .# spt ; j : (i + 1) . .# spt •

spt i = df ∧ spt j = u ∧
(∀ k : (i + 1) . . (j − 1) • spt k 6∈ defs(x, P)) ∧
p = (i . . j) � spt

⇒
(
∃ spt : SSPT ; spt1, spt2 : seq TLabel •
spt = spt1 a p a spt2

)




[definition of all-du-sub-path(x, P, df, u)]

⇔



∀ p : seq TLabel •


∃ spt : sptraces(P); i : 1 . .# spt ; j : (i + 1) . .# spt •

spt i = df ∧ spt j = u ∧
(∀ k : (i + 1) . . (j − 1) • spt k 6∈ defs(x, P)) ∧
p = (i . . j) � spt

⇒
(
∃ spt : SSPT ; spt1, spt2 : seq TLabel •
spt = spt1 a p a spt2 ∧ clear-path(p, df, u, x)

)




[clear-path(spt, df, u, x) and p = (i . . j) � spt]

⇔



∀ p : seq TLabel ; spt : sptraces(P); i : 1 . .# spt ; j : (i + 1) . .# spt •
 spt i = df ∧ spt j = u ∧

(∀ k : (i + 1) . . (j − 1) • spt k 6∈ defs(x, P)) ∧
p = (i . . j) � spt

⇒(
∃ spt : SSPT ; spt1, spt2 : seq TLabel •
spt = spt1 a p a spt2 ∧ clear-path(p, df, u, x)

)



[predicate calculus]

⇔



∀ spt3 : sptraces(P); i : 1 . .# spt3; j : (i + 1) . .# spt3 •
(

spt3 i = df ∧ spt3 j = u ∧
∀ k : (i + 1) . . (j − 1) • spt3 k 6∈ defs(x, P)

)
⇒∃ spt : SSPT ; spt1, spt2 : seq TLabel •(

spt = spt1 a (i . . j) � spt a spt2 ∧
clear-path((i . . j) � spt3, df, u, x)

)



[predicate calculus]

⇔



∀ spt3 : sptraces(P); i : 1 . .# spt3; j : (i + 1) . .# spt3 •
(

spt3 i = df ∧ spt3 j = u ∧
∀ k : (i + 1) . . (j − 1) • spt3 k 6∈ defs(x, P)

)
⇒∃ spt : SSPT ; spt1, spt2 : seq TLabel •(

spt = spt1 a (i . . j) � spt a spt2 ∧
clear-path(spt, df, u, x)

)



[property of clear-path and (i . . j) � spt3 is a subsequence of spt]

19

⇒


∀ spt3 : sptraces(P); i : 1 . .# spt3; j : (i + 1) . .# spt3 •
(

spt3 i = df ∧ spt3 j = u ∧
∀ k : (i + 1) . . (j − 1) • spt3 k 6∈ defs(x, P)

)
⇒(

(∃ spt : SSPT • clear-path(spt, df, u, x)) ∧
(∃ spt : sptraces(P) • clear-path(spt, df, u, x))

)



[predicate calculus]

⇔


∃ spt3 : sptraces(P); i : 1 . .# spt3; j : (i + 1) . .# spt3 •(

spt3 i = df ∧ spt3 j = u ∧
∀ k : (i + 1) . . (j − 1) • spt3 k 6∈ defs(x, P)

) ⇒(
(∃ spt : SSPT • clear-path(spt, df, u, x)) ∧
(∃ spt : sptraces(P) • clear-path(spt, df, u, x))

)


[predicate calculus]

⇔

 (∃ spt : sptraces(P) • clear-path(spt, df, u, x))⇒(
(∃ spt : SSPT • clear-path(spt, df, u, x)) ∧
(∃ spt : sptraces(P) • clear-path(spt, df, u, x))

)
[definition of clear-path(spt, df, u, x)]

⇔
(

(∃ spt : sptraces(P) • clear-path(spt, df, u, x))⇒
(∃ spt : SSPT • clear-path(spt, df, u, x))

)
[predicate calculus]

Case all-uses ensures all-defs∀ u : e-uses(x, P) •
(∃ spt : sptraces(P) • clear-path(spt, df, u, x))⇒

(∃ spt : SSPT • clear-path(spt, df, u, x))



⇒

∀ u : e-uses(x, P) •
(∃ spt : sptraces(P) • clear-path(spt, df, u, x))⇒

(∃ spt : SSPT ; u : e-uses(x, P) • clear-path(spt, df, u, x))


[predicate calculus]

⇔
(

(∃ spt : sptraces(P); u : e-uses(x, P) • clear-path(spt, df, u, x))⇒
(∃ spt : SSPT ; u : e-uses(x, P) • clear-path(spt, df, u, x))

)
[predicate calculus]

2

4.3 Examples

The very basic var-df-chains, where the same variable is considered as the start-
ing definition and the final use, with a clear path with respect to this vari-
able in between, are covered by the above criteria. More interesting are those
var-df-chains where intermediate variables that are defined and then used intro-
duce dependencies between definition and use of different variables.

20

A first example is the definition of a in inc?c?a and the use of notes in
cash!notes. The dependency comes from the fact that notes belongs to the set of
written variables of Dispense, a is an input of this schema, and within Dispense,
there is the constraint: Σ notes! = a?. Thus affects(a, notes, Dispense) holds,
and since cash!notes ∈ e-uses(notes, CashMachine), we have the var-df-chain:

〈inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes〉

We note that its coverage is required by all-du-paths by accident, because it is
part of a clear path between a definition of c and a use of c. Here, the effect of
the definition of a on the value of notes is explicitly required to be covered. The
var-df-chains identified below, however, are not required to be covered by the
previous criteria. They give rise to new tests.

Other examples of var-df-chains are introduced by the definitions of nBank .
The label nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap } is such a definition, and
nBank is used in Dispense. Moreover, notes is externally used in the label
cash!notes. This leads to the following var-df-chain.

〈nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap },
inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes〉

Coverage of this chain leads to coverage of the effect of a refill event, after which
the value of nBank is updated as indicated above. An initialisation trace that
leads to the above var-df-chain is simply 〈refill〉.

Another definition of the nBank variable is in the DispenseNotes schema,
namely: nBank ′ n = (nBank n)−(notes!] n). Moreover, DispenseNotes also has
an internal use of nBank . Finally, the path below is clear of nBank definitions
between the two occurrences of Dispense.

〈Dispense,
notes 6= [[]] , cash!notes, (outc!c, tag2), inc?c?a, var notes, Dispense〉

This leads to the var-df-chain below, where the second occurrence of Dispense
is also taken as a definition of notes, which is used externally in the final label.

〈Dispense,
notes 6= [[]] , cash!notes, (outc!c, tag2), inc?c?a, var notes, Dispense,
notes 6= [[]] , cash!notes〉

A possible initialisation trace for this var-df-chain is 〈inc?c?a〉.
As already mentioned, our new criterion sel-var-df-chain is inspired by the

work in [21], but there are fundamental differences that go beyond the speci-
ficities of the Circus framework. Because of the nature of Circus, it is important
not to consider only traces that start with a definition characterised by an input
communication like in [21]. The internal state is just as important as any input.

Moreover, throwing away traces that are prefixes of other selected traces like
in [21] is not applicable to testing for traces refinement or deadlock reduction
(known as the conf relation), which are the conformance relations considered

21

c ∧ (s; g)

(c | s |= 〈g〉a spt)
ε−→ST (c ∧ (s; g) | s |= spt)

c ∧ T 6= ∅

(c | s |= 〈d?x : T〉a spt)
d?w0−→ST (c ∧ w0 ∈ T | s; var x := w0 |= spt)

c

(c | s |= 〈d!e〉a spt)
d!w0−→ST (c ∧ (s; w0 = e) | s |= spt)

(c1 | s1 |= A1)
ε−→ (c2 | s2 |= Skip)

(c1 | s1 |= 〈A1〉a spt)
ε−→ST (c2 | s2 |= spt)

Table 2. Operational semantics of sptraces; w0 stand for fresh symbolic variables

for the Circus testing theory [3]. A trace is used to construct tests that check
forbidden continuations and required acceptances at a particular point of the
SUT history, and that check is not subsumed by tests that arise from longer
traces. It is the reason why we do not pursue maximality as in [21].

In the next section, we explain how to obtain cstraces from sptraces (to
construct symbolic tests). This is essential for generating tests from the selected
sptraces and states the link of these tests with the operational semantics and
the Circus testing theory, whether data-flow coverage is used for selection or not.

5 Conversion of specification traces to symbolic traces

Converting an sptrace to a symbolic trace requires an operational semantics for
sptraces, which we provide in Table 2. It defines a transition relation −→ST

using four rules: one for when the first label is a guard, two for when it is either
an input or an output, and one for an action label A. In this last case, the rules of
the operational semantics transition rule −→ define the new transition relation.

Like in the operational semantics, the configuration is a triple, but here,
instead of a process or action, we have an sptrace associated with a constraint

c and a state assignment s. From a configuration (c | s |= 〈l〉a spt) with an

sptrace 〈l〉 a spt, we have a transition to a configuration with spt. The new
constraint and state depend on the label l.

For a guard, a transition requires that c is satisfiable and g holds in the
current state (s; g). In this case, the transition is silent: it has label ε.

Input and output communications give rise to non-silent transitions with la-
bels like those of the operational semantics: symbolic inputs and outputs. Inputs
d?x: T are annotated with the type T of channel d . The new constraint records
that the input value represented by the fresh symbolic variable w0 has type T
and the state is enriched with a declaration of x whose initial value is set to w0.

22

(c1 | s1 |= spt1)
ε−→ST (c2 | s2 |= spt2)

(c1 | s1 |= spt1)
〈 〉→→ (c2 | s2 |= spt2)

(c1 | s1 |= spt1)
d?α0−→ST (c2 | s2 |= spt2)

(c1 | s1 |= spt1)
〈 d?α0 〉→→ (c2 | s2 |= spt2)

(c1 | s1 |= spt1)
d!α0−→ST (c2 | s2 |= spt2)

(c1 | s1 |= spt1)
〈 d.α0 〉→→ (c2 | s2 |= spt2)

(c1 | s1 |= spt1)
st1→→ (c2 | s2 |= spt2) (c2 | s2 |= spt2)

st2→→ (c3 | s3 |= spt3)

(c1 | s1 |= spt1)
st1
a

st2→→ (c3 | s3 |= spt3)

Table 3. Annotated transition relation: symbolic traces for sptraces

Actions, that is, state operations, are handled like in the operational seman-
tics. We observe that, by definition of the operational semantics [3], all transitions
arising from an action in a label are silent and lead to the action Skip.

Finally, we have a transition relation
st→→ that defines a symbolic trace st that

captures the interactions corresponding to an sptrace. It is defined in Table 3.

The transition relation
st→→ is used below to characterise the cstraces of a

process from its sptraces. The function cstraceSPT
a(P) defines the set of cstraces

of P in terms of sptraces(P). The extra parameter a is an alphabet: a sequence
of fresh symbolic variables. The cstraces in cstraceSPT

a(P) use these variables
in the order in which they appear in a.

Definition 19.

cstraceSPT
a(begin state[x : T] • A end) =

convSPTa(w0 ∈ T, x := w0) L sptraces(begin state[x : T] • A end) M

As before, we consider a process begin state[x : T] • A end without loss of gen-
erality, and define its cstraces by applying a conversion function convSPTa(c, s)
to each of its sptraces. It is defined as follows.

Definition 20. For every alphabet a, constraint c, state assignment s and sp-
trace spt, we have that convSPTa(c, s) spt = (st,∃(αc \ αst) • c1) where st

and c1 are characterised by αst ≤ a ∧ ∃ s1 • (c | s |= spt)
st→→ (c1 | s1 |= 〈 〉).

Each sptrace gives rise to exactly one cstrace, since any nondeterminism in the
actions are captured by the constraint on the symbolic variables. The alphabet
αst of the symbolic trace st is a prefix of a: αst ≤ a.

Example 14. The following cstraces correspond to the sptraces in Example 12.

(〈inc?α0?α1, outc!α2〉, α0 ∈ CARD ∧ α1 ∈ N1 ∧ α2 = α0)
(〈inc?α0?α1, cash!α2, outc!α3〉, α0 ∈ CARD ∧ α1 ∈ N1 ∧
Σα2 = α1 ∧ (∃ w0 : Note→ N • (∀ n : Note • α2] n) ≤ w0 n)) ∧ α3 = α0)

We take the alphabet to be 〈α0, α1, α2, α3, . . .〉. The first cstrace comes from both

23

the first and the second sptrace in Example 12. The second cstrace comes from
the last sptrace in Example 12. The quantified symbolic variable w0 represents
the internal value of nBank , which is not observable in the trace, but contributes
to the specification of the observable value α2.

Two sptraces give rise to the same cstrace because after a withdraw request,
the card may be returned immediately for one of two reasons: there is a problem
with the card account (like insufficient funds) or there is no money in the cash
machine. Since the model abstracts away the existence of accounts and their
balances, we cannot distinguish these behaviours by tests from this model.

This is reflected in the fact that the two sptraces have different tags associated
with the outc!c event. This indicates that they correspond to two different parts
of the model. This distinction is not testable and that may be a problem for
understanding or observing the SUT. A testing tool might, for example, warn
that a distinction may need to be introduced or instrumented in the SUT. 2

The cstraces defined by the operational semantics capture just observable labels.
On the other hand, sptraces were defined specifically to capture the structure of
the model, and in doing so, it captures guards and data operations that are not
visible in the interface of the SUT. So, it is not surprising that, as illustrated
in the above example, there are sptraces that lead to the same cstrace. They
correspond to paths in the model that are not distinguishable from the SUT.
Requiring their absence in programs is reasonable, but in abstract models that
involve nondeterminism, this is not realistic.

The next theorem establishes that tests identified by sptraces are unbiased
with respect to refinement, because they specify valid cstraces of the process.
Construction of unbiased tests from cstraces was addressed in [3].

Theorem 2 cstraceSPT
a(P) ⊆ cstracesa(P)

We do not have equality: there is no empty sptrace, for instance. The main
lemma is proved by induction on the specification traces of P .

Proof.

cstraceSPT
a(begin state[x : T] • A end)

= convSPTa(w0 ∈ T, x := w0) L sptraces(begin state[x : T] • A end) M
[definition of cstraceSPT]

= { spt : sptraces(begin state[x : T] • A end)
• convSPTa(w0 ∈ T, x := w0) spt
}

[definition of relational image]

24

= { spt : sptraces(begin state[x : T] • A end); st; c1; s1 |
αst ≤ a ∧ (w0 ∈ T | x := w0 |= spt)

st→→ (c1 | s1 |= 〈 〉)
• (st,∃(αc \ αst) • c1)
}

[definition of convSPT]

= { spt; st; c1; s1; c2; s2; A2 |
(w0 ∈ T | x := w0 |= A)

spt⇒⇒ (c2 | s2 |= A2) ∧ obs(last spt) ∧
αst ≤ a ∧ (w0 ∈ T | x := w0 |= spt)

st→→ (c1 | s1 |= 〈 〉)
• (st,∃(αc \ αst) • c1)
}

[definition of sptraces]

⊆ { st; c1; s1; A2 |
αst ≤ a ∧ (w0 ∈ T | x := w0 |= A)

st−→ (c1 | s1 |= A2)
• (st,∃(αc \ αst) • c1)
}

[Lemma 1]

= cstracesa(begin state[x : T] • A end) [definition of cstraces]

2

The lemma below establishes the relationship between the transition relations
⇒⇒, for specification traces, and −→, for the operational semantics of actions,
which we reproduce in the appendix. The equality between the existential quan-
tifications is semantic equality, not syntactic: the predicates identified by the
pieces of text built out of the constraints and traces are equivalent.

Lemma 1.

∀ spt; st; c1; s1; A1; c2; s2; A2; c3; s3 •(
(c1 | s1 |= A1)

spt⇒⇒ (c2 | s2 |= A2) ∧ (c1 | s1 |= spt)
st→→ (c3 | s3 |= 〈 〉)

)
⇒∃ c4, s4, A4 •(c1 | s1 |= A1)

st−→ (c4 | s4 |= A4) ∧
(∃(αc3 \ αst) • c3) = (∃(αc4 \ αst) • c4)


Proof. Direct consequence of Proposition 1 and Lemma 2. 2

Lemma 2.

∀ spt; st; c1; s1; A1; c2; s2; A2; c3; s3 •
((c1 | s1 |= A1)

spt⇒⇒ (c2 | s2 |= A2) ∧ (c1 | s1 |= spt)
st→→ (c3 | s3 |= 〈 〉))⇒

(∃(αc3 \ αst) • c3) = (∃(αc2 \ αst) • c2)

Proof. By induction on st.

25

Case 〈 〉

(c1 | s1 |= spt)
〈 〉→→ (c3 | s3 |= 〈 〉)

In this case, by the definition of →→ and −→ST , spt is a sequence of guards
and actions (without communications). We establish the result by case analysis
on spt.

Subcase 〈g〉a spt

(c1 | s1 |= 〈g〉a spt)
st→→ (c3 | s3 |= 〈 〉) ∧ (c1 | s1 |= A1)

〈g〉aspt⇒⇒ (c2 | s2 |= A2)

⇒

∃ A3 •
(c1 | s1 |= 〈g〉a spt)

〈 〉→→ (c1 ∧ (s1; g) | s1 |= spt) ∧
(c1 ∧ (s1; g) | s1 |= spt)

〈 〉→→ (c3 | s3 |= 〈 〉) ∧
(c1 | s1 |= A1)

〈g〉⇒⇒ (c1 ∧ (s1; g) | s1 |= A3) ∧
(c1 ∧ (s1; g) | s1 |= A3)

spt⇒⇒ (c2 | s2 |= A2)



 [Lemma 3]

⇒ (∃αc3 • c3) = (∃αc2 • c2) [by induction hypothesis]

Subcase 〈A〉a spt, where A is an action of a label: similar.

Case 〈d?α0〉

(c1 | s1 |= spt)
〈d?α0〉→→ (c3 | s3 |= 〈 〉)

In this case, by the definition of →→ and −→ST , spt is a sequence of guards
and actions that ends with an input on the channel d . We again establish the
result by case analysis on spt. If it starts with a guard or an action, the proof
is similar to that presented above. For 〈d?x〉, we have the following.

(c1 | s1 |= 〈d?x〉) 〈d?α0〉→→ (c3 | s3 |= 〈 〉) ∧ (c1 | s1 |= A1)
〈d?x〉⇒⇒ (c2 | s2 |= A2)

⇒ c3 = c1 ∧ α0 ∈ T ∧
∃ A3 • (c1 | s1 |= A1)

〈d?x〉⇒⇒ (c1 ∧ α0 ∈ T | s1; var x := α0 |= A3)

[Lemma 4]

⇒ c3 = c1 ∧ α0 ∈ T ∧ c2 = c1 ∧ α0 ∈ T [Proposition 2]

⇒ c3 = c2

⇒ (∃(αc3 \ {α0}) • c3) = (∃(αc2 \ {α0}) • c2) [predicate calculus]

Case 〈d!α0〉 Similar, but relies on Lemma 5.

26

Case 〈d.α0〉 a st Here, we use d.α0 to represent an input, an output or even a
synchronisation, in which case there is no communicated value α0.

(c1 | s1 |= A1)
spt⇒⇒ (c2 | s2 |= A2) ∧ (c1 | s1 |= spt)

〈d.α0〉ast→→ (c3 | s3 |= 〈 〉)

⇒
∃ spt1, spt2, c4, s4 • (c1 | s1 |= A1)

spt1
a

spt2⇒⇒ (c2 | s2 |= A2) ∧
(c1 | s1 |= spt1

a spt2)
〈d.α0〉→→ (c4 | s4 |= spt2) ∧

(c1 | s1 |= spt2)
st→→ (c3 | s3 |= 〈 〉)


[definition of →→]

⇒

∃ spt1, spt2, c4, s4, A4 •
(c1 | s1 |= A1)

spt1
a

spt2⇒⇒ (c2 | s2 |= A2) ∧
(c1 | s1 |= A1)

spt1⇒⇒ (c4 | s4 |= A4) ∧
(c1 | s1 |= spt1

a spt2)
〈d.α0〉→→ (c4 | s4 |= spt2) ∧

(c1 | s1 |= spt2)
st→→ (c3 | s3 |= 〈 〉)




[Proposition 3]

⇒

∃ spt1, spt2, c4, s4, A4, c5, s5, A5 •
(c1 | s1 |= A1)

spt1⇒⇒ (c5 | s5 |= A5) ∧
(c5 | s5 |= A5)

spt2⇒⇒ (c2 | s2 |= A2) ∧
(c1 | s1 |= A1)

spt1⇒⇒ (c4 | s4 |= A4) ∧
(c1 | s1 |= spt1

a spt2)
〈d.α0〉→→ (c4 | s4 |= spt2) ∧

(c1 | s1 |= spt2)
st→→ (c3 | s3 |= 〈 〉)




[definition of ⇒⇒]

⇒

∃ spt1, spt2, c4, s4, A4, s5, A5 •
(c1 | s1 |= A1)

spt1⇒⇒ (c4 | s5 |= A5) ∧
(c5 | s5 |= A5)

spt2⇒⇒ (c2 | s2 |= A2) ∧
(c1 | s1 |= A1)

spt1⇒⇒ (c4 | s4 |= A4) ∧
(c1 | s1 |= spt1

a spt2)
〈d.α0〉→→ (c4 | s4 |= spt2) ∧

(c1 | s1 |= spt2)
st→→ (c3 | s3 |= 〈 〉)




[Proposition 2]

⇒ (∃(αc3 \ αst) • c3) = (∃(αc2 \ αst) • c2) [induction hypothesis]

27

⇒ (∃(αc3 \ ({α0} ∪ αst)) • c3) = (∃(αc2 \ ({α0} ∪ αst)) • c2)
[predicate calculus]

2

The definitions of the various transition systems ensure the property below.

Proposition 1.

∀ spt; st; c1; s1; A1; c2; s2; A2; c3; s3 •
((c1 | s1 |= A1)

spt⇒⇒ (c2 | s2 |= A2) ∧ (c1 | s1 |= spt)
st→→ (c3 | s3 |= 〈 〉))

⇒
(c1 | s1 |= A1)

st−→ (c2 | s2 |= A2)

Lemma 3.

∀ c1, s1, A1, g, spt, c3, s3, A3 | (c1 | s1 |= A1)
〈g〉aspt⇒⇒ (c3 | s3 |= A3) •

(∃ A2 • (c1 | s1 |= A1)
〈g〉⇒⇒ (c1 ∧ (s1; g) | s1 |= A2))

Proof. By induction on A1, considering the cases where the label can be 〈g〉.

Case g N A Direct from Rule (5) in Appendix B and Proposition 3. In Ap-
pendix B we present the transition system that defines the labels determined by
an action, and is the basis for the definition of ⇒⇒. The relation =⇒P defined
in Appendix B is a partial relation for actions. It is used in conjunction with the
operational semantics (included in Appendix A) to define =⇒.

Case let x • A1 Direct from Rule (10) in Appendix B and the induction hy-
pothesis.

Case A1; B Direct from Rule (11) in Appendix B and the induction hypothesis.

Case (spar v | x | y | x1 := z1 • A1) J cs K (spar v | y | x | x2 := z2 • A2)
In Rule (13) of Appendix B, we conclude by the induction hypothesis that
c3 = c1 ∧ (s1; end v, y; g), which can be simplified as follows.

c3 = c1 ∧ (s1; end v, y; g)

= c3 = c1 ∧ (s1; g)

[since v, y are not free in g, because names are not reused in actions]

For the state assignment, the induction hypothesis gives s3 = s1; end v, y. If s1
is a statement assignment over v, y and x, then s1; end v, y ∧ s1; end x = s1.

28

Case A1\cs Direct from Rule (16) in Appendix B and the induction hypothesis.
2

Proposition 2.

(c1 | s1 |= A1)
spt⇒⇒ (c2 | s2 |= A2) ∧ (c1 | s1 |= A1)

spt⇒⇒ (c3 | s3 |= A3)
⇒
c2 = c3

This proposition follows from the fact that⇒⇒ identifies a unique path in A1 via
spt and then follows however many silent moves of the operational semantics
are possible. These silent moves are for Skip; A and u, which do not change c1.
Finally, for (spar v | x | y | x1 := z1 • A1) J cs K (spar v | y | x | x2 := z2 • A2), a
simple induction would justify that the constraint is maintained.

Lemma 4.

∀ c1, s1, A1, d, x, c3, s3, A3 | (c1 | s1 |= A1)
〈d?x〉aspt⇒⇒ (c3 | s3 |= A3) •

(∃ A2, α0 • (c1 | s1 |= A1)
〈d?x〉⇒⇒ (c1 ∧ α0 ∈ T | s1; var x := α0 |= A2))

Proof. By case analysis on A1 like in the proof of Lemma 3.

Case d?x : T−→ A Direct from Rule (7) in Appendix B and Proposition 3.

Cases let x • A1, A1 ; B, and A1\cs are similar to those in the proof of Lemma 3.
We observe that, in the case of hiding, if d is in the set cs of hidden channels,
then the communication d?x cannot be in the trace. So, we conclude that d is
not in the channel.

Case (spar v | x | y | x1 := z1 • A1) J cs K (spar v | y | x | x2 := z2 • A2)
In Rule (13) of Appendix B, we conclude by the induction hypothesis that
c3 = c1 ∧ α0 ∈ T, as required, and that s3 = s1; end v, y; var a := α0. If
s1 is a statement assignment over variables are v, y and x, then

s1; end v, y; var a := α0 ∧ s1; end z

= s1; var a := α0; end v, y ∧ s1; end z

= s1; var a := α0

2

Lemma 5.

∀ c1, s1, A1, d, e, c3, s3, A3 | (c1 | s1 |= A1)
〈d!e〉aspt⇒⇒ (c3 | s3 |= A3) •

(∃ A2, α0 • (c1 | s1 |= A1)
〈d!e〉⇒⇒ (c1 ∧ (s1; α0 = e) | s1 |= A2))

Proof. By case analysis on A1. The interesting cases are as follows.

29

Case d!e−→ A Direct from Rule (6) in Appendix B and Proposition 3.

Case (spar v | x | y | x1 := z1 • A1) J cs K (spar v | y | x | x2 := z2 • A2)
If Rule (13) of Appendix B is applicable, the argument is similar to that in
the proof of Lemma 3. If Rule (14) is applicable, we conclude by Lemma 4
c3 = c1 ∧ α0 ∈ T, and that c4 = c1 ∧ (s1; end v, x; α0 = e) by the induction
hypothesis. Their conjunction can be simplified as follows.

c1 ∧ α0 ∈ T ∧ c1 ∧ (s1; end v, x; α0 = e)

= c1 ∧ (s1; end v, x; α0 = e)

[α0 = e⇒ α0 ∈ T since the action is well typed]

= c1 ∧ (s1; α0 = e)

[since v, x are not free in e, because names are not reused in actions]

Moreover, by Lemma 4, s3 = s1; end v, y; var a := α0, and by the induction
hypothesis, s4 = s1; var a := α0. If s1 is a state assignment over variables v, y
and x, then

∃α0 • (s1; end v, y; var a := α0; α0 = a)⇔ ((s1; var a := α0); (α0 = e))

= ∃α0 • true⇔ true

= true

This gives us the required result for the constraint. For the state assignment,
the result is a direct consequence of the definition of Rule (14). 2

The definitions of the various transition systems ensure the property below.

Proposition 3. For every spt1 ∈ sptraces(c1, s1, A1)

(c1 | s1 |= spt1)
st→→ (c2 | s2 |= spt2)⇒

(∃ A2 • (c1 | s1 |= A1)
spt1−spt2⇒⇒ (c2 | s2 |= A2))

We use spt1−spt2, where spt2 is a suffix of spt1 to denote a prefix of spt1: that
containing all its elements before spt2. This concludes our proof of unbias for
every selection strategy based on sptraces.

6 Related works

Data-flow analysis of communicating system has raised interest for quite a while.
In one of the first works in this area, Reif and Smolka [19] presented a technique
based on the construction, from the considered set of communicating processes,
of an special directed acyclic graph called the event spanning graph and pro-
vided an approximation of the data flow analysis for the case where the only
interferences between processes are message primitives.

30

Concerning programs, we can cite, among many others, [15], where Nau-
movitch et al. presented a generalisation to concurrent Java programs of an
approach where the accuracy of the data-flow analysis based on a data-flow
graph can be improved by supplying additional information, expressed as a fi-
nite state automata, to represent the possible communications among threads
and feasibility constraints. This technique had been extended in [8] and applied
to Ada programs. Since then, numerous specialised techniques and tools have
been developed for data flow analysis of multithreaded programs.

More recently, Chugh et al. in [5] have shown how to use race detection to
determine when data-flow facts may be killed by the actions of other threads.
The approach is not tied to any particular concurrency constructs since various
race-detection engines can be used. It makes it possible to improve precision and
scalability of the data-flow analysis of a large class of concurrent programs.

Concerning models, in [11], Labbé and Gallois address the issue of slicing
communicating symbolic automata specifications, more precisely IOSTS, and
thus extend data-flow analysis to this kind of models. The emphasis there is on
model reduction. Testing is just mentioned as a perspective.

Data-flow based testing for state-based specification languages has been applied
to Lotos by Van der Schoot and Ural in [21], to SDL and Estelle (that is, EFSM)
by Ural and others in [22], and extended with control dependencies in [10].
As said in Section 4, our sel-var-df-chain-trace selection criterion is inspired
from [21], but different, due to the notion of internal state in Circus and to the
forms of symbolic tests considered in the Circus testing theory. These differences,
however, should not prevent its extension to control dependencies, possibly by
some slight enrichment of our tagged labels. However, our aim in this paper is
more to exemplify via data-flow coverage how to relate coverage of the structure
of a Circus model to the tests derived from its operational semantics than to
multiply examples of possible criteria. Thus this extension is not developed here.

In another context, Tse et al. have adapted data-flow testing to service orches-
trations specified in WS-BPEL in [12], and to service choreographies in [13]. From
the specifications, they build an XPath Rewriting Graph, which captures the
specificities of the underlying process algebras, which is very different from Cir-
cus, with loose coupling between processes, XML messages, and XPath queries.
Data-flow entities (that is, defs, uses, and def-clear sub-paths) are then rede-
fined as Q-DEF, Q-USE, and Q-DU, from where data-flow criteria similar to the
conventional ones we present in Section 3 are established.

7 Conclusions

We have presented here a framework for selection of tests from Circus models
based on data-flow coverage criteria for specification traces, which record se-
quences of guards, communications and actions defined by a model. To illustrate
the use of the definitions, we have formalised some coverage criteria, including
a new criterion that takes into account specification traces with internal defi-
nitions and uses. Proof of unbias of the selected tests is possible due to formal

31

nature of our setting. We have formalised also the procedure to construct Circus
cstraces (used to construct tests) from our specification traces. Our formal defi-
nitions are, in particular, suited for use with the Circus testing tool in [9], which
is based on a theorem prover, namely Isabelle/HOL.

Many variants of data-flow coverage criteria can be considered in our frame-
work. For instance, we can consider only inputs as definitions, as in [21]; we can
also restrict i-useV to uses within predicates in line with the classical p-uses
criterion [18]. In these cases, fewer tests are required. As already said, control
dependencies as in [10] could be taken into account.

In addition, the specification traces defined in this paper can be used for other
selection criteria, data-flow based and other ones as well, since most features of
the models are kept. It is our plan to consider a number of selection criteria
for Circus tests. Besides data-flow coverage, we have already considered criteria
based on cstraces, including synchronisation coverage, a specific criterion for
coverage of parallelisms. We plan to explore criteria that consider a variety of
Circus constructs in an integrated way, to include, for instance, notions of Z
schema coverage, case splitting in the pre and postcondition of specification
statements, control dependencies and test purposes expressed in Circus. We plan
also to address in a formal framework the problem of monitoring such tests.

Acknowledgments

We warmly thank Frédéric Voisin for several pertinent comments. We are grateful
to the Royal Society and the CNRS for funding our collaboration.

References

1. ISO/IEC 13568:2002. Information technology—Z formal specification notation—
syntax, type system and semantics. International Standard.

2. A. L. C. Cavalcanti and M.-C. Gaudel. Specification Coverage for Testing in Circus.
In UTP, volume 6445 of LNCS, pages 1 – 45. Springer, 2010.

3. A. L. C. Cavalcanti and M.-C. Gaudel. Testing for Refinement in Circus. Acta
Informatica, 48(2):97 – 147, 2011.

4. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. FACJ, 15(2 - 3):146 – 181, 2003.

5. R. Chugh et al. Dataflow analysis for concurrent programs using datarace detec-
tion. In ACM SIGPLAN PLDI, pages 316 – 326. ACM, 2008.

6. L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A Comparison of
Data Flow Path Selection Criteria. In ICSE, pages 244 – 251, 1985.

7. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
8. M. B. Dwyer et al. Flow analysis for verifying properties of concurrent software

systems. ACM ToSEM, 13(4):359 – 430, 2004.
9. A. Feliachi, M. C. Gaudel, M. Wenzel, and B. Wolff. The Circus Testing Theory

Revisited in Isabelle/HOL. In 15th ICFEM, volume 8144 of LNCS, pages 243 –
260. Springer, 2013.

10. H. S. Hong and H. Ural. Dependence testing: Extending data flow testing with
control dependence. In TESTCOM, pages 23 – 39, 2005.

32

11. S. Labbé and J.-P. Gallois. Slicing communicating automata specifications: poly-
nomial algorithms for model reduction. FACJ, 20(6):563 – 595, 2008.

12. L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of service-oriented workflow
applications. In ICSE, pages 371 – 380, 2008.

13. L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of service choreography. In
ESEC/FSE, pages 151 – 160, 2009.

14. C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.
15. G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data flow analysis for checking

properties of concurrent Java programs. In ICSE, pages 399 – 410. ACM, 1999.
16. M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs Using

Circus. PhD thesis, University of York, 2006.
17. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. A UTP Semantics

for Circus. FACJ, 21(1-2):3 – 32, 2009.
18. S. Rapps and E. J. Weyuker. Selecting software test data using data flow informa-

tion. IEEE TSE, 11(4):367 – 375, 1985.
19. J. H. Reif and S. A. Smolka. Data flow analysis of distributed communicating

processes. International Journal of Parallel Programming, 19(1):1 – 30, 1990.
20. A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science.

Springer, 2011.
21. H. V. D. Schoot and H. Ural. Data flow analysis of system specifications in LOTOS.

International Journal of Software Engineering and Knowledge Engineering, 7:43 –
68, 1997.

22. H. Ural, K. Saleh, and A. W. Williams. Test generation based on control and data
dependencies within system specifications in SDL. Computer Communications,
23(7):609 – 627, 2000.

23. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

A Operational semantics


begin

state [x : T]
• A

end

 ε−→


begin

state [x : T] | loc (w0 ∈ T | x := w0)
• A

end

 (1)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

begin
state [x : T]
| loc (c1 | s1)
• A1

end

 l−→


begin
state [x : T]
| loc (c2 | s2)
• A2

end


(2)

c ∧ (s; p) ∧ (∃ v′ • s; Q)

(c | s |= p` Q)
ε−→ (c ∧ (s; Q [w0/v

′]) | s; v := w0 |= Skip)
v ′ = outαs (3)

33

c ∧ ¬ (s; p)

(c | s |= p` Q)
ε−→ (c | s |= Chaos)

(4)

c

(c | s |= Chaos)
ε−→ (c | s |= Chaos)

(5)

c

(c | s |= v := e)
ε−→ (c ∧ (s; w0 = e) | s; v := w0 |= Skip)

(6)

c ∧ (s; preOp)

(c | s |= Op)
ε−→ (c ∧ (s; Op [w0/v

′]) | s; v := w0 |= Skip)
v ′ = outαs (7)

c ∧ ¬ (s; preOp)

(c | s |= Op)
ε−→ (c | s |= Chaos)

(8)

c

(c | s |= d!e→ A)
d!w0−→ (c ∧ (s; w0 = e) | s |= A)

(9)

c ∧ T 6= ∅ x 6∈ αs

(c | s |= d?x : T→ A)
d?w0−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(10)

c ∧ T 6= ∅ x 6∈ αs

(c | s |= var x : T • A)
ε−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(11)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= let x • A1)
l−→ (c2 | s2 |= let x • A2)

(12)

c

(c | s |= let x • Skip)
ε−→ (c | s; end x |= Skip)

(13)

34

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= A1; B)
l−→ (c2 | s2 |= A2; B)

(14)

c

(c | s |= Skip; A)
ε−→ (c | s |= A)

(15)

c

(c | s |= A1 u A2)
ε−→ (c | s |= A1)

c

(c | s |= A1 u A2)
ε−→ (c | s |= A2)

(16)

c ∧ (s; g)

(c | s |= g N A)
ε−→ (c ∧ (s; g) | s |= A)

(17)

c

(c | s |= A1 @ A2)
ε−→ (c | s |= (loc c | s • A1)� (loc c | s • A2))

(18)

c1

(c | s |= (loc c1 | s1 • Skip)� (loc c2 | s2 • A))
ε−→ (c1 | s1 |= Skip)

(19)

c2

(c | s |= (loc c1 | s1 • A)� (loc c2 | s2 • Skip))
ε−→ (c2 | s2 |= Skip)

(20)

(c1 | s1 |= A1)
ε−→ (c3 | s3 |= A3)

c | s
|= (loc c1 | s1 • A1)
�
(loc c2 | s2 • A2)


 ε−→


c | s
|= (loc c3 | s3 • A3)
�
(loc c2 | s2 • A2)




(21)

(c2 | s2 |= A2)
ε−→ (c3 | s3 |= A3)

c | s
|= (loc c1 | s1 • A1)
�
(loc c2 | s2 • A2)


 ε−→


c | s
|= (loc c1 | s1 • A1)
�
(loc c3 | s3 • A3)




(22)

35

(c1 | s1 |= A1)
l−→ (c3 | s3 |= A3) l 6= ε

(c | s |= (loc c1 | s1 • A1)� (loc c2 | s2 • A2))
l−→ (c3 | s3 |= A3)

(23)

(c2 | s2 |= A2)
l−→ (c3 | s3 |= A3) l 6= ε

(c | s |= (loc c1 | s1 • A1)� (loc c2 | s2 • A2))
l−→ (c3 | s3 |= A3)

(24)

c

(c | s |= A1 J x1 | cs | x2 K A2)
ε−→

c | s
|=
(par s | x1 • A1) J cs K (par s | x2 • A2)

 (25)

c
c | s
|= (par s1 | x1 • Skip)

JcsK
(par s2 | x2 • Skip)


 ε−→ (c | (∃ x′2 • s1) ∧ (∃ x′1 • s2) |= Skip)

(26)

(c | s1 |= A1)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l 6∈ cs

c | s
|= (par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)


 l−→


c3 | s
|= (par s3 | x1 • A3)

JcsK
(par s2 | x2 • A2)




(27)

(c | s2 |= A2)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l 6∈ cs

c | s
|= (par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)


 l−→


c3 | s
|= (par s1 | x1 • A1)

JcsK
(par s3 | x2 • A3)




(28)

36



(c | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)

d!w2−→ (c4 | s4 |= A4)

∨

(c | s1 |= A1)
d!w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)

d?w2−→ (c4 | s4 |= A4)

∨

(c | s1 |= A1)
d!w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)

d!w2−→ (c4 | s4 |= A4)


d ∈ cs c3 ∧ c4 ∧ w1 = w2

c | s
|= (par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)


 d!w2−→


c3 ∧ c4 ∧ w1 = w2 | s
|= (par s3 | x1 • A3)

JcsK
(par s4 | x2 • A4)




(29)

(c | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) (c | s2 |= A2)

d?w2−→ (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ w1 = w2
c | s
|= (par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)


 d?w2−→


c3 ∧ c4 ∧ w1 = w2 | s
|= (par s3 | x1 • A3)

JcsK
(par s4 | x2 • A4)




(30)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l 6= ε chan l 6∈ cs

(c1 | s1 |= A1 \ cs)
l−→ (c2 | s2 |= A2 \ cs)

(31)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l = ε ∨ chan l ∈ cs

(c1 | s1 |= A1 \ cs)
ε−→ (c2 | s2 |= A2 \ cs)

(32)

c

(c | s |= Skip \ cs)
ε−→ (c | s |= Skip)

(33)

c

(c | s |= µ X • A, δ) ε−→ (c | s |= A, δ ⊕ {X 7→ A})
(34)

37

c

(c | s |= X, δ)
ε−→ (c | s |= δ X, δ)

(35)

B Specification-oriented transition system: labels

The rule for processes is not specifically for the transition system for the relation
=⇒P that defines the labels arising from an action. The transition system of
=⇒P is used in combination with the operational semantics to define maximal
non-silent transitions with specification labels. These are characterised by the
relation =⇒, for which we define a transition rule for processes.

(state(P1) |= maction(P1))
l

=⇒ (state(P2) |= maction(P2))

P1
l

=⇒ P2

(1)

It is the transition system for =⇒P that is referenced in proofs presented in this
report, and we reproduce it below.

c ∧ (s; p) ∧ (∃ v ′ • s; Q)

(c | s |= p` Q)
p` Q

=⇒P (c ∧ (s; Q [w0/v
′]) | s; v := w0 |= Skip)

v ′ = outαs (2)

c ∧ (s; preOp)

(c | s |= Op)
Op

=⇒ (c ∧ (s; Op [w0/v
′]) | s; v := w0 |= Skip)

v ′ = outαs (3)

c

(c | s |= v := e)
v:=e

=⇒P (c ∧ (s; w0 = e) | s; v := w0 |= Skip)
(4)

c ∧ (s; g)

(c | s |= g N A)
g

=⇒P (c ∧ (s; g) | s |= A)
(5)

c

(c | s |= d!e→ A)
d!e

=⇒P (c ∧ (s; w0 = e) | s |= A)
(6)

c ∧ T 6= ∅ x 6∈ αs

(c | s |= d?x : T→ A)
d?x
=⇒ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(7)

38

c ∧ T 6= ∅ x 6∈ αs

(c | s |= var x : T • A)
(var x:T)
=⇒P (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(8)

c

(c | s |= let x • Skip)
(end x)
=⇒P (c | s; end x |= Skip)

(9)

(c1 | s1 |= A1)
l

=⇒P (c2 | s2 |= A2)

(c1 | s1 |= let x • A1)
l

=⇒P (c2 | s2 |= let x • A2)
(10)

(c1 | s1 |= A1)
l

=⇒P (c2 | s2 |= A2)

(c1 | s1 |= A1; B)
l

=⇒P (c2 | s2 |= A2; B)
(11)

c

(c | s |= A1 J x1 | cs | x2 K A2)
var vl,vr:=v,v

=⇒P
c | s; var vl, vr := v, v
|= (spar v | vl | vr | x1 := x1l • A1[vl/v])

JcsK
(spar v | vr | vl | x2 := x2r • A2[vr/v])




v ′ = outαs
v = x1, x2
fresh vl , vr

(12)

(c | s; end v, y |= A1)
l

=⇒P (c3 | s3 |= A3) chan l = ε ∨ chan l 6∈ cs

(c | s |= (spar v | x | y | x1 := z1 • A1) J cs K (spar v | y | x | x2 := z2 • A2))
l

=⇒P
c3 | s3 ∧ s; end x

|= (spar v | x � (end l), (var l) | y | x1 := z1 • A3)
JcsK

(spar v | y | x � (end l), (var l) | x2 := z2 • A2)




(13)

39

(c | s; end v, y |= A1)
d?a

=⇒P (c3 | s3 |= A3)

(c | s; end v, x |= A2)
d!e

=⇒P (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ ∃w0 • (s3; (w0 = a))⇔ (s4; (w0 = e))

(c | s |= (spar v | x | y | x1 := z1 • A1) J cs K (spar v | y | x | x2 := z2 • A2))
d!e

=⇒P
c3 ∧ c4 ∧ ∃ w0 • (s3; (w0 = a))⇔ (s4; (w0 = e)) | s
|= (spar v | x � a | y | x1 := z1 • A3)

Jcs | var a := e | s3 ∧ s4 ∧ s; end x, yK
(spar v | y | x � a | x2 := z1 • A4)




(14)

The above rule uses a new parallel construct that keeps track of the new input
variable declared and the new state obtained as a consequence. It is used to
ensure that, as required here, all transitions have a single label, and the label
contains a guard, a communication, or an action. The next rule ensures that in
the next step of the evaluation of the parallelism, the variable declaration and
state change are recorded. This concern was not present in [2].

c

(c | s |=

 (spar v | x | y | x1 := z1 • A1)
Jcs | var a := e | s1K

(spar v | y | x | x2 := z2 • A2)

)

var a:=e
=⇒P

(c | s1 |= (spar v | x | y | x1 := z1 • A1) J cs K (spar v | y | x | x2 := z2 • A2))

(15)

Rules similar to those above for parallelism are needed for external choice.

(c1 | s1 |= A1)
l

=⇒P (c2 | s2 |= A2) chan l 6∈ cs

(c1 | s1 |= A1 \ cs)
l

=⇒P (c2 | s2 |= A2 \ cs)
(16)

Above, we assume that, if l is not a communication, then chan l is some special
channel ε that does not belong to any synchronisation set cs.

40

	RR1567entete
	RR1567rapp

