
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

A NOTE ON TEST SELECTION FOR CONF

REFINEMENT

CAVALCANTI A / GAUDEL M C

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

12/2013

Rapport de Recherche N° 1569

A note on test selection for conf refinement

Ana Cavalcanti

University of York, Department of Computer Science

York YO10 5GH, UK

Marie-Claude Gaudel

LRI, Université de Paris-Sud and CNRS
Orsay 91405, France

Résumé.

Cette note traite de la sélection de tests pour la relation de conformité conf qui requiert la
réduction des blocages : un blocage du système sous test doit correspondre à un blocage de la
spécification. Elle accompagne et complémente le rapport de recherche 1568 où le même problème
est traité pour une autre relation de conformité, la réduction des traces (“traces refinement”).

Etant données une spécification et une relation de conformité, un jeu de tests exhaustif a
la propriété que si un système sous test passe avec succès tous ses tests, ce système satisfait la
spécification selon la relation de conformité. Les jeux de test exhaustifs sont des constructions
théoriques, basées sur la syntaxe et la sémantique des spécifications. Généralement, ils ne sont
pas directement utilisables : ils sont souvent infinis. Mais ils sont utilisés comme une base pour
définir des stratégies de test basé sur les spécifications, via la sélection de sous-ensembles finis
à partir de critères de sélection couplés à des hypothèses d’uniformité et de régularité sur le
système sous test.

Le problème traité dans ce rapport survient quand la relation de conformité ne demande
pas que toutes les traces de la spécification soient exécutables par le système sous test, comme
c’est le cas pour la réduction des traces et la réduction des blocages. Il est alors possible qu’un
sous-ensemble sélectionné contienne des tests basés sur des traces non implémentées. De ce
fait, un critère de sélection de tests ne peut pas se formaliser juste comme la définition d’un
sous-ensemble : cette définition doit être accompagnée de la définition de controleurs de tests
qui assurent des tentatives d’exécution des tests susceptibles de contribuer à la satisfaction du
critère de manière à ce que, selon les cas, au moins l’un d’eux, ou tous ceux qui sont implémentés,
soi(en)t exécuté(s). Ce rapport donne ces définitions pour la relation de conformité conf , i. e.
la réduction des blocages, et des spécifications en CSP ou Circus .

Mots-clés. Test basé sur les spécifications, sélection de tests, controleurs de test, CSP, Circus, conf , réduction
des blocages.

December 11, 2013

A note on test selection for conf refinement

Ana Cavalcanti

University of York, Department of Computer Science

York YO10 5GH, UK

Marie-Claude Gaudel

LRI, Université de Paris-Sud and CNRS
Orsay 91405, France

Abstract

This is a note on test selection for deadlock reduction, that is, the conf conformance relation. It is a
companion report of [3], where a similar problem is studied for traces refinement.

Given a specification and a conformance relation, an exhaustive test set has the property that if a system
under test passed all its tests, it would satisfy the specification with respect to the conformance relation.
The exhaustive test set is a theoretical construct; it is generally not directly usable: it is often infinite. It is
used as a basis to define practical specification-based testing strategies, via selection of finite subsets defined
by some selection criterion coupled with uniformity or regularity hypotheses on the system under test.

The problem studied here arises when the conformance relation does not require all the traces of the
specification to be executable by the system under test, as for traces refinement and deadlock reduction.
In such cases, it is possible that the selected subset of the exhaustive test set contains tests based on non-
implemented traces. Thus the selection criterion cannot be just formalised as the definition of a subset: it
must be coupled with the definition of drivers that provide an adaptive execution of the tests satisfying the
criterion, in order to ensure that those that the system under test can execute will be experimented. This
report provides these definitions for the case of deadlock reduction and CSP or Circus specifications.

Keywords: specification-based testing, test selection, process algebra, CSP, Circus, conf conformance
relation, test monitoring

1. Introduction

This note is an addition to the work initiated in [3] on selecting tests from an abstract specification for
testing that a system behaves like one of its refinements. In particular, we consider specifications written
using process algebra like CSP [7] or Circus [4]. In [3] we considered traces refinement and applied the results
to the selection of tests achieving synchronisation coverage. Here we address another refinement, namely
deadlock reduction, also known as the conf conformance relation.

There are two motivations for this note. First, we show that the approach developed for traces refinement
is applicable to other conformance relations. Secondly, we have previously shown that failures refinement,
another important conformance relation for both CSP and Circus, can be characterised as the conjunction of
traces refinement and conf [1, 2]. An exhaustive test set for failures refinement is, therefore, the union of the
exhaustive test sets for traces refinement and for conf . Thus, with this note, we provide a comprehensive
formal framework of test selection for failures refinement.

The principles of testing based on formal specifications can be summarised as follows. Given a specifica-
tion and a conformance relation, an exhaustive test set is stated with the proved property that if a system
under test (SUT) passed all the tests in this set, it would satisfy the specification in the sense captured by the
conformance relation. The exhaustive test set is of theoretical value: generally not directly usable and often
infinite. It is a basis for the definition of practical specification-based testing strategies, via selection of finite

December 11, 2013

subsets defined by selection criteria coupled with uniformity or regularity hypotheses on the SUT. Selection
criteria often correspond to a coverage requirement of the specification, but there are many variants [5].

The problem studied here arises when the conformance relation does not require all the traces of the
specification to be executable by the SUT, as for traces refinement and deadlock reduction. In such cases, it
is possible that the selected subset of the exhaustive test set contains tests based on non-implemented traces.
Thus the selection criterion cannot be just the definition of a subset: it must be coupled with the definition
of drivers that provide an adaptive execution of the tests satisfying the criterion, in order to ensure that
those that the SUT can execute will be experimented.

We do not recall here all the background material for our work: a description of Circus using an example
of a simple protocol, and an introduction to the main concepts of its testing theory can be found in [3]. The
next section gives the definition of deadlock reduction and recalls the notion of tests and exhaustive test set
corresponding to this notion of refinement. Section 3 develops the formal definitions of drivers and monitors
that ensures adaptive execution of the tests in order to fulfill various sorts of selection criteria.

2. Testing against deadlock reduction based on Circus or CSP specifications

2.1. Deadlock reduction

The conf relation captures reduction of deadlock; it is a widely used notion of conformance in testing
processes. Given two processes P1 and P2, we have that P1 conf P2 if, and only if, whenever P2 engages in
a sequence of events, that is, a trace, that can be accepted by P1 as well, then P2 can only deadlock if P1

may as well. Formally, conf can be defined as follows.

Definition 1.

P2 conf P1 =̂ ∀ t : traces(P1) ∩ traces(P2) • Ref (P2, t) ⊆ Ref (P1, t)
where Ref (P , t) =̂ {X | (t ,X) ∈ failures(P) }

As in [6, pages 94, 197], given a trace t of a process P and a subset X = {a1, . . . , an} of the set of events of
P , noted αP , the pair (t ,X) is a failure for P if, and only if, after performing t , P may refuse all events of
X : in other words, the parallel composition below may deadlock just after t .

P J αP K (t ; (a1 → P1 @ . . . @ an → Pn)

The symbol @ represents the external choice operator and P J αP K Q is the parallel composition of the
processes P and Q with synchronisation on all the events of P .

Example 1. We consider channels a, b, c, d , e and f that are used for synchronisation, but do not
communicate any value, and the stateless Circus process P defined below, where we use u for the internal
choice operator.

P =̂ begin •
a → e → c → Skip
u
b → e → (d → Skip u f → Skip)

end

The parallelism P JαP Kb → Stop may deadlock after the empty trace, because of a possible internal choice of
the process a → e → c → Skip. Similarly, P JαP Ka → Stop may deadlock if a → e → c → Skip is chosen.
We note, however, that P J αP K (a → Stop @ b → Stop cannot deadlock after the empty trace, because
whatever the internal choice, one event of the parallel process is accepted. Thus, (〈 〉, {b}) ∈ failures(P) and
(〈 〉, {a}) ∈ failures(P), but (〈 〉, {a, b}) 6∈ failures(P). 2

2

In the sequel, whenever we present a Circus stateless process like this, for brevity, we omit the begin and
end keywords and identify the process with its action after the ‘•’.

Given a system under test SUT and a specification SP , for SUT conf SP to hold, the definition requires
that, after performing every one of their common traces, the failures of SUT are failures of SP . Consequently,
after a trace t of SP , SUT may refuse all events refused by SP or accept some of them. Testing for conf
based on the refusals of SP would be, therefore, useless. What must be tested is that, after every trace t of
SP , SUT cannot refuse all events in a set X of events such that (t ,X) 6∈ failures(SP).

Such sets of events are called acceptance sets of SP after t .

2.2. Tests and exhaustive test set for conf

Testing for deadlock reduction is achieved by executing in parallel with the SUT a process corresponding
to a trace t of the specification followed by an external choice among all events of an acceptance set after
t of the specification. Formally, given a system under test SUT and a specification SP , a test execution

proposes to SUT the traces of the process a1−→ a2−→ . . .−→ Skip ; (@ a : X • a → Stop) where the
trace t = 〈a1, a2, . . .〉 is such that t ∈ traces(SP) and (t ,X) 6∈ failures(SP).

The verdict of one execution of such a test is as follows. If t , followed by a deadlock is observed, the
test execution is said to be a failure. If a trace t _ a, with a ∈ X is observed the result of the test is said
to be a success. If a strict prefix of t followed by a deadlock is observed, the test execution is said to be
inconclusive; the trace t has not been executed by SUT during this test execution, thus it was not possible
to test the absence of additional deadlock after t .

For a trace t , and an acceptance set X , a test is characterised by Tconf (t ,X) as defined below. As
explained above, it offers the trace t , and at the end a choice of the events in X . If SUT does not
synchronise on all events of t , the test is inconclusive, since it is not necessary for SUT to allow for all the
traces indicated in the specification. If the trace t is accepted, however, then SUT must accept at least one
event of X . The verdict is indicated by extra special events inc, pass, and fail .

Definition 2.

Tconf (〈 〉,X) = fail −→ (@ e : X • e −→ pass −→ Stop)

Tconf (〈 e 〉a t ,X) = inc −→ e −→ Tconf (t ,X)

Example 2. In Example 1, we have seen that {a, b} is an acceptance set of P after 〈 〉. Thus we have:

Tconf (〈 〉, {a, b}) = fail −→ ((a −→ pass −→ Stop) @ (b −→ pass −→ Stop))

Another pair that is not in failures(P) is (〈b, e〉, {d , f }). This leads to the test below.

Tconf (〈b, e〉, {d , f }) = inc −→ b −→ e −→ fail −→ ((d −→ pass −→ Stop) @ (f −→ pass −→ Stop))

2

Execution of one of these tests T is carried out by executing T and SUT in parallel, synchronising on all
events of the specification (that is, the non-verdict events).

Definition 3.

ExecutionSP
SUT (T) = (SUT J αSP K T) \ αSP

The exhaustive test set for conf contains all the tests obtained from the traces and acceptances of SP .

Definition 4. Given a specification SP, we define

Exhaustconf (SP) = {Tconf (t ,X) | t ∈ traces(SP) ∧ (t ,X) 6∈ failures(SP) }

3

Exhaustiveness of Exhaustconf (SP) is formally established by the following theorem, proved in [2].

Theorem 1 (Exhaustiveness of Exhaustconf). Given two Circus processes, SP and SUT , we have that
SUT conf SP if and only if,

∀T ∈ Exhaustconf (SP), t ′,X ′ | (t ′,X ′) ∈ failures(ExecutionSP
SUT (T)) •

last t ′ 6= fail ∨ X ′ 6= { inc, pass, fail }

Remark. Actually, it is sufficient to consider the minimal acceptance sets, as explained in [1]: acceptance
sets have the property that if X is an acceptance set after a given trace, then it is also the case for all
the sets containing X , and the tests corresponding to strict supersets of X are redundant. For the sake of
brevity, we leave aside the technicalities of the removal of the unnecessary tests.

3. Selection and deadlock reduction

Just as for traces refinement, when the considered conformance relation is conf , it is acceptable that a
trace of the specification is not implemented in the SUT. Moreover, in the case of conf , the SUT may have
more traces than the specification. This is illustrated in the following example.

Example 3. For instance, Q conf P , where P is the process of Example 1, and Q is as follows.

Q =̂ (d → Skip) u (b → d → (e → Skip u f → Skip))

Due to the first internal choices of Q and P , Ref (Q , 〈〉) is the set of subsets of αQ = {b, d , e, f } except
those that contain both d and b, and Ref (P , 〈〉) is the set of subsets of αP = {a, b, c, d , e, f } except those
that contain both a and b. Since a 6∈ αQ , all the sets in Ref (Q , 〈〉) are in Ref (P , 〈〉).

Considering the non empty traces of Q , 〈d〉 is a trace of Q but not a trace of P , thus there is no
requirement on its refusals. The traces of Q that begin with b are traces of P with the same refusals.

Thus Q conf P , but traces 〈a〉, 〈a, e〉, 〈a, e, c〉 that are traces of P are not traces of Q . 2

Therefore, it may be the case that a selected test is not executable, and if there is another test that may be
able to fulfill the selection criterion, it must be executed, and we should proceed in this way, until either a
satisfactory test is executed or it is certain that none exists. This has an impact on the way in which test
selection can be defined and applied. Thus, as for traces refinement, there are two main interrelated tasks
involved in the definition of a selection strategy for conf . Namely, the (formal) definitions of

1. the (possibly still infinite) subsets of tests that can contribute to the fulfillment of the selection criterion,
and

2. a test driver that attempt to fulfill the criterion at run-time by executing some of these tests despite
the fact that some traces, and thus some tests, are not implemented.

3.1. An introductory example: selection for coverage of an event

What does it mean to cover an event e when the conformance relation is conf ? One may consider that
it requires to exercise either one test or all tests Tconf (t ,X) such that:

• e occurs in trace t , or

• e is in the acceptance set X , or

• e either occurs in trace t , or is in the acceptance set X , or

• e occurs in t and is in X .

4

Example 4. The tests of P for deadlock reduction are built, as explained above, from couples of trace and
minimal acceptance sets. Those for P are given below.

〈 〉, {a, b}
〈a〉, {e}
〈a, e〉, {c}
〈a, e, c〉,∅
〈b〉, {e}
〈b, e〉, {d , f }
〈b, e, d〉,∅
〈b, e, f 〉,∅

This leads to the following tests.

fail −→ (a −→ pass −→ Stop @ b −→ pass −→ Stop)
inc −→ a −→ fail −→ e −→ pass −→ Stop
inc −→ a −→ inc −→ e −→ fail −→ c −→ pass −→ Stop
inc −→ b −→ fail −→ e −→ pass −→ Stop
inc −→ b −→ inc −→ e −→ fail −→ (d −→ pass −→ Stop @ f −→ pass −→ Stop)

For ensuring the execution of one test where e occurs in the trace (that is, before fail), it is necessary to
select the third and last tests, since one of them, or both, may correspond to a non-implemented trace. 2

Remark. The couples where the acceptance set is empty do not yield any test.

3.2. Drivers and monitors for coverage of one event

Given a specification SP and the selection criterion that the event e must be covered in the trace of a
conclusive test, we consider the subset of those tests where there is at least one occurrence of e in the trace.

Exhaustconf (SP)�te = {Tconf (t ,X) | t ∈ traces(SP) ∧ t�e 6= 〈 〉 ∧ (t ,X) 6∈ failures(SP) }

where t�e eliminates from the trace t all the events different from e. This (possibly infinite) subset of
Exhaustconf (SP) covers all the traces of the specification where e occurs at least once. We define below a
test driver that runs all these tests until a fail verdict, possibly followed by a pass verdict, is observed. This
is ensured by the test monitor process TMonitorconf executed alongside the tests.

Driverconf (SP ,SUT)�te = (9T : Exhaustconf (SP) �te •ExecutionSP
SUT (T))

J{| inc, pass, fail |}K
TMonitorconf

where

TMonitorconf = inc → TMonitorconf @ fail → pass → Stop

If e is not covered at runtime with the strategy above, it is because all the tests return an inconclusive
verdict. On the other hand, the fact that all tests return an inconclusive verdict does not mean that e has
not been executed, since some of the tests may return an inconclusive verdict after having exercised e.

In the case where the coverage criterion is that e is in the acceptance set, the subset of Exhaustconf (SP)
to be considered by the driver above can be defined as follows.

Exhaustconf (SP)�ae = {Tconf (t ,X) | t ∈ traces(SP) ∧ (t ,X) 6∈ failures(SP) ∧ e ∈ X }

The above criterion is rather sensible in the case of deadlock reduction: it may be the case that, for critical
reasons, a special event must never be blocked when it is not specified that this is possible. We note,

5

however, that if the acceptance set is not a singleton and when the SUT is non-deterministic, one relies on
the complete-test assumption to be sure that the event of interest is covered at runtime.

If the criteria is that e either occurs in the trace, or is in the acceptance set, the driver must consider

Exhaustconf (SP)�Te = {Tconf (t ,X) | t ∈ traces(SP) ∧ (t ,X) 6∈ failures(SP) ∧ (t�e 6= 〈 〉 ∨ e ∈ X) }

When e must occur in both the trace and the acceptance set, the ∨ above is replaced by ∧

3.3. Generalisation

Leaving the introductory special case of the coverage of one event, we consider now the general issue of
test selection for a given criterion. As for traces refinement, when selecting tests based on some property π,
we consider existential selection of tests with respect to π, and universal selection with respect to π.

As seen above, either properties of traces or of tests can be considered for selection criteria. Below, we
first discuss existential or universal selection of traces. In this case, the fact that there are several tests for
one trace must be taken into account. Afterwards, we discuss selection based on properties of tests.

For each trace t of a specification SP , we have the set

AllTestsconf (t ,SP) = {Tconf (t ,X) | (t ,X) 6∈ failures(SP) }

of all tests built from t and one of its acceptance sets X . For a property π of traces, we have:

existential selection of traces: there is at least one trace t satisfying π, such that AllTestsconf (t ,SP) is
actually executed (that is, all tests in AllTestsconf (t ,SP) are executed); or

universal selection of traces: for all implemented traces t satisfying π, AllTestsconf (t ,SP) is executed.

Coming back to test selection, for a given property π of tests, one may require either:

existential selection of tests: there is at least one test T satisfying π, that is actually executed, if there
is one that is implemented, or

universal selection of tests: all implemented tests T satisfying π are executed.

Below, we consider exhaustive test sets and drivers for each of these classes of selection criteria.

3.3.1. Existential selection of traces

For existential selection, the selected test set Existentialtraceconf (SP)�π turns out to be a set of test sets.

Existentialtraceconf (SP)�π = {AllTestsconf (t ,SP) | t ∈ traces(SP) ∧ t `π} (1)

We use the notation t `π to indicate that trace t satisfies property π.
The execution of all the tests associated with an implemented trace t can be specified as a simple driver

that runs independently and to conclusion all tests in AllTestsconf (t ,SP):

9T : AllTestsconf (t ,SP) • ExecutionSP
SUT (T)

Using such basic drivers, a driver that ensures existential coverage can be designed as follows: independently,
for each trace t that defines a set of tests AllTestsconf (t ,SP) in Existentialtraceconf (SP)�π, the driver above is
run under the control of a monitor that observes whether a fail event takes place. When it does, it means
that t is implemented. The monitor continues the execution of the other tests based on t , and sends to
the other drivers for the other traces a done event to make them to stop. Formally, we have the following
definition for a generic driver, for a specification SP and some property π of a trace.

ExistDriver trace
conf (SP ,SUT)�π =(

J {| done |} K TS : Existentialtraceconf (SP) �π •

(9T : TS • ExecutionSP
SUT (T)) J {| inc, pass, fail |} K TSMonitorconf

)
\ {| done |}

6

where TSMonitorconf is below. It stops when a done occurs, and raises a done event when a fail occurs.

TSMonitorconf = done −→ Stop @ inc−→ TSMonitorconf @ fail −→ done −→ Run

Run just continues running the other tests based on the same trace.

Run = inc → Run @ pass → Run @ fail → Run

In the definition above of ExistDriver trace
conf (SP)�π, each of the sets TS in Existentialtraceconf (SP)�π is consid-

ered. The drivers for each of these sets are run in parallel, synchronising on the event done. Each driver
runs all tests T in TS independently, but under the control of TSMonitorconf , which observes done as well
as the verdict events. If a done event occurs, TSMonitorconf stops (and so the tests under its control stop).
Otherwise, the tests proceed until a fail is observed, when done is raised, but the controlled tests proceed
to conclusion, since Run just ignores all verdict events. The done event is local to the existential driver; it
is used only for synchronisation between the monitors of the tests associated with each trace t .

Example 5. Coming back to trace coverage of an event e we have:

Existentialtraceconf (SP)�(t�e 6=〈 〉) = {AllTestsconf (t ,SP) | t ∈ traces(SP) ∧ t � e 6= 〈 〉}

The distributed union of the test sets in this set is exactly Exhaustconf (SP)�e . Here, their grouping based
on the traces t as defined by AllTestsconf (t ,SP) allows us to consider the alternative driver below.

ExistDriver trace
conf (SP ,SUT)�(t�e 6=〈 〉) =(

J {| done |} K TS : Existentialtraceconf (SP) �(t�e 6=〈 〉) •

(9T : TS • ExecutionSP
SUT (T)) J {| inc, pass, fail |} K TSMonitorconf

)
\ {| done |}

This driver ensures that for at least one implemented trace covering e, if there is one, all the tests are
executed, that is, all the acceptance sets are attempted. 2

As usual, if the SUT is nondeterministic, coverage has to rely on the complete-test assumption and on running
the driver several times, possibly with some instrumentation of the SUT and of its execution environment.
This is the case for all drivers that we present.

3.3.2. Universal selection of traces

The case of universal selection is easier to formalise; there is no need to consider a set of test sets as in
the previous section. The test set to be considered is as follows.

Universaltraceconf (SP)�π = {Tconf (t ,X) | t ∈ traces(SP) ∧ t `π ∧ (t ,X) 6∈ failures(SP) } (2)

All tests that correspond to implemented traces must be run, so the driver attempts to execute all tests.

UnivDriver trace
conf (SP ,SUT)�π = 9T : Universaltraceconf (SP) �π •ExecutionSP

SUT (T)

Example 6. Coming back again to coverage of an event e, we have

Exhaustconf (SP)�e = Universaltraceconf (SP)�(t�e 6=〈 〉)

The corresponding driver UnivDriver trace
conf (SP ,SUT)�(s�e 6=〈 〉) executes all tests arising from all traces that

include at least one occurrence of e. 2

7

3.3.3. Existential or universal selection of tests

For a given property π of tests, we consider, for both existential and universal selection, the following
exhaustive test set. We use T `π to denote the fact that test T satisfies π.

Exhausttestconf (SP)�π = {T : Exhaustconf (SP) | T `π}

There is no need to use a set of test sets like we have done for existential selection of traces. For existential
selection of the tests satisfying π, the driver is:

ExistDriver test
conf (SP ,SUT)�π =

(9T : Exhausttestconf (SP) �π •ExecutionSP
SUT (T)) J {| inc, pass, fail |} K TMonitor

where TMonitor is

TMonitor = inc → TMonitor @ fail → pass → Stop

For universal selection of tests satisfying π, the driver is:

UnivDriver test
conf (SP ,SUT)�π = 9T : Exhausttestconf (SP) �π •ExecutionSP

SUT (T)

This is exactly the same driver used for universal selection based on traces, except that it uses the tests in
Exhausttestconf (SP)�π (rather than those in Universaltraceconf (SP)�π).

3.4. Factorisation

Instead of using a monitor process to define special drivers, it is possible to factorise the tests in the
exhaustive test set to define a single tree-shaped test. This test offers the choice between all the tests
selected. In this case, the SUT drives the test by making the (external) choices offered in the test. Since
just one path of the tree-shaped test is executed in a test experiment, there is an existential selection (by
the SUT) of one test among those combined in the tree. Moreover, only the complete-test assumption and
enough repeated executions of the test can guarantee that all its paths (and, therefore, all tests combined
in the tree) are executed.

We define below the process end(T); it captures the final behaviour of a test T , where, after signalling
a fail , it attempts to execute an event in a acceptance set.

Definition 5.

end(fail −→ P) = fail −→ P end(inc −→ e −→ P) = end(P)

We now define a function FactSPconf (TS) that defines the factorised tree-shaped tests coming from a test set

TS . It is defined in terms of a function FactPSPconf (TS , t), which takes as an extra parameter the path (a
trace) t that defines the branch of the tree-shaped test that is being constructed.

Definition 6 (Factorisation of tests for conf).

FactSPconf (TS) = FactPSPconf (TS , 〈 〉)

FactPSPconf (TS , t) = TPass(TS , t) @ TContSPconf (TS , t)

TPass(TS , t) = Stop [if t 6∈ trace L TS M]

TPass(TS , t) = @ T : {T : TS | trace(T) = t } • end(T) [if t ∈ trace L TS M]

TContSPconf (TS , t) = Stop [if initials(TS , t) = ∅]

TContSPconf (TS , t) = inc −→@ e : initials(TS , t) • e −→ FactPSPconf (TS , t a 〈e〉) [if initials(TS , t) 6= ∅]

8

For any set TS , we have that FactSP (TS) is given by FactPSP (TS , 〈 〉); initially, just the empty path (that
is, trace) has been constructed. For any path t , this is an external choice between the tests defined by the
functions TPass(TS , t) and TContPconf (TS , t).

With TPass(TS , t), we consider whether t is the trace of a test in TS or not. We define the set traceLTS M
of traces of a set of tests TS as the set of specification traces used in its tests, not including the choice in
the acceptance set. We use the relational image operator f L S M; it provides the set of results obtained by
applying f to each element in the set S . The trace of a single test T is defined as follows.

Definition 7.

trace(fail −→ P) = 〈 〉 trace(inc −→ e −→ P) = 〈e〉a trace(P)

It t is not a trace of a test in TS , then TPass(TS , t) is Stop, which is a unit for external choice: Stop@P = P .
For example, TS may not have any test for the empty trace 〈 〉, and in this case TPass(TS , 〈 〉) does not
add anything to the tree-shaped test. On the other hand, if there are tests T in TS whose trace is t , then,
for each of them, we add its treatment of the acceptance set, characterised by end(T), to the tree.

With TContPconf (TS , t), we consider whether t is the prefix of a trace of a test in TS or not. We use the
notion of initials of a test set TS after a trace t , which is formally defined as follows.

Definition 8.

initials(TS , t) = {e | ∃T : TS ; s • trace(T) = t a 〈e〉a s }

If t has no continuation, then TContPconf (TS , t) is just Stop. Otherwise, we add an intermediary verdict
inc followed by a branch (in an external choice) for each of the continuations e.

Example 7. We call TSP the set of tests of Example 4.

FactPconf (TSP) = FactPP
conf (TSP , 〈 〉) = TPass(TSP , 〈 〉) @ TContPconf (TSP , 〈 〉)

since trace(fail −→ ((a −→ pass −→ Stop) @ (b −→ pass −→ Stop))) = 〈 〉,

TPass(TSP , 〈 〉)
= end(fail −→ ((a −→ pass −→ Stop) @ (b −→ pass −→ Stop)))
= fail −→ ((a −→ pass −→ Stop) @ (b −→ pass −→ Stop))

and since initials(TSP , 〈 〉) = {a, b} we have

TContPconf (TSP , 〈 〉) = inc −→ (a −→ FactPP
conf (TSP , 〈a〉) @ (b −→ FactPP

conf (TSP , 〈b〉))

Finally, the factorised test is

fail −→ ((a −→ pass −→ Stop) @ (b −→ pass −→ Stop))
@
inc −→ (a −→ (fail −→ e −→ pass −→ Stop @ inc −→ e −→ fail −→ c −→ pass −→ Stop)

@
b −→ (fail −→ e −→ pass −→ Stop

@
inc −→ e −→ fail −→ (d −→ pass −→ Stop @ f −→ pass −→ Stop))

No special driver is required in this case. 2

The two approaches, namely, factorisation and the definition of exhaustive test sets and drivers, are not
exactly equivalent. In the execution of a factorised test, the control, exercised via choice of events, is left to
the SUT. In the execution of a set of tests, the driver controls the execution of the tests.

9

4. Conclusions

We have established that the work on selection for traces refinement presented in [3] is applicable to other
conformance relations, for instance, conf . Since failures refinement can be characterised as the conjunction
of traces refinement and conf [1, 2], the union of exhaustive test sets for traces refinement and for conf is an
exhaustive test set for failures refinement. What we provide is, therefore, a comprehensive formal framework
of test selection for failures refinement, not just conf .

The issue of partial implementation of symbolic tests can be dealt with similarly to what is done in [3]
for traces refinement. There is nothing in that material specific to a particular conformance relation, since
it addresses the treatment of existing previously selected tests of any shape.

Acknowledgements. We are grateful to the Royal Society and the CNRS for funding our collaboration via
their International Exchange scheme.

References

[1] A. L. C. Cavalcanti and M.-C. Gaudel. Testing for Refinement in CSP. In 9th International Conference on Formal
Engineering Methods, volume 4789 of Lecture Notes in Computer Science, pages 151 – 170. Springer-Verlag, 2007.

[2] A. L. C. Cavalcanti and M.-C. Gaudel. Testing for Refinement in Circus. Acta Informatica, 48(2):97 – 147, 2011.
[3] A. L. C. Cavalcanti and M.-C. Gaudel. Test selection for traces refinement. Technical Report 1568, LRI,

http://www.lri.fr/Rapports-internes, Université Paris-Sud XI, October 2013.
[4] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement Strategy for Circus. Formal Aspects of

Computing, 15(2 - 3):146 – 181, 2003.
[5] R M. Hierons. Comparing test sets and criteria in the presence of test hypotheses and fault domains. ACM Transactions

on Software Engineering and Methodology, 11(4):427–448, 2002.
[6] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in Computer Science. Prentice-Hall, 1998.
[7] A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science. Springer, 2011.

10

	RR1569entete
	RR1569rapp
	FrenchAbstract-conf
	CircusSynCoverage-conf

