O ExOQOH=E HE HEOdYYEA

CHOOSING AN INDUCTION VARIABLE IN
UNIVERSALLY QUANTIFIED ATOMIC
FORMULAS

FRANOVA M /KODRATOFF Y

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud-LRI

02/2015

Rapport de Recherche N° 1579

CNRS - Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Batiment 650
91405 ORSAY Cedex (France)

Choosing an induction variable
in universally quantified atomic formulas

Marta Fraiova, Yves Kodratoff

Introduction

In logics, a formal proof of a formula consistsaof application of axioms and inference
rules until the atom TRUE is obtained. When theciiehce rule called induction
principle is applied, we speak of inductive theorgnoving. In contrast to usual
inference rules that simply look at the patterdosmulas, induction principle involves
consideration of elements of the domain over witehgiven formula is expressed.
For instance, let us consider the inference rulled¢daodus Ponens. This inference
consists of two premises, namely

Premisel: A-> B

Premise 2. A
and the logical conclusion is the formula B.

The induction principle is a particular inferencéersince it
* requires the domain of the problem formulation ¢odefined inductively (such
as it is the case for natural numbers, lists, etc.)
* requires the problem to be expressed using thestsal quantifier (as it is the
case for the formuls x A(x))
* requires that the particular formulas called baskiaduction stepare proved.

Example:
Natural numbers are defined inductively by thedaihg definition:
* 0is a natural number;
e if nis a natural number then s(n) is a natural bem
0 and s(n) are called representatives and n iseheud-representative.
Sometimes this inference is written in the follow/fiorm:
F(0), F(n)= F(s(n)) |—vx F(x).

The problem we specifically address here is a studyf what happens when the
formula to be proved contains several universally gantified variables.

To handle this situation, logicians use the soechathultiple induction.

For instance, for a formula with two variables [Mhara, 1971] (p. 104) presents the
following double induction:

To prove the formuld& nv m A(n,m) perform an ‘outer induction’ on n and amner
induction’ on m. That is:

Choice of induction variable February 2015 25.02 1 25/02/2015 || 13:44:31

» prove A(0,0)
* assume A(0,b) prove A(0,s(n))
» for all n smaller than or equal to a and for all y
0 suppose F(a,y) and prove F(s(a),0)
0 suppose F(a,y) and F(s(n),b) and prove F(s(a),s(b))

As far as automation of proving theorems by inducis concerned, the first significant
work was done by [Boyer and Moore, 1979]. This eystelies on backward reasoning
and Boyer and Moore realized that the implementatb the induction principle in
such a backward reasoning oriented system is moplsi Their particular strategy
requires a kind of cleverness the key word of whechanticipation’. This means that
the system starts with the formula to be proved taed it simplifies it up to the point
where the anticipated induction hypotheses canppéesl. Such an anticipation is not
all straightforward, as shown by the following exdae

Example:
Let the function flat (flatten) be defined as folla
flat(u) = cons(u,nil), if not(listp(u))
flat(u) = app(flat(car(u)),cdr(u))), otherwise
Let the function mc.flat be defined as follows:
mc.flat(u,v) = cons(u,v) if not(listp(u))
mc.flat(u,v) = mc.flat(car(u),mc.flat(cdr(u),v))
Finally, consider the append function
ax15 : append(nil,w) = w
ax16 : append(cons(u,v),w) = cons(u,append(v,w))

Let the formula A(x,y) (where x and y are univelgajuantified) to be proved is as
follows:
mc.flat(x,y) = append(flat(x),y).

Boyer and Moore generate the following steps:

* Base step: assume not(listp(x)) and prove A(X,y)

e Induction step: Assume listp(x) and A(car(x),md(@dr(x),y)) and A(cdr(x),y)

and prove A(X,y).
We can note that the induction hypotheses heradrstraightforward.
In contrast to this clever, but somewhat generdifficult solution, we have realized
[Franova, 1985a] that a ‘lazy’, logics inspired w@n, can be a convenient
compromise... provided we know how to prove by intrctheorems of the fornd x
3 z P(x,z), where x and z may be vectors.
Such a ‘lazy’ solution consists in choosing oneialde that becomes the induction
variable and the remaining variables are universaliantified in the induction
hypotheses. For the previous example of Boyer andr®lit would give the induction
hypothesis
Vv p A(car(x),p) &Y g A(cdr(x),q).

Then, when our development of the formula A(x,ykesmappear the patterns A(car(x),

Choice of induction variable February 2015 25.02 2 25/02/2015 || 13:44:31

t1) or A(cdr(x),t2), we look whether we can createinstantiation of the universally
quantified variables in the induction hypothesed torresponds to t1 and t2.

Of course, this ‘lazy’ solution is, in general,@lsnger since it may happen that during
an inductive proof with respect to one inductiomialale we need to start an inductive
proof for another variable thus leaving us withragh inside a proof. Fortunately, such

solution consists always of finite steps sincedhigronly a finite number of universally

quantified variables.

Goal of the paper

This paper presents an algorithm for the abovey*laolution for handling the

induction principle automation. Let us recall thatrequires the ability to prove

theorems containing existentially quantified valgsband it is not as clever as the
anticipation solution proposed by Boyer and Modf@wever, it has the essential
advantage of simplifying the automation of inductprinciple. Moreover it mirrors the

standard logics solution.

In Section | we shall show that it is importantctwoose a suitable induction variable,
since an unsuitable variable may lead to a failure.

In Section Il we shall present the basic vocabukamg criteria for the choice of the
induction variable. Section Il presents our algori and Section IV presents an
artificial example inspired by a real world problgresented in [Boyer and Moore,
1979].

In Conclusion we shall point out further perspessiv

1. Necessity of a suitable induction variable

In this section we present an example that illbstrahe importance of a choice of a
suitable induction variable.
Let us consider following definitions for functions (rotate), Ig (length) and app
(append):
app: LISTN x LISTN - LISTN

ax15 : app(null,w) =w

ax16 : app(cons(u,v),w) = cons(u,app(v,w))
For app we shall use its associativity and the fhat app(u,app(cons(v,null)),w) =
app(u,cons(v,w)).

lg: LISTN - N
ax33 : Ig(null) =0
ax34 : Ig(cons(u,v) = s(Ig(v))

rt: N x LISTN - LISTN
ax35 : rt(0,w) =w

Choice of induction variable February 2015 25.02 3 25/02/2015 || 13:44:31

ax36 : rt(s(n),null) = null
ax3 : rt(s(n),cons(u,v)) = rt(n,app(v,cons(u,null))

Let us consider the formula

ri(lg(x),app(x.y)) = app(y.x) (1)
where the variables x and y are universally quidtifWe shall consider the induction
steps of the proofs for these two variables.
Let us consider a proof by induction on x.
In the induction step, the variable x is represgritg cons(a,b), where a belongs to N
and b is from LISTN.
The induction hypothesis suggested in our appraach

rt(lg(b),app(b,y’)) = app(y’.b), (2)

where y’ is universally quantified variable. Thea§is to prove

rt(lg(cons(a,b)),app(cons(a,b),y)) = app(y,congja,b 3)
The evaluations are as follows:

rt(s(lg(b)),cons(a,app(b,y)) = app(y,cons(a,b)) (4)

and then

rt(lg(b),app(app(b,y),cons(a,null))) = app(y,conisp (5)
Using now the associativity of app, this leads® ¢goal to prove

rt(lg(b),app(b,app(y,cons(a,null)))) = app(y,conisfp (6)

To this formula, the induction hypothesis (2) cae applied with y' equal to
app(y,cons(a,null))). This gives the task to prove

app(app(y.cons(a,null))),b)) = app(y,cons(a,b)) (7)
Finally, using the above mentioned property of ayop¢his leads to the formula
app(y,cons(a,b)) = app(y,cons(a,b)) (8)

which is true.

The proof is successful, however we needed toheseroperties of append. This is not
the case for the variable y.

Consider now the proof of (1) with respect to tlagiable y. In the induction step, the
variable y is represented by cons(a,b) and thectimlu hypothesis is

rt(lg(x’),app(x’,b)) = app(b,x’))
with x” universally quantified. The goal is to pev
rt(Ig(x),app(x,cons(a,b))) = app(cons(a,b),x). (20)
The evaluation gives
rt(Ig(x),app(x,cons(a,b))) = cons(a,app(b,x)). (11)

The induction hypothesis (9) can now be appliechwitequal to x. This leads to the
task to prove

rt(lg(x),app(x,cons(a,b))) = cons(a,rt(Ig(x),apm(y, 12)
Obviously now, the proof of this formula requires iaduction on x. b occurs in non-
recursive positions and thus it is not consideredaacandidate for the induction
variable. The proof does not need complementarggsties for app.

This example shows that the choice of the inductiarable is an important task in a
‘lazy’ implementation of the induction principlen khe following, we start with the
basic vocabulary and criteria for the choice ofitidction variable.

Choice of induction variable February 2015 25.02 4 25/02/2015 || 13:44:31

2. Vocabulary and Criteria for the choice of the induction variable

A term is represented as a tree the nodes of wdneHunctional symbols. An atomic
formula may also be represented by a tree whoseiggepredicate and the other nodes
are functional symbols. In both types of trees,|l#aves are constants or variables. For
the choice of an induction variable in an atomiorfola, we will consider the paths
leading to universally quantified variables.

The definitions below are simple adaptations of ¢lassical definitions of a distance
and a path in a tree.

If f(t1,t2,...,tn) is a term, the index i correspomglito the term ti will be called the
‘number’ of the argument ti. We can formulate tti&finition in a more general way as
follows:

We define the 'number' of a an argument u of a t€rkny, ..., t) or of an atomic
formula P (X, Y, ..., t) by 1 + the number of argnts that separate argument u from f
or P. When n is the number of the argument u, vwal stlso say that u is the n-th
argument.

We will note a path by the list

((symbl arg_symbl) ... (symbn arg_symbn) var).
In this list symbi is a symbol and arg_symbi is thember of the argument symbi that
leads to the variable var. Obviously, the lengthhef path to a symbol symbi is i in the
notation above.

Example :

Let f be a function of three arguments and h ationoof two arguments. Consider the
term f(x, h(y,x), z), where X, y and z are variaend h are at functional symbols. The
number of the variable z is 3 because it is thirdhie definition of f and therefore the
path to z is ((f 3) z), while the path to x in tecond argument of fis ((f 2) (h 2) x).

Definition :

We shall say that an object o is defined recurgit@l its n-th argument if it is defined
in the argument n for a base constructor of thesicened inductively defined domain
and that in the recursive call o, the value of #Hnigument decreases with respect to a
well-founded relation defined on the consideredigtiively defined domain.

Limitation 1.

In our work, we limit ourselves to the well-foundeélations induced by the
constructors of the considered constructible dom@ee Constructible Domains
[Franova, 1995]).

Choice of induction variable February 2015 25.02 5 25/02/2015 || 13:44:31

Example :
app: LISTN x LISTN - LISTN
ax15 : app(null,w) =w
ax16 : app(cons(u,v),w) = cons(u,app(v,w))
The function app (append) is defined recursivelthwespect to the first argument. v is
smaller than cons (u, v) in LISTN.

In the case of recursive definitions set on cowrs$ibble domains, the algorithm for
choosing the induction variable takes into accdbat in the general case of proof,
recursive axioms, that is to say those where tlecbblefined is expressed in terms of
himself, several arguments can be expressed ustugsive representatives (as defined
in [Franova, 1985b]). We shall call these argumértaluable’ because they are
evaluated during the proof. Note that, by defimtiof constructible domains, their
constructors are always evaluable. The argumeatsatie not evaluable are called 'non-
evaluable.'

By convention, the objects that are not definedingeely will be considered evaluable
in all their arguments because their evaluationrf@mslirect impact on the complexity
of a proof by induction.

Example :
Consider the predicate
P<:NxN- BOOL
ax30 : P<(0,w), if true
ax31 : P<(u,0), if false
ax32 : P<(s(u),s(v)), if P<(u,v)
The predicate P <is evaluable in its two argumbatause the axiom ax32 is defined as
te-P<(s(u),s(v)), where the first and the second aegurare evaluable.

Example :
app: LISTN x LISTN - LISTN

ax15 : app(null,w) =w

ax16 : app(cons(u,v),w) = cons(u,app(v,w))
The function app (append) is evaluable in its fagjument. It is non-evaluable in its
second argument because it is not defined in tesfnsonstructors for its second
argument.

Definition :

We shall say that a symbol symb is evaluable iath p
(... (symbn) ... var)

if symb is evaluable in its n-th argument.

Choice of induction variable February 2015 25.02 6 25/02/2015 || 13:44:31

Example :
Let the function rev (reverse) be defined as fodow
rev: LISTN - LISTN
ax17: rev(null) = null
ax18: rev(cons(u,v)) = app(rev(v),cons(u,null))
Consider the term rev(app(cons(p,q),y),z) with\tegables p, q, y, z. app is evaluable
in the path ((rev 1) (app 1) (cons 1) p)) but ihat evaluable in the path ((rev 1) (app 2)

y)).

Example :
car: LISTN - N
ax013 : car(cons(u,v)) = u
Here, the function car is evaluable in its argument

Definition :

We shall say that a path of a tree leading to theakle var is evaluable if all the
symbols of this path are evaluable. In such a wasshall also say that the variable var
Is evaluable.

Example :
Let the function rev (reverse) be defined as
rev: LISTN - LISTN
ax17: rev(null) = null
ax18: rev(cons(u,v)) = app(rev(v),cons(u,null))
Consider the term rev(app(cons(p,q),y)) with thealdes p, q, y. The path ((rev 1)
(app 1) (cons 2) q) is evaluable for g. The patemQ) (app 2) y) is not evaluable for y.

We shall say that a variable varigaluablein an expression exp, if there is at least one
path of exp leading to var where all the symboésearaluable. In this case, we will also
say that it has an evaluable occurrence in expilltbe callednon-evaluableif all
instances of non-evaluable.

We will say that a variable surely evaluablein an expression exp, if it is evaluable
in all its occurrences in exp.

Definition : ‘mutilating’ function

A definition of a recursive function f imutilating when, for the case of recursive
definition, some sub-representatives are displéoed an evaluable argument to a non-
evaluable argument in the recursive call.

Example :
Let us consider the following recursive axiom fev:r
rev(cons(u,v)) = append(rev(v),cons(u,nil)))
In this case, the sub-representative u is moveédemon-evaluable argument of append

Choice of induction variable February 2015 25.02 7 25/02/2015 || 13:44:31

function. Therefore, rev is mutilating.

Let us consider the recursive axiom for grev:

grev(cons(u,v),w) = grev(v,cons(u,w))
In this case, the sub-representative u is movetthdonon-evaluable argument of the
function qgrev itself. Therefore, grev is mutilating

Criteria for the choice of the induction variable:

Criterion 1. (observation ofthe variables evaluable character)

This criterion expresses a known property in inthectheorem proving, namely that for

an atomic formula Th, the difficulty of applicatiaf induction hypothesis generated
for a given variable var depends on the non-evéduaihd evaluable positions of var in

Th. Initially, by default, all universally quantd variables of Th are candidates to
become the induction variable. For the choice efitiduction variable, if a variable of

Th is purely non-evaluable, it is eliminated frone tset of candidates. In other words,
the set of candidates is represented by varialblas d@re universally quantified and

which have at least one evaluable occurrence in Th.

Criterion 2. (path length measurement)

Here, we consider the variables that are coverectitgrion 1, that is to say, they have
at least one evaluable occurrence in Th.

Consider variable var located in Th in n evalugisitions. Let c1 be path of length
lg1, c2 of length Ig2, ... and cn of length Ign. emparison of the variable var with
other candidates, it is the path of the maximungtienthat is to say, the path that is
max(length(lgl, 1g2, ..., Ign)) will be consideréor comparison of var with other

candidates. We speak of this procedure such astieduhe number of possibilities for

var.

After making such a reduction, consider the vagaldl, ..., xm to which are associated
the respective maximum lengths of paths Igl,gm.lAny of these variables with the
minimal path length is selected as the best catelida

Criterion 3. (Case of recursive 'mutilating’ functions)
We will process variables that have in their pathsilating functions as follows. We
introduce for each mutilating functional symbgdenalty that is equal to the depth of
this symbol in this path increased by 1.
We define the global penalty of a variable as tima sf all the penalties of mutilating
functional symbols encountered on the path tovaigable. For example, consider the
term

i + strops(cons(nth(str,i),nil),rev(pat)),
where i, str and pat are universally quantifiedalales. The variable pat occurs in the
term

i + strops(...,rev(pat)).

On the path to pat occurs the mutilating functien which, by definition, has a penalty

Choice of induction variable February 2015 25.02 8 25/02/2015 || 13:44:31

of 4. The overall penalty of variable pat is 4.

To take into account the fact that several mutitasymbols may occur on the path to a
variable, we introduce the conceptmg#nalty coefficient which is the number of all
mutilating symbols on the path considered.
For each evaluable path of variable var in fornthathe algorithm calculates first the
profile of this variable on this path, that is to say, ttiy@de

(depth global_penalty coeff penalty)
where 'depth'’ is the length of the path, 'globahagtig’ is the overall penalty of var in
this path and coeff_penalty is the coefficientha var penalty.
If var appears in several paths, the algorithm sheats "worst representative”, that is
to say, the profile that has the worst value (depdival_penalty coeff_penalty) by first
judging their penalty coefficient and if this daest distinguish profiles of this variable,
continuing with the overall penalty and if some fjes are still not distinguished,
judging them by their depth. The following selent@gorithm implements the intuitive
description we have just given.

3. Algorithm for the choice for an atomic formula F

Overview of the algorithm:
If F contains variables that are purely evalualsieF, choose only among these
variables.

» First, calculate the value of (depth global_penatteff penalty) for all
evaluable variable of F.

* Next, choose the worst representative of all tvesmbles, that is to say the one
with the coefficient of the maximum penalty in (tkepglobal_penalty
coeff_penalty). If the variable has multiple patwgh the same maximum
coefficient, choose the one with the maximum tgiahalty. Among the paths
with the same coefficient of maximum and maximumbgl penalty, the worst
is the one that has the maximum depth.

* Finally, among the worst representatives of rewersiariables of F, choose the
variable with the smallest penalty coefficientséveral variables have the same
coefficient, choose one that has the smallest fmtaklty. If several variables
have the same global penalty, choose the varialilte the smallest depth. If
there is still ambiguity take any variable.

Let CVI (Candidates for Variables of Induction) bee set of all the universally
variables of the formula F to be proven.

Step 1 :Pinpoint the set CVI_F of all evaluable variahled=. That is, these variables
are in evaluable positions in all the terms of FateNthat a variable of F can be
evaluable in one term of F while non-evaluable mother term of F. Such a variable
will not be included in CVI_F.

Step 2 :

Choice of induction variable February 2015 25.02 9 25/02/2015 || 13:44:31

o if CVI_Fisempty
* then
Step 1.pinpoint the list *TF* of couples (term_i, varias purely
evaluable in the same term_i)
o Step 2.
= if *TF* is empty (i.e. all the positions of all theariables are
non-evaluable)
= then failure
= else
o Step 1.
o apply the procedure BB to *TF*, thus creating
TF
o apply the procedure CC to *TF** thus
providing the chosen variable
* else (if there are some variables purely evaluable)in F
o Step l.determiner the list *TF** of all the couples (termvariables
purely evaluable in term_i)
o0 Step 2.eliminate from *TF** all the terms in which do notcur the
variables of CVI_F, thus providing the list *TF*
o Step 3. apply the procedure BB to *TF*; this provides thst
TF
o Step 4.apply the procedure CC to **TF** which returns thariable
chosen by the whole procedure

Procedure BB
 takes as argument the set *TF* i.e. the list ofupes (term_i,
list_ var_pur_rec_in_term_i), where list_var_pur_liecterm_i is the list of
variables purely evaluable in term_i. This gives tasult **TF** i.e. the list of
triples (term_i var (depth global_penalty coeff_pky)) for each variable var
purely evaluable in term_i.

Procedure CC
e takes as argument the list *TF**, i.e. a list aiptes (term_i var (depth
global_penalty coeff_penalty)) for each variable parely evaluable in term_i
» analyses the paths of these variables comparingdépths, their penalty et the
penalty coefficient
e returns any variable among those that have the bastevalue.

The paths analysis is done using the following cetion:

» Step 1. for all variables in *TF**, chose the ‘wairrepresentative’, i.e. the
variable that has the worst value of the triple p(de global penalty
coeff_penalty). By default, a variable that ocamrene path and in one term of
the given formula is considered as its worst regregive.

» Step 2. select the best of these worst represessati

Choice of induction variable February 2015 25.02 10 25/02/2015 || 13:44:31

4. Example

We present here an exampmkexecution that illustrates our algorithm appliedthe
formula th12. This artificial formula is inspired fa real problem given by Boyer and
Moore ([Boyer and Moore, 1979], p. 197-199). Waylsily increased the problem a
complexity by considering four arguments for theedicate BID4, instead of
considering Boyer and Moore’s binary predicate SEHFAN.

First of all, let us give the definitions of funatis that occur in th12.

BID4 is an artificial predicate the definition ofhveh is not given except the
information that it is evaluable in its four argum® Such an information is sufficient,
as the algorithm does not analyze the definitiow®pt their evaluable character. ‘null’
and ‘cons’ are the constructors of LISTN (lists ra&tural numbers). The remaining
definitions are given as follows.

+:NxN-> N
ax7:0+v=v
ax8:s(w) +v=s(w+v)
axl3:v+0=v
ax14 :w + s(v) = s(w + V)
This function is evaluable in both its arguments.

lg: LISTN - N

ax33: Ig(null) =0

ax34: Ig(cons(u,v)) = s(Ig(v))
lg is evaluable in its argument.

nth : LISTN x N LISTN

ax27 : nth(cons(u,v),0) =u

ax28 : nth(cons(u,w),s(v)) = nth(w,v)
nth is evaluable in its both arguments.

app: LISTN x LISTN - LISTN

ax15 : app(null,w) =w

ax16 : app(cons(u,v),w) = cons(u,app(v,w))
app is evaluable in its first argument.

rev: LISTN - LISTN

ax17: rev(null) = null

ax18: rev(cons(u,v)) = app(rev(v),cons(u,null))
rev est is evaluable in its argument.

strpos: LISTN x LISTN - N

ax21 : strpos(u,w)=0, if match(u,w)

ax22 : strpos(u,null) =0

ax23 : strpos(u,cons(wl,w2)) = s(strpos(u,w2))
strpos is evaluable in its second argument.

Choice of induction variable February 2015 25.02 11 25/02/2015 || 13:44:31

In the picture that follows, *chiv*(x) is the fution that chooses induction
variable in ‘x’. th12 is atomic formula
(bid4 (+i (strpos (cons (nth str i) null) (app (rev str) (rev pat))))
(+ (Ig pat) (strpos pat (rev str)))
(+ i (strpos (cons (nth str i) null) (+ (rev pat) (rev str))))
(+ (Ig str) (strpos pat (rev (rev str))))

)
for which the program *chiv* seeks the inductionighle.

TF is a list of couples
(term_j, variables purely evaluable in the sammtgy.
TE s a list of triples (term_j var (depth ghml_penalty coeff_penalty)) for
each variable var purely evaluable in term_j.
STR, | et PAT are variables universally quantifiadd CONS and NULL are the
constructors of LISTN.

Let us note that this example is purely artificrathe sense that the type of the
expressions is not being considered.
For instance, there is an addition of two lists(fev pat) (rev str))’.

Here is the picture of the execution:

»C¥chiv= thli2>
"Formula considered iz ™
CBID4 ¢+ I (STRPOS <CONS <NTH STR I> NULL>»> <APF (REU STR> C(REU PAT>>>>
C+ (LG PAT> (STRPOS PAT <REU STR>>)>
¢+ I (STRPOS <CONS <NTH STR I> NULL>»> <+ CREU PAT> C(REU STR>>>>
¢+ (LG STR> (STRPOS PAT <REU (REU STR>>>>>
"CUI_F is the list"
MIL
ll*TF* iS L1}
CCC+ (LG PATY (STRPOS PAT <REU STR>>> (STR>X>
¢+ 1 (STRPOS <{CONS <(NTH STR I> WULL>» <+ <REU PAT> <REU STR>»>> {(PAT>>
¢+ (LG STR> (STRPOS PAT <REU {REU STR>>»>> (STR>>>
.'**TF** is L1}
CCC+ (LG PAT> <STRPOS PAT <REU STR>>> STR <4 4 1>>
¢+ 1 CSTRPOS <CONS <¢NTH STR I> WULL> <+ <REU PAT> <REU STR>>>>» PAT
5 5 13>
¢+ (LG STR> (STRFOS PAT <REU {REU STR>>>> S8TR (5 % 2>>>
"The choszen variahle iz "
FAT
FAT

>

Consider the results displayed:

The list of variables purely evaluable in th1Z2¥I1_F, it is NIL. For instance,
in the first term of th12, i.e. in
(+ i (strpos (cons (nth str i) null) (app (rev str) (rev pat))))
there is no purely evaluable variable. In *TF*earan see that variable STR is purely
evaluable only in the terms
(+ (Ig pat) (strpos pat (rev str)))
and

Choice of induction variable February 2015 25.02 12 25/02/2015 || 13:44:31

(+ (Ig str) (strpos pat (rev (rev str)))).
The variable PAT is purely evaluable only in therte
(+ i (strpos (cons (nth str i) null) (+ (rev pat) (rev str)))).

The first element of *TF** is

((+ (Ig pat) (strpos pat (rev str))) str (441))
(4 4 1) is here the profile of the variable STRha term
(+ (Ig pat) (strpos pat (rev str))),
i.e. the first ‘4’ is the depth of STR in this terthe second ‘4’ is its global penalty and
‘1’ is the penalty coefficient. The same conventapplies for all the other elements of
TF.

The algorithm *chiv* returns PAT as the inductieariable for th12 as its worst
representative, i.e. the profile (5 5 1) is betieat the worst representative of the
variable STR, i.e. the profile (5 9 2).

Conclusion

In this paper we present an algorithm for the abaftthe induction variable for ‘lazy’
implementation of the induction principle. We halMestrated that such a task is
important and differs from the clever and not ginéfiorward solution proposed in
[Boyer and Moore, 1979].

Presently, our algorithm deals with universally fifeed atomic formulas only. It will
be extended and, if necessary, modified in ordendtude also formulas that contain
existential quantifiers and other logical connexsivOnly then we shall compare our
final solution with those proposed by the othesgrg approaches.

Acknowledgments

We thank to Michele Sebag and Dieter Hutter foirteeggestions and remarks in the
research part of this work.

Choice of induction variable February 2015 25.02 13 25/02/2015 || 13:44:31

References

[Boyer and Moore, 1979] R. S. Boyer, J S. Moore: Gomputational Logic;
Academic Press, 1979.

[Franova, 1985a] M. Franova: A Methodology for Amtatic Programming based
on the Constructive Matching Strategy; in: B. Favldess, (ed): EUROCALL'85;
Lecture Notes in Computer Science 204, Springetage 985, 568-570.

[Franova, 1985b] M. Franova: CM-strategy : A Metblod)y for Inductive
Theorem Proving or Constructive Well-Generalizedd®; in: A. K. Joshi, (ed):
Proceedings of the Ninth International Joint Coefee on Artificial Intelligence;
August, Los Angeles, 1985, 1214-1220.

[Franova, 1995] M. Franova: A Theory of ConstrugtibDomains - a
formalization of inductively defined systems of etfis for a user-independent
automation of inductive theorem proving, Part Ippart de Recherche No0.970, L.R.I.,
Université de Paris-Sud, Orsay, France, Mai, 1995.

[Yasuhara, 1971] A. Yasuhara: Recursive Functioeofn and Logic; Academic
Press, New York, 1971.

Choice of induction variable February 2015 25.02 14 25/02/2015 || 13:44:31

	RR1579entete
	RR1579rapp

