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Abstract

We consider the problem of query-driven repairing
of inconsistent DL-Lite knowledge bases: query
answers are computed under inconsistency-tolerant
semantics, and the user provides feedback about
which answers are erroneous or missing. The aim
is to find a set of ABox modifications (deletions
and additions), called a repair plan, that addresses
as many of the defects as possible. After formal-
izing this problem and introducing different no-
tions of optimality, we investigate the computa-
tional complexity of reasoning about optimal repair
plans and propose interactive algorithms for com-
puting such plans. For deletion-only repair plans,
we also present a prototype implementation of the
core components of the algorithm.

1 Introduction
Ontology-mediated query answering (OMQA) is a promising
recent approach to data access in which conceptual knowl-
edge provided by an ontology is exploited when querying
incomplete data (see [Bienvenu and Ortiz, 2015] for a sur-
vey). As efficiency is a primary concern, significant research
efforts have been devoted to identifying ontology languages
with favorable computational properties. The DL-Lite family
of description logics (DLs) [Calvanese et al., 2007], which
underlies the OWL 2 QL profile [Motik et al., 2012], has gar-
nered significant interest as it allows OMQA to be reduced,
via query rewriting, to standard database query evaluation.

Beyond efficiency, it is important for OMQA systems to
be robust to inconsistencies stemming from errors in the
data. Inspired by work on consistent query answering in
databases [Bertossi, 2011], several inconsistency-tolerant se-
mantics have been developed for OMQA, with the aim of
providing meaningful answers in the presence of inconsis-
tencies. Of particular relevance to the present paper are the
brave semantics [Bienvenu and Rosati, 2013], which returns
all query answers that are supported by some internally con-
sistent set of facts, and the more conservative IAR semantics
[Lembo et al., 2010] that requires that facts in the support not
belong to any minimal inconsistent subset. Both semantics
have appealing computational properties: for most DL-Lite

dialects, including the dialect DL-LiteR considered in this pa-
per, conjunctive query answering is tractable in data complex-
ity and can be implemented using query rewriting techniques
[Lembo et al., 2011; Bienvenu and Rosati, 2013].

While inconsistency-tolerant semantics are essential for re-
turning useful results when consistency cannot be achieved,
they by no means replace the need for tools for improving
data quality. That is why in this paper we propose a com-
plementary approach that exploits user feedback about query
results to identify and correct errors. We consider the follow-
ing scenario: a user interacts with an OMQA system, pos-
ing conjunctive queries and receiving the results, which are
sorted into the possible answers (i.e., those holding under
the weaker brave semantics) and the (almost) sure answers
(holding under IAR semantics). When reviewing the results,
the user can indicate that some of the retrieved answer tuples
are erroneous, whereas other tuples should definitely be con-
sidered answers. Ideally, the unwanted tuples should not be
returned as possible (brave) answers, and all of the desired
tuples should be found among the sure (IAR) answers. The
aim is thus to construct a set of atomic changes (deletions and
additions of facts), called a repair plan, that achieves as many
of these objectives as possible, subject to the constraint that
the changes must be validated by the user.

There are several reasons to use queries to guide the re-
pairing process. First, we note that it is typically impossible
(for lack of time or information) to clean the entire dataset,
and therefore reasonable to focus the effort on the parts of
the data most relevant to users’ needs. In the database arena,
this observation inspired work on integrating entity resolution
into the querying process [Altwaijry et al., 2013]. Second,
expert users may have a good idea of which answers are ex-
pected for queries concerning their area of expertise, and thus
queries provide a natural way of identifying flaws. Indeed,
Kontokostas et al. (2014) recently proposed to use queries to
search for errors and help evaluate linked data quality. Fi-
nally, even non-expert users may notice anomalies when ex-
amining query results, and it would be a shame to not capi-
talize on this information, and in this way, help distribute the
costly and time-consuming task of improving data quality as
argued in [Bergman et al., 2015].

The contributions of this paper are as follows. In Section 3,
we formalize query-driven repairing problems and illustrate
the main challenges, in particular, the fact that there may not



exist any repair plan that resolves all identified errors. This
leads us to introduce in Section 4 different notions of optimal
repair plan. Adopting DL-LiteR as the ontology language, we
study the complexity of reasoning about the different kinds
of optimal repair plan and provide interactive algorithms for
constructing such plans. In Section 5, we focus on the impor-
tant special case of deletion-only repair plans, for which all
of the optimality notions coincide. We take advantage of the
more restricted search space to improve the general approach,
and we analyze the complexity of the decision problems used
in our algorithm. Finally, in Section 6, we present prelimi-
nary experiments about our implementation of the core com-
ponents of the algorithm for the deletion-only case. We con-
clude with a discussion of related and future work.

The appendix provides proofs and experiments details.

2 Preliminaries
Following the presentation of [Bienvenu et al., 2016], we re-
call the basics of DLs and inconsistency-tolerant semantics.

Syntax A DL knowledge base (KB) consists of an ABox and
a TBox, both constructed from a set NC of concept names
(unary predicates), a set NR of role names (binary predicates),
and a set NI of individuals (constants). The ABox (dataset)
is a finite set of concept assertions A(a) and role assertions
R(a, b), where A ∈ NC, R ∈ NR, a, b ∈ NI. The TBox (on-
tology) is a finite set of axioms whose form depends on the
particular DL. In DL-LiteR, TBox axioms are either concept
inclusions B v C or role inclusions P v S built according
to the following syntax (where A ∈ NC and R ∈ NR):

B := A | ∃P, C := B | ¬B, P := R | R−, S := P | ¬P
Semantics An interpretation has the form I = (∆I , ·I),
where ∆I is a non-empty set and ·I maps each a ∈ NI to
aI ∈ ∆I , each A ∈ NC to AI ⊆ ∆I , and each R ∈ NR to
RI ⊆ ∆I ×∆I . The function ·I is extended to general con-
cepts and roles in the standard way, e.g. (R−)I = {(d, e) |
(e, d) ∈ RI} and (∃P )I = {d | ∃e : (d, e) ∈ P I}. An inter-
pretation I satisfies an inclusion G v H if GI ⊆ HI ; it sat-
isfies A(a) (resp. R(a, b)) if aI ∈ AI (resp. (aI , bI) ∈ RI).
We call I a model of K = (T ,A) if I satisfies all axioms in
T and assertions in A. A KB is consistent if it has a model,
and an ABoxA is T -consistent if the KB (T ,A) is consistent.
Example 1. As a running example, we consider a simple
KB Kex = (Tex,Aex) about the university domain that con-
tains concepts for postdoctoral researchers (Postdoc), profes-
sors (Pr) of two levels of seniority (APr,FPr), PhD holders
(PhD), and graduate courses (GradC), as well as roles to link
advisors to their students (Adv), instructors to their courses
(Teach) and student to the courses they attend (TakeC). The
ABox Aex provides information about an individual a:

Tex ={Postdoc v PhD,Pr v PhD,Postdoc v ¬Pr,

FPr v Pr,APr v Pr,APr v ¬FPr,∃Adv v Pr}
Aex ={Postdoc(a),APr(a),Adv(a, b),Teach(a, c)}

Observe that Aex is Tex-inconsistent. J

Queries We focus on conjunctive queries (CQs) which take
the form q(~x) = ∃~y ψ(~x, ~y), where ψ is a conjunction of

atoms of the forms A(t) or R(t, t′), with t, t′ individuals or
variables from ~x ∪ ~y. A CQ is called Boolean (BCQ) if it
has no free variables (i.e. ~x = ∅). Given a CQ q with free
variables ~x = (x1, . . . , xk) and a tuple of individuals ~a =
(a1, . . . , ak), we use q(~a) to denote the BCQ resulting from
replacing each xi by ai. A tuple ~a is a certain answer to q
over K, written K |= q(~a), iff q(~a) holds in every model of
K. When we use the generic term query, we mean a CQ.

Causes and conflicts A cause for a BCQ q w.r.t. KB K =
(T ,A) is a minimal T -consistent subset C ⊆ A such that
(T , C) |= q. We use causes(q,K) to refer to the set of causes
for q. A conflict for K is a minimal T -inconsistent subset of
A, and confl(K) denotes the set of conflicts for K.

WhenK is a DL-LiteR KB, every conflict forK has at most
two assertions. We can thus define the set of conflicts of a set
of assertions C ⊆ A as follows:

confl(C,K) = {β | ∃α ∈ C, {α, β} ∈ confl(K)}.
Inconsistency-tolerant semantics A repair of K = (T ,A)
is an inclusion-maximal subset of A that is T -consistent.
We consider two previously studied inconsistency-tolerant
semantics based upon repairs. Under IAR semantics, a tu-
ple ~a is an answer to q over K, written K |=IAR q(~a), just in
the case that (T ,B∩) |= q(~a), where B∩ is the intersection
of all repairs of K (equivalently, B∩ contains some cause for
q(~a)). If there exists some repair B such that (T ,B) |= q(~a)
(equivalently: causes(q(~a),K) 6= ∅), then ~a is an answer to q
under brave semantics, written K |=brave q(~a).
Example 2. There are two repairs of the example KB Kex:
{Postdoc(a),Teach(a, c)}, {APr(a),Adv(a, b),Teach(a, c)}
Evaluating the queries q1 = ∃yTeach(x, y) and q2 = Prof(x)
on Kex yields the following results: Kex |=IAR q1(a), and
Kex |=brave q2(a) but Kex 6|=IAR q2(a). J

In DL-LiteR, CQ answering under IAR or brave semantics
is in P w.r.t. data complexity (i.e. in the size of the ABox)
[Lembo et al., 2010; Bienvenu and Rosati, 2013].

3 Query-driven repairing
A user poses questions to a possibly inconsistent KB and re-
ceives the sets of possible answers (i.e. those holding un-
der brave semantics) and almost sure answers (those holding
under IAR semantics). When examining the results, he de-
tects some unwanted answers, which should not have been
retrieved, and identifies wanted answers, which should be
present. To fix the detected problems and improve the quality
of the data, the objective is to modify the ABox in such a way
that the unwanted answers do not hold under brave semantics
and the wanted answers hold under IAR semantics.

A first way of repairing the data is to delete assertions from
the ABox that lead to undesirable consequences, either be-
cause they contribute to the derivation of an unwanted answer
or because they conflict with causes of some wanted answer.
Example 3. Reconsider the KB K = (Tex,Aex), and
suppose a is an unwanted answer for Pr(x) but a
wanted answer for PhD(x). Deleting the assertions
APr(a) and Adv(a, b) achieve the objectives since
(Tex, {Postdoc(a),Teach(a, c)}) 6|=brave Pr(a) and
(Tex, {Postdoc(a),Teach(a, c)}) |=IAR PhD(a). J



The next example shows that, due to data incompleteness,
it can also be necessary to add new assertions.

Example 4. Consider K = (Tex, {APr(a)}) with the same
wanted and unwanted answers as in Ex. 3. The assertion
APr(a) has to be removed to satisfy the unwanted answer,
but then there remains no cause for the wanted answer. This
is due to the fact that the only cause of PhD(a) in K contains
an erroneous assertion: there is no ‘good’ reason in the initial
ABox for PhD(a) to hold. A solution is for the user to add a
cause he knows for PhD(a), such as Postdoc(a). J

We now provide a formal definition of the query-driven re-
pairing problem investigated in this paper.

Definition 1. A query-driven repairing problem (QRP) con-
sists of a KB K = (T ,A) to repair and two sets W,U of
BCQs that K should entail (W) or not entail (U). A repair
plan (for A) is a pair R = (E−, E+) such that E− ⊆ A and
E+ ∩ A = ∅; if E+ = ∅, we say thatR is deletion-only.

The sets U andW correspond to the unwanted and wanted
answers in our scenario: q(~a) ∈ U (resp. W) means that ~a
is an unwanted (resp. wanted) answer for q. Slightly abusing
terminology, we will use the term unwanted (resp. wanted)
answers to refer to the BCQs in U (resp.W). We say that a re-
pair plan (E−, E+) addresses all defects of a QRP (K,W,U)
if the KB K′ = (T , (A\E−)∪E+) is such that K′ |=IAR q for
every q ∈ W , and K′ 6|=brave q for every q ∈ U .

The next example shows that by considering several an-
swers at the same time, we can exploit the interaction between
the different answers to reduce the search space.

Example 5. Evaluating the queries q1(x) = PhD(x) and
q2(x) = ∃yzPr(x) ∧ Teach(x, y) ∧ GrC(y) ∧ TakeC(z, y)
over the KBK = (Tex,A) withA = {Pr(a),APr(b),FPr(b),
Teach(a, c),Teach(b, c),GrC(c),TakeC(s, c)} yields:

K |=brave q1(b) K |=brave q2(b) K |=IAR q2(a).

We consider the QRP (K,W,U) with wanted answersW =
{q1(b), q2(a)} and unwanted answers U = {q2(b)}.

Two deletion-only repair plans address all defects:
{APr(b),Teach(b, c)} and {FPr(b),Teach(b, c)}. Indeed, we
must delete exactly one of APr(b) and FPr(b) for q1(b) to be
entailed under IAR semantics, and we cannot remove GrC(c)
or TakeC(s, c) without losing the wanted answer q2(a). Thus,
the only way to get rid of q2(b) is to delete Teach(b, c).

If we consider only U (i.e. W = ∅), there are additional
possibilities such as {GrC(c)} and {TakeC(s, c)}, and there
is no evidence that Teach(b, c) has to be deleted. J

If we want to avoid introducing new errors, a fully auto-
mated repairing process is impossible: we need the user to
validate every assertion that is removed or added in order to
remove (resp. add) only assertions that are false (resp. true).

Example 6. Reconsider the problem from Ex. 5, and suppose
that the user knows that TakeC(s, c) is false and every other
assertion inA is true. An automatic repairing will remove the
true assertion Teach(b, c). The problem is due to the absence
of a ‘good’ cause for the wanted answer q2(a) in A. J

Since we will be studying an interactive repairing process,
in which users must validate changes, we will also need to

formalize the user’s knowledge. For the purposes of this pa-
per, we assume that the user’s knowledge is consistent with
the considered TBox T , and so can be captured as a setMuser

of models of T . Instead of using Muser directly, it will be
more convenient to work with the function user induced from
Muser that assigns truth values to BCQs in the obvious way:
user(q) = true if q is true in every I ∈ Muser, user(q) =
false if q is false in every I ∈ Muser, and user(q) = unknown
otherwise. We will assume throughout the paper the follow-
ing truthfulness condition: user(q) = false for every q ∈ U ,
and user(q) = true for every q ∈ W .

We now formalize the requirement that repair plans only
contain changes that are sanctioned by the user.

Definition 2. A repair plan (E−, E+) is validatable w.r.t.
user1 just in the case that user(α) = false for every α ∈ E−
and user(α) = true for every α ∈ E+.

Unfortunately, it may be the case that there is no validat-
able repair plan addressing all defects. This may happen, for
instance, if the user knows some answer is wrong but cannot
pinpoint which assertion is at fault, as we illustrate next.

Example 7. Consider the QRP given by:

K =(Tex, {FPr(a),Teach(a, c),GrC(c)})
U ={∃xPr(a) ∧ Teach(a, x) ∧ GrC(x)}, W = {Pr(a)}

Suppose that user(FPr(a)) = false, user(Teach(a, c)) =
unknown, user(GrC(c)) = unknown, user(APr(a)) = true.
It is not possible to satisfy the wanted and unwanted answers
at the same time, since adding the true assertion APr(a) cre-
ates a cause for the unwanted answer that does not contains
any assertion α with user(α) = false: the user does not know
which of Teach(a, c) and GrC(c) is erroneous. J

As validatable repair plans addressing all defects are not
guaranteed to exist, our aim will be to find repair plans that
are optimal in the sense that they address as many of the de-
fects as possible, subject to the constraint that the changes
must be validated by the user.

4 Optimal repair plans
To compare repair plans, we consider the answers from U and
W that are satisfied by the resulting KBs, where:
− q ∈ U is satisfied by K if K 6|=brave q,
− q ∈ W is satisfied by K if there exists C ∈ causes(q,K)

such that confl(C,K) = ∅ and there is no α ∈ C with
user(α) = false.

Remark 1. Note that for q ∈ W to be satisfied by K, we
require not only that K |=IAR q, but also that there exists a
cause for q that does not contain any assertions known to be
false, i.e. K |=IAR q should hold ‘for a good reason’.

We say that a repair planR = (E−, E+) satisfies q ∈ U∪W
if the KB KR = (T , (A\E−) ∪ E+) satisfies q, and we use
S(R) (resp. SU (R), SW(R)) to denote the sets of answers
(resp. unwanted answers, wanted answers) satisfied byR.

Two repair plans R and R′ can be compared w.r.t. the
sets of unwanted and wanted answers that they satisfy: for

1In what follows, we often omit ‘w.r.t. user’ and leave it implicit.



A ∈ {U ,W}, we define the preorder �A by setting R �A
R′ iff SA(R) ⊆ SA(R′), and obtain the corresponding
strict order (≺A) and equivalence relations (∼A) in the usual
way. If the two criteria are equally important, we can combine
them using the Pareto principle: R �{U,W} R′ iff R �U R′
and R �W R′. Alternatively, we can use the lexicographic
method to give priority either to the wanted answers (�W,U )
or unwanted answers (�U,W ): R �A,B R′ iff R ≺A R′ or
R ∼A R′ andR �B R′, where {A,B} = {U ,W}.

For each of the preceding preference relations �, we can
define the corresponding notions of �-optimal repair plan.

Definition 3. A repair plan (E−, E+) is globally (resp. lo-
cally) �-optimal w.r.t. user iff it is validatable w.r.t. user
and there is no other validatable repair plan (E ′−, E ′+) such
that (E−, E+) ≺ (E ′−, E ′+) (resp. E− ⊆ E ′−, E+ ⊆ E ′+ and
(E−, E+) ≺ (E ′−, E ′+)).

Remark 2. If a repair plan is validatable and addresses all
defects of a QRP, then it is globally �U -optimal. If it addi-
tionally satisfies every q ∈ W (ensuring that there is a ‘good’
cause for every q ∈ W), then it is globally �-optimal for
every �∈ {�W ,�{U,W},�U,W ,�W,U}.

The following example illustrates the difference between
local and global optimality.

Example 8. Consider the QRP ((Tex,A),W,U) where
A={Teach(a, e),Adv(a, b), takeC(b, c), takeC(b, e),GrC(e)},
W={∃xTeach(a, x),∃xtakeC(b, x) ∧ GrC(x)} and
U={∃xyTeach(a, x) ∧ Adv(a, y) ∧ takeC(y, x) ∧ GrC(x)}.

Suppose that user(Teach(a, e)) = user(GrC(e)) = false,
user(α) = unknown for the other α ∈ A, and the user knows
that Teach(a, c), Teach(a, d) and GrC(c) are true.

It can be verified that the repair plan R1 =
({Teach(a, e),GrC(e)}, {Teach(a, c)}) satisfies the first an-
swer inW and the (only) answer in U . It is locally �{U,W}-
optimal since the only way to satisfy the second wanted an-
swer would be to add GrC(c), which would create a cause for
the unwanted answer, which could not be repaired by remov-
ing additional assertions as the user does not know which of
Adv(a, b) and takeC(b, c) is false. However, R1 is not glob-
ally�{U,W}-optimal becauseR2 = ({Teach(a, e),GrC(e)},
{Teach(a, d), GrC(c)}) satisfies all answers inW ∪ U . J

In order to gain a better understanding of the computational
properties of the different ways of ranking repair plans, we
study the complexity of deciding if a given repair plan is op-
timal w.r.t. the different criteria. Since validatability of a re-
pair plan depends on user, in this section, we measure the
complexity w.r.t. |A|, |U|, |W|, as well as the size of the set

Truereluser ={α ∈ Trueuser | there exists q ∈ W such that
α ∈ C for some C ∈ causes(q,A ∪ Trueuser)}

where Trueuser = {α | user(α) = true}. We make the rea-
sonable assumption that Trueuser (hence Truereluser) is finite.

Theorem 1. Deciding if a repair plan is globally �-optimal
is coNP-complete for �∈ {�{U,W},�U,W ,�W,U}, and in
P for �∈ {�W ,�U}. Deciding if a repair plan is locally �-
optimal is in P for �∈ {�U ,�W ,�{U,W},�U,W ,�W,U}.

For the coNP upper bounds, we note that to show that R
is not �-optimal (for �∈ {�{U,W},�U,W ,�W,U}), we can
guess another repair plan R′ and verify in P that both plans
are validatable and that R′ satisfies more answers than R.
The lower bounds are by reduction from (variants of) UNSAT.

To establish the tractability results from Theorem 1, we
provide characterizations of optimal plans in terms of the no-
tion of satisfiability of answers, defined next.
Definition 4. An answer q ∈ U ∪ W is satisfiable if there
exists a validatable repair plan that satisfies q. We say that q
is satisfiable w.r.t. a validatable repair plan R = (E−, E+) if
there exists a validatable repair planR′ = (E ′−, E ′+) such that
E− ⊆ E ′−, E+ ⊆ E ′+, q ∈ S(R′), andR �{U,W} R′.
Proposition 1. Deciding if an answer is satisfied, satisfiable,
or satisfiable w.r.t. a repair plan is in P.

Combining Prop. 1 with the following characterizations
yields polynomial-time procedures for optimality testing.
Proposition 2. A validatable repair planR is:
− globally �U - (resp. �W -) optimal iff it satisfies every

satisfiable q ∈ U (resp. q ∈ W).
− locally�U,W -optimal iff it is locally�{U,W}-optimal iff

it satisfies every q ∈ U ∪W that is satisfiable w.r.t.R.
− locally�W,U -optimal iff it satisfies every satisfiable q ∈
W and every q ∈ U that is satisfiable w.r.t.R.

Our complexity analysis reveals that the notions of global
optimality based upon the preference relations �{U,W},
�U,W , and�W,U have undesirable computational properties:
even when provided with all relevant user knowledge, it is in-
tractable to decide whether a given plan is optimal. Moreover,
while plans globally �U - (resp. �W -) optimal can be inter-
actively constructed in a monotonic fashion by removing fur-
ther false assertions (resp. and adding further true assertions),
building a globally optimal plan for a preference relation that
involves both U and W may require backtracking over an-
swers already satisfied (cf. the situation in Example 8).

For the preceding reasons, we target validatable repair
plans that are both globally optimal for �U or �W (depend-
ing which is preferred) and locally optimal for �{U,W}. In
Fig. 1, we give an interactive algorithm OptRPU for building
such a repair plan when U is preferred; ifW is preferred, we
use the algorithm OptRPW obtained by removing Step C.6
from OptRPU . The algorithms terminate provided the user
knows only a finite number of assertions that may be inserted.
In this case, the algorithms output optimal repair plans:
Theorem 2. The output of OptRPU (resp. OptRPW ) is glob-
ally �U (resp. �W ) and locally �{U,W}-optimal.
Proof idea. We sketch the proof for OptRPU . Step B adds
to E− all assertions known to be false that belong to a cause
of some q ∈ U ∪ W or a conflict of some cause of q ∈ W .
Thus, at the end of this step, E− satisfies every satisfiable an-
swer in U (i.e. we are globally �U -optimal). The purpose
of Step C is to add new true assertions to create causes for
the wanted answers not satisfied after Step B, while preserv-
ing SU (E−, E+). The user is asked to input true assertions to
complete a cause for an unsatisfied q ∈ W . If he is unable to
do so, we remove q fromW (since it cannot be satisfied); oth-
erwise, we update E− and E+ using Tq (C.3). Note that since



ALGORITHM OptRPU
Input: QRP (K=(T ,A), U ,W) Output: repair plan
A. E− ← ∅, E+ ← ∅
B. Display the assertions of

⋃
q∈U∪W causes(q,K) and⋃

q∈W,C∈causes(q,K) confl(C,K)

1. Ask user to mark all false (F ) and true (T ) assertions
2. E− ← E− ∪ F ∪ confl(T,K)

C. WhileW ′ =W\SW(E−, E+) 6= ∅: q ← first(W ′)
1. Ask the user for true assertions Tq to add to complete

(or create) a cause for q
2. If Tq = ∅ (nothing to add): W ←W\{q}, go to C.
3. E+ ← E+ ∪ Tq , E− ← E− ∪ confl(Tq, (T ,A ∪ Tq))
4. Show assertions of every cause C of q such that
Tq ∩ C 6= ∅ and its conflicts: user indicates false,
true assertions F ′, T ′: E− ← E− ∪ F ′ ∪ confl(T ′,K)

5. Show assertions of causes of every q′∈U in A\E− ∪
E+: user gives false assertions F ′′: E− ← E− ∪ F ′′

6. If there is q′′ ∈ U such that (T ,A\E−∪E+) |=brave q
′′

and (T ,A\E−) 6|=brave q
′′: E+ ← E+\Tq (revert E+)

D. Return (E−, E+)

Figure 1: Algorithm for constructing a globally �U and lo-
cally �{U,W}-optimal repair plan

Tq contains only true assertions, we can remove its conflicts
without affecting already satisfied wanted answers. In Step
C.4, we remove false assertions appearing in a new cause for
q or its conflicts (such assertions may not have been examined
in Step B). Step C.5 removes false assertions of new causes
of unwanted answers, and Step C.6 undoes the addition of Tq
if it affects SU (E−, E+). Thus, at the end of Step C, for every
wanted answer, either it is satisfied, or the user is unable to
supply a cause that does not deteriorate SU (E−, E+).

5 Optimal deletion-only repair plans
In this section, we restrict our attention to constructing opti-
mal deletion-only repair plans. In this simpler setting, all of
the previously introduced notions of optimality collapse into
the one characterized in the following proposition.
Proposition 3. A validatable deletion-only plan is optimal iff
it satisfies every q ∈ U such that every C ∈ causes(q,K) has
α ∈ C with user(α) = false, and every q ∈ W for which there
exists C ∈ causes(q,K) such that user(α) 6= false for every
α ∈ C and user(β) = false for every β ∈ confl(C,K).

Constructing such repair plans can be done with one of the
preceding algorithms, omitting Step C that adds facts. How-
ever, it is possible to further assist the user by taking advan-
tage of the fact that subsets of the ABox whose removal ad-
dresses all defects of the QRP can be automatically identified,
and then interactively transformed into optimal repair plans.
We call such subsets potential solutions.

An assertion is said to be relevant if it appears in a cause
of some q ∈ U ∪ W or in the conflicts of a cause of some
q ∈ W . If an assertion α appears in every potential solution,
either user(α) = false, or there is no validatable potential so-
lution. We call such assertions necessarily false. If α appears
in no potential solution, it is necessary to keep it in A to re-
trieve some wanted answers under IAR semantics, so either

user(α) 6= false, or it is not possible to satisfy all wanted
answers. We call such assertions necessarily nonfalse.

When a potential solution does not exist, a minimal cor-
rection subset of wanted answers (MCSW) is an inclusion-
minimal subset W ′ ⊆ W such that removing W ′ from W
yields a QRP with a potential solution. Because of the truth-
fulness condition, we know that the absence of a potential so-
lution means that some wanted answers are supported only by
causes containing erroneous assertions (otherwise the wanted
and unwanted answers would be contradictory, which would
violate the truthfulness condition). Moreover, since removing
all such answers from W yields the existence of a potential
solution, there exists a MCSW which contains only such an-
swers, which we call an erroneous MCSW. This is why MC-
SWs can help identify the wanted answers that cannot be sat-
isfied by a deletion-only repair plan.
Theorem 3. For complexity w.r.t. |A|, |U| and |W|, decid-
ing if a potential solution exists is NP-complete, deciding if
an assertion is necessarily (non)false is coNP-complete, and
deciding ifW ′ ⊆ W is a MCSW is BH2-complete.

The lower bounds are proven by reduction from proposi-
tional (un)satisfiability and related problems. For the upper
bounds, we construct in polynomial time a propositional CNF
ϕ with variables drawn from {xα | α ∈ A} ∪ {wC | C ∈
causes(q,K), q ∈ U ∪W} having the following properties:
− there exists a potential solution iff ϕ is satisfiable (satis-

fying assignments correspond to potential solutions);
− α is necessarily false iff ϕ ∧ ¬xα is unsatisfiable;
− α is necessarily nonfalse iff ϕ ∧ xα is unsatisfiable;
− there exist disjoint subsets S,H of the clauses in ϕ such

that the MCSWs correspond to the minimal correction
subsets (MCSs) of S w.r.t. H , i.e. the subsets M ⊆ S
such that (i) (S\M)∪H is satisfiable, and (ii) (S\M ′)∪
H is unsatisfiable for every M ′ (M .

We present in Fig. 2 an algorithm OptDRP for comput-
ing optimal deletion-only repair plans. Within the algo-
rithm, we denote byR(K,U ,W,A′) (resp.Nf(K,U ,W,A′),
N¬f(K,U ,W,A′)) the set of assertions from A′ ⊆ A that
are relevant (resp. necessarily false, nonfalse) for the QRP
(K,U ,W) when deletions are allowed only in A′ (the set A′
will be used to store assertions whose truth value is not yet
determined). The general idea is that the algorithm incre-
mentally builds a set of assertions that are false according to
the user. It aids the user by suggesting assertions to remove,
or wanted answers that might not be satisfiable when there
is no potential solution, while taking into account the knowl-
edge the user has already provided. If there exists a potential
solution, the algorithm computes the necessarily (non)false
assertions and asks the user either to validate them or to in-
put false and nonfalse assertions to justify why they cannot be
validated, and then to input further true or false assertions if
the current set of false assertions does not address all defects.
When a potential solution is found, the user has to verify that
each wanted answer has a cause that does not contain any
false assertion. If there does not exist a potential solution at
some point, either initially or after some user inputs, the algo-
rithm looks for an erroneous MCSW by computing all MC-
SWs, then showing for each of them the assertions involved



ALGORITHM OptDRP
Input: QRP (K=(T ,A), U ,W) Output: repair plan
(Note: below K is a macro for (T ,A\E−), using the current E−.)
A. K0 ← K, A′ ← A, E− ← ∅
B. If a potential solution for (K, U ,W) exists in A′:

1. R ← R(K,U ,W,A′), Nf ← Nf(K,U ,W,A′),
N¬f ← N¬f(K,U ,W,A′)

2. If the user validates user(α) = false for every α ∈ Nf

and user(α) 6= false for every α ∈ N¬f :
a. E− ← E− ∪Nf , A′ ← A′\(Nf ∪N¬f)
b. If E− is a potential solution for (K0,U ,W):

i. For each q ∈ W: the user gives all false assertions
F ⊆

⋃
C∈causes(q,K),confl(C,K)=∅ C, E− ← E− ∪ F

ii. If E− is still a potential solution: output E−
iii. Else: A′ ← A′\E−, go to B

c. Else: user selects some F, T ⊆R\(Nf ∪N¬f)
i. If F = T = ∅ (nothing left to input): return E−

ii. Else: E− ← E−∪F∪confl(T,K),A′ ← A′\(E−∪
T ), go to B

3. Else: user gives F ⊆ {α ∈ N¬f | user(α) = false}
and NF ⊆ {α ∈ Nf | user(α) 6= false} with
F ∪NF 6= ∅, E− ← E− ∪ F , A′ ← A′\(E− ∪NF )

C. Search for a MCSW containing only answers that are
supported only by erroneous causes:

1. M←MCSWs(K,U ,W,A′) ordered by size
2. While erroneous MCSW not found andM 6= ∅:

a. M ← first(M)
b. For every q ∈M :

i. the user selects F, T ⊆
⋃
C∈causes(q,K) C

ii. E− ← E− ∪F ∪ confl(T,K), A′ ← A′\(E− ∪ T )
iii. If a cause for q contains no false assertion: M←
M\{M ′ ∈M | q ∈M ′}, go to C.2

c. MCSW found: W ←W\M and go to B.1
3. No MCSW found: do Step B of OptRPU , output E−

Figure 2: Algorithm for optimal deletion-only repair plans

in the causes of each query of the MCSW. If there is a query
which has a cause without any false assertion, the MCSW un-
der examination is not erroneous, nor are the other MCSWs
that contain that query. Otherwise, the MCSW is erroneous
and its queries are removed fromW , and we return to the case
where a potential solution exists.

Theorem 4. The algorithm OptDRP always terminates, and
it outputs an optimal deletion-only repair plan.

Proof idea. Termination follows from the fact that every time
we return to Step B, something has been added to E− or
deleted from W , and nothing is ever removed from E− or
added toW . Since we only add false assertions to E−, the out-
put plan is validatable. If the algorithm ends at Step B.2.b.ii,
then E− satisfies every answer characterized in Prop. 3. In-
deed, since E− is a potential solution, it satisfies every un-
wanted answer. Moreover, the answers removed from W at
Step C.2.c do not fulfill the conditions of Prop. 3, and for ev-
ery remaining q ∈ W , we ensure that there is a conflict-free
cause of q that contains no false assertions. If the algorithm
ends at Step B.2.c.i, the user has deleted all false assertions
he knows among the relevant assertions, and thus it is not

possible to improve the current repair plan further. A similar
argument applies if the algorithm ends at Step C.3.

To avoid overwhelming the user with relevant assertions at
Step B.2.c, it is desirable to reduce the number of assertions
presented at a time. This leads us to propose two improve-
ments to the basic algorithm. First, we can divide QRPs into
independent subproblems. Two answers are considered de-
pendent if their causes (and conflicts in the case of wanted
answers) share some assertion. Independent sets of answers
do not interact, so they can be handled separately. Second, at
Step B.2.c, the assertions can be presented in small batches.
Borrowing ideas from work on reducing user effort in inter-
active revision, we can use a notion of impact to determine
the order of presentation of assertions. Indeed, deleting or
keeping an assertion may force us to delete or keep other as-
sertions to get a potential solution. Relevant assertions can
be sorted using two scores that express the impact of being
declared false or true. For the impact of an assertion α being
false, we use the number of assertions that becomes neces-
sarily (non)false if α is deleted. The impact of α being true
also takes into account the fact that the conflicts of α can be
marked as false: we consider the number of assertions that
are in conflict with α or become necessarily (non)false when
we disallow α’s removal. We can rank assertions by the min-
imum of the two scores, using their sum to break ties.

6 Preliminary experiments
We report on experiments made on core components of the
above OptDRP algorithm. We focused on measuring the
time to decide whether a potential solution exists (Step B), to
compute necessarily (non)false and relevant assertions (Step
B.1), to rank the relevant assertions w.r.t. their impact (Step
B.2.c), and to find the MCSWs (Step C).

The components were developed in Java using the CQAPri
system (www.lri.fr/˜bourgaux/CQAPri) to compute
query answers under IAR and brave semantics, with their
causes, and the KB’s conflicts. We used SAT4J (www.
sat4j.org) to solve the (UN)SAT reductions in Section 5.

We borrowed from the CQAPri benchmark [Bienvenu et
al., 2016] available at the URL above, its: (i) TBox which
is the DL-LiteR version of the Lehigh University Benchmark
[Lutz et al., 2013] augmented with constraints allowing for
conflicts, (ii) c5 and c29 ABoxes with∼10 million assertions
and, respectively, a ratio of assertions involved in conflicts of
5%, that we found realistic, and of 29%, and (iii) q1, q2, q3, q4
queries. We built 13 QRPs per ABox, by adding more and
more answers to U orW; U ∪W’s size varies from 8 to 121.

In all of our experiments, deciding if a potential solution
exists, as well as computing the relevant assertions, takes a
few milliseconds. The difficulty of computing the necessar-
ily (non)false assertions correlates with the number of rele-
vant assertions induced by QRPs. For the c5 QRPs involving
85 to 745 relevant assertions, it takes 30ms to 544ms, while
it takes 24ms to 1333ms for the c29 QRPs involving 143 to
1404 relevant assertions. While these times seem reasonable
in practice, ranking the remaining relevant assertions based
on their impact is time consuming (it requires a number of
calls to the SAT solver quadratic in the number of assertions):
it takes less than 10s up to ∼150 assertions, less than 5mn up



to ∼480 assertions, and up to 25mn for 825 assertions. Fi-
nally, computing the MCSWs takes a few milliseconds; for
all the QRPs we built, we found at most one MCSW.

7 Discussion
The problem of modifying DL KBs to ensure
(non)entailments of assertions and/or axioms has been inves-
tigated in many works, see e.g. [De Giacomo et al., 2009;
Calvanese et al., 2010; Gutierrez et al., 2011].

Our framework is inspired by that of [Jiménez-Ruiz et al.,
2011], in which a user specifies two sets of axioms that should
be entailed or not by a KB. Repair plans are introduced as
pairs of sets of axioms to remove and add to obtain an ontol-
ogy satisfying these requirements. Deletion-only repair plans
are studied in [Jiménez-Ruiz et al., 2009] where heuristics
based on the confidence and the size of the plan are used to
help the user to choose a plan among all minimal plans.

When axiom (in)validation can be partially automatized,
ranking axioms by their potential impact reduces the effort of
manual revision [Meilicke et al., 2008; Nikitina et al., 2012].
In our setting, we believe that validating sets of necessarily
(non)false assertions requires less effort than hunting for false
assertions among all relevant assertions, leading us to propose
a similar notion of impact to rank assertions to be examined.

Compared to prior work, distinguishing features of our
framework are the specification of changes at the level of CQ
answers, the use of inconsistency-tolerant semantics, and the
introduction of optimality measures to handle situations in
which not all objectives can be achieved.

In future work, two aspects of our approach deserve fur-
ther attention. First, when insertions are needed, it would
be helpful to provide users with suggestions of assertions to
add. The framework of query abduction [Calvanese et al.,
2013], which was recently extended to inconsistent KBs [Du
et al., 2015], could provide a useful starting point. Second,
our experiments revealed the difficulty of ranking relevant as-
sertions, so we plan to develop optimized algorithms for com-
puting impact and explore alternative definitions of impact.
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A Complexity proofs for Section 4
Throughout the appendix, we assume that T is the consid-
ered TBox and A is the considered ABox, unless otherwise
indicated.

We will use the following notations for the sets of false,
unknown, and true ABox assertions:

Falseuser = {α ∈ A | user(α) = false}
Unkuser = {α ∈ A | user(α) = unknown}
Trueuser = {α | user(α) = true}

Checking if an assertion is false (resp. unknown, true) is in
P w.r.t. the size of Falseuser (resp. Unkuser, Trueuser). The
sets Falseuser and Unkuser are included inA, while Trueuser

may be larger. However, only the assertions of Trueuser that
are relevant to the given QRP need to be considered. We thus
measure complexity w.r.t. |A|, |U|, |W|, as well as the size of
the set

Truereluser ={α ∈ Trueuser | there exists q ∈ W such that
α ∈ C for some C ∈ causes(q,A ∪ Trueuser)}

We begin with the following lemma which shows that re-
moving false assertions or adding true assertions (whose con-
flicts are false) can only satisfy more wanted answers, and re-
moving additional false assertions, while adding the same set
of true assertions, can only satisfy more unwanted answers.

Lemma 1. Let (E−, E+) and (E ′−, E ′+) be validatable repair
plans.

1. If E− ⊆ E ′− and E+ ⊆ E ′+, then SW(, E−, E+) ⊆
SW(E ′−, E ′+).

2. If E− ⊆ E ′− and E+ = E ′+, then SU (E−, E+) ⊆
SU (E ′−, E ′+).

Proof. Suppose that E− ⊆ E ′− and E+ ⊆ E ′+ and let q ∈
SW(, E−, E+). There exists a cause C for q in (A\E−) ∪ E+
such that C does not contain any false assertion and has no
conflicts in (A\E−) ∪ E+. Since C ⊆ A ∪ E+ and E+ ⊆
E ′+, C ⊆ A ∪ E ′+, and since C does not contain any false
assertion and (E ′−, E ′+) is validatable, C ∩ E ′− = ∅, so C ⊆
(A\E ′−) ∪ E ′+. Moreover, C has no conflict in (A\E−) ∪ E+,
so the set of assertions of A in conflict with C is included in
E− ⊆ E ′−, so C has no conflict in (A\E ′−) ∪ E ′+ (note that
since the assertions of C are nonfalse, and the repair plans are
validatable, assertions of C cannot conflict with assertions of
E ′+). It follows that q ∈ SW(E ′−, E ′+).

Suppose that E− ⊆ E ′− and E+ = E ′+ and let q ∈
SU (E−, E+). There is no cause for q in (A\E−) ∪ E+ ⊆
(A\E ′−) ∪ E ′+, so q ∈ SU (E ′−, E ′+).

The next lemma characterizes when a validatable repair
plan satisfies an unwanted answer.

Lemma 2. Let (E−, E+) be a validatable repair plan. Then
(E−, E+) satisfies q ∈ U iff E− ∩ C 6= ∅ for every C ∈
causes(q, (T ,A ∪ E+)).

Proof. For the first direction, suppose that (E−, E+) satisfies
q ∈ U . This means that (T , (A\E−) ∪ E+) 6|=brave q. It



follows that for every C ∈ causes(q, (T ,A ∪ E+)), we have
C 6⊆ (A\E−) ∪ E+, hence C ∩ E− 6= ∅.

For the second direction, suppose that E− ∩ C 6= ∅
for every C ∈ causes(q, (T ,A ∪ E+)). It follows that
causes(q, (T , (A ∪ E+) \ E−)) = ∅. Since (E−, E+) is vali-
datable, we know that user(α) = false for every α ∈ E− and
user(α) = true for every α ∈ E+. In particular, this means
that E− ∩ E+ = ∅, so (A ∪ E+) \ E− = (A \ E−) ∪ E+.
We therefore have causes(q, (T , (A\ E−)∪ E+)) = ∅, hence
(T , (A\E−) ∪ E+) 6|=brave q.

The proof of Proposition 1 relies on the following char-
acterizations of satisfiable answers and answers satisfiable
w.r.t. a repair plan.

Lemma 3. An answer q ∈ U is satisfiable iff for every C ∈
causes(q, (T ,A)) there exists α ∈ C such that user(α) =
false.

Proof. If q ∈ U is satisfiable, then there exists a validatable
repair plan (E−, E+) that satisfies q. By Lemma 2, we must
have E− ∩ C 6= ∅ for every C ∈ causes(q, (T ,A ∪ E+)),
hence for every C ∈ causes(q, (T ,A)). Since (E−, E+) is
validatable, we know that E− ⊆ Falseuser, hence every cause
of q in (T ,A) contains at least one assertion α such that
user(α) = false.

In the other direction, if for every C ∈ causes(q, (T ,A))
there exists α ∈ C such that user(α) = false, then it is easily
shown using Lemma 2 that

({α | ∃C ∈ causes(q, (T ,A)), α ∈ C, user(α) = false}, ∅)

is a validatable repair plan that satisfies q.

Lemma 4. An answer q ∈ W is satisfiable iff there exists a
T -consistent set of assertions C0 such that (T , C0) |= q and
for every α ∈ C0, either

• user(α) = true, or

• α ∈ A, user(α) = unknown and for every β ∈ A such
that (T , {α, β}) |= ⊥, user(β) = false.

(We will call C0 a witness for the satisfiability of q.)

Proof. If q ∈ W is satisfiable, then there exists a validatable
repair plan (E−, E+) such that (A\E−)∪E+ contains a cause
C0 for q that contains no false assertion and has no conflicts
in (A\E−) ∪ E+. It follows that for every α ∈ C0, either
α ∈ E+ and user(α) = true, or α ∈ A and user(α) = true
or user(α) = unknown, and every conflict β of α is in E−,
hence is such that user(β) = false.

In the other direction, if q and C0 satisfy the conditions of
the lemma statement, then one can easily verify that

({β ∈ A | ∃α ∈ C0, (T , {α, β}) |= ⊥, user(β) = false},
{α ∈ C0 \ A | user(α) = true})

is a validatable repair plan that satisfies q.

Lemma 5. Let (E−, E+) be a validatable repair plan for
the KB (T ,A). Then an answer q ∈ U is satisfiable
w.r.t. (E−, E+) iff q ∈ U is satisfiable for the KB (T ,A∪E+).

Proof. If q ∈ U is satisfiable w.r.t. (E−, E+), then there ex-
ists a validatable repair plan (E ′−, E ′+) with E− ⊆ E ′− and
E+ ⊆ E ′+ that satisfies q. By Lemma 2, E ′− must intersect all
of the causes of q w.r.t. (T ,A ∪ E ′+). Since E+ ⊆ E ′+, the set
E ′− intersects all of q′s causes w.r.t. (T ,A ∪ E+). By apply-
ing Lemma 2 again, we can show that the repair plan (E ′−, ∅)
witnesses the satisfiability of q for the KB (T ,A ∪ E+).

In the other direction, suppose that q ∈ U is satisfiable
when (T ,A∪E+) is the input KB. By Lemma 3, we know that
for every C ∈ causes(q, (T ,A∪E+)) there exists α ∈ C such
that user(α) = false. Now consider the repair plan (E ′−, E+)
where E ′− contains the following assertions

E− ∪ {α | ∃C ∈ causes(q, (T ,A)), α ∈ C, user(α) = false}.

By construction, q is satisfied by the KB (T , (A \ E ′−) ∪ E+)
induced by (E ′−, E+). Since (E−, E+) is known to be validat-
able, and E ′−\E− ⊆ Falseuser, it follows that (E ′−, E+) is also
validatable. It follows from Lemma 1 that SW(, E−, E+) ⊆
SW(E ′−, E+) and SU (E−, E+) ⊆ SU (E ′−, E+). We have thus
found a validatable repair plan that extends (E−, E+) and
whose corresponding KB satisfies q and all answers that were
already satisfied by (E−, E+). We can therefore conclude that
q ∈ U is satisfiable w.r.t. (E−, E+).

Lemma 6. Let (E−, E+) be a validatable repair plan for
the KB (T ,A). Then an answer q ∈ W is satisfiable
w.r.t. (E−, E+) iff q is satisfiable for the KB (T ,A) with a
witness C0 such that every q′ ∈ SU (E−, E+) is satisfiable for
the KB (T ,A ∪ E+ ∪ C0).

Proof. If q ∈ W is satisfiable w.r.t. (E−, E+), then there ex-
ists a validatable repair plan (E ′−, E ′+) such that E− ⊆ E ′− and
E+ ⊆ E ′+ which satisfies q and all answers in S(E−, E+). As
q is satisfied by (E ′−, E ′+), the ABox (A\E ′−)∪ E ′+ contains a
cause C0 for q that has no conflict and that does not contain
any false assertion. This means that q is satisfiable for (T ,A).
Now take some q′ ∈ SU (E−, E+). Since SU (E−, E+) ⊆
SU (E ′−, E ′+), we have q′ ∈ SU (E ′−, E ′+), and so by Lemma 2,
we have E ′− ∩ C 6= ∅ for every C ∈ causes(q′, (T ,A ∪ E ′+)).
We observe that E ′− ⊆ Falseuser andA∪E+ ∪C0 ⊆ A∪E ′+.
It follows that for every C ∈ causes(q′, (T ,A ∪ E+ ∪ C0)),
there exists α ∈ C with user(α) = false. By Lemma 3, we
can conclude that q′ is satisfiable for the KB (T ,A∪E+∪C0).

In the other direction, suppose that q ∈ W is satisfi-
able for the KB (T ,A) with a witness C0 such that every
q′ ∈ SU (E−, E+) is satisfiable for the KB (T ,A ∪ E+ ∪ C0).
Consider the repair plan (E ′−, E ′+) where

E ′− = E− ∪ {β ∈ A | ∃α ∈ C0, (T , {α, β}) |= ⊥,
user(β) = false}

∪ {α | user(α) = false and there exists some q′ ∈ U
and C ∈ causes(q′, (T ,A ∪ E+ ∪ C0))

such that α ∈ C}
E ′+ = E+ ∪ {α ∈ C0 \ A | user(α) = true}

By construction, (E ′−, E ′+) is validatable and satisfies q. We
have SW(E−, E+) ⊆ SW(E ′−, E ′+) by Lemma 1. To see
why SU (E−, E+) ⊆ SU (E ′−, E ′+), take some answer q′ ∈



SU (E−, E+). By our earlier assumption, we know that q′ is
satisfiable for the KB (T ,A∪E+∪C0), so by Lemma 3, every
C ∈ causes(q′, (T ,A∪E+∪C0)) contains an assertion α ∈ C
such that user(α) = false, which will thus be included in E ′−.
Since every cause for q′ in (T ,A∪E+∪C0) has a non-empty
intersection with E ′−, we can apply Lemma 2 to conclude that
q′ is satisfied by (E ′−, E ′+).

Proposition 1. Deciding if an answer is satisfied, satisfiable,
or satisfiable w.r.t. a repair plan is in P.

Proof. • Deciding if a wanted (resp. unwanted) answer is
satisfied amounts to deciding if it is entailed under IAR se-
mantics (resp. not entailed under brave semantics), so is in P
w.r.t. |A|.
• Since computing the causes of a query q is in P w.r.t. |A|,
and the number of causes is polynomial w.r.t. |A|, the char-
acterization of Lemma 3 shows that deciding if an unwanted
answer is satisfiable is in P w.r.t. |A|.
• Deciding if a wanted answer q is satisfiable using the char-
acterization of Lemma 4 can be done by computing the causes
of q and their conflicts in (T ,A∪Truereluser) in P w.r.t. |A| and
|Truereluser| and verifying in P that at least one of the causes
fulfils the required conditions.
• By Lemma 5, checking whether q ∈ U is satisfiable w.r.t.
(E−, E+) reduces to checking whether q ∈ U is satisfiable for
the KB (T ,A ∪ E+). We know from earlier that the latter
check can be done in P w.r.t. the size of the ABox. Since
E+ ⊆ Truereluser, this condition can be verified in P w.r.t. |A|
and |Truereluser|.
• To check whether an answer q ∈ W is satisfiable
w.r.t. (E−, E+), it suffices to check whether q satisfies the
conditions of Lemma 6. These can be verified by: (i) comput-
ing the causes of q and their conflicts in (T ,A ∪ Truereluser),
and (ii) for each candidate cause C0 that fulfils the conditions
of Lemma 4, and every unwanted answer q′ ∈ U , check
that if q′ is satisfied by (E−, E+), then it is satisfiable for
the KB (T ,A ∪ E+ ∪ C0). Everything can be done in P
w.r.t. |A|, |Truereluser|, and |U|with the same arguments as pre-
vious cases.

Proposition 2. A validatable repair planR is:
− globally �U - (resp. �W -) optimal iff it satisfies every

satisfiable q ∈ U (resp. q ∈ W).
− locally �U,W -optimal iff it is locally �{U,W}-optimal

iff it satisfies every q ∈ U ∪W that is satisfiable w.r.t.R.
− locally�W,U -optimal iff it satisfies every satisfiable q ∈
W and every q ∈ U that is satisfiable w.r.t.R.

Proof.
• A validatable repair plan is globally �U - (resp. �W -) opti-
mal iff satisfies every satisfiable q ∈ U (resp. q ∈ W):
- Let (E−, E+) be a globally �U - (resp. �W -) optimal re-
pair plan. Take some satisfiable q ∈ U (resp. q ∈ W), and
let (E ′−, E ′+) be a validatable repair plan satisfying q. By
Lemma 1, (E−, E+) �U (E− ∪ E ′−, E+) (resp. (E−, E+) �W
(E− ∪ E ′−, E+ ∪ E ′+)). Because of global optimality, we must
in fact have (E−, E+) ∼U (E−∪E ′−, E+) (resp. (E−, E+) ∼W
(E− ∪ E ′−, E+ ∪ E ′+)), and so q is satisfied by (E−, E+).

- In the other direction, it follows from the definition of satis-
fiable answers that if a validatable repair plan satisfies every
satisfiable q ∈ U (resp. q ∈ W), it is globally �U - (resp.
�W -) optimal.

• A validatable repair plan is locally �U,W -optimal iff it is
locally �{U,W}-optimal:
- If a repair plan (E−, E+) is locally �U,W -optimal, it is
locally �{U,W}-optimal, otherwise there would be a vali-
datable repair plan (E ′−, E ′+) such that E− ⊆ E ′−, E+ ⊆
E ′+ and (E−, E+) ≺{U,W} (E ′−, E ′+), so also such that
(E−, E+) ≺U,W (E ′−, E ′+).
- Suppose for a contradiction that a repair plan (E−, E+) is lo-
cally �{U,W}-optimal and not locally �U,W -optimal. Then
there exists a validatable repair plan (E ′−, E ′+) such that E− ⊆
E ′−, E+ ⊆ E ′+ and (E−, E+) ≺U,W (E ′−, E ′+). Since remov-
ing more false assertions cannot deteriorate satisfied wanted
answers (see Lemma 1), (E ′−, E ′+) cannot satisfy more un-
wanted answers otherwise we would have (E−, E+) ≺{U,W}
(E− ∪ E ′−, E+). Hence (E ′−, E ′+) must satisfy the same un-
wanted answers and more wanted answers, which yields
(E−, E+) ≺{U,W} (E ′−, E ′+), contradicting our assumption of
local �U,W -optimality.

• A validatable repair plan R is locally �{U,W}- (�U,W -)
optimal iff it satisfies every q ∈ U ∪ W that is satisfiable
w.r.t.R:
- Suppose that (E−, E+) is locally �{U,W}-optimal, and let
q ∈ U ∪ W be an answer that is satisfiable w.r.t. (E−, E+).
Then there exists a validatable repair plan (E ′−, E ′+) such that
E− ⊆ E ′−, E+ ⊆ E ′+ and (E−, E+) �{U,W} (E ′−, E ′+) and
q ∈ S(E ′−, E ′+). Since (E−, E+) is locally �{U,W}-optimal,
we must have (E−, E+) ∼{U,W} (E ′−, E ′+), and hence q ∈
S(E−, E+).
- In the other direction, suppose that (E−, E+) is a validatable
repair plan that satisfies every q ∈ U ∪ W that is satisfiable
w.r.t. (E−, E+). Consider a validatable repair plan (E ′−, E ′+)
such that E− ⊆ E ′−, E+ ⊆ E ′+ and (E−, E+) �{U,W}
(E ′−, E ′+), and take some q ∈ S(E ′−, E ′+). Then q is satisfi-
able w.r.t. (E−, E+), so, by our assumption, it must be satis-
fied by (E−, E+). We thus have (E−, E+) ∼{U,W} (E ′−, E ′+),
so (E−, E+) is locally �{U,W}-optimal.

• A validatable repair plan R is locally �W,U -optimal iff it
satisfies every satisfiable q ∈ W and every q ∈ U that is
satisfiable w.r.t.R:
- Suppose that (E−, E+) is locally �W,U -optimal. First con-
sider some satisfiable q ∈ W . Then there exists a vali-
datable repair plan (E ′−, E ′+) such that q ∈ S(E ′−, E ′+). By
Lemma 1, we have (E−, E+) �W (E− ∪ E ′−, E+ ∪ E ′+). Ap-
plying our assumption of local �W,U -optimality, we have
(E−, E+) ∼W (E− ∪ E ′−, E+ ∪ E ′+), which implies that q is
satisfied by (E−, E+) .

Next take some q ∈ U that is satisfiable w.r.t. (E−, E+).
Then there exists a validatable repair plan (E ′−, E ′+) such that
E− ⊆ E ′−, E+ ⊆ E ′+, (E−, E+) �{U,W} (E ′−, E ′+) and
q ∈ S(E ′−, E ′+). Since (E−, E+) is locally �W,U -optimal,
we must have (E−, E+) ∼W (E ′−, E ′+) and (E−, E+) ∼U
(E ′−, E ′+). From the latter, we obtain q ∈ S(E−, E+).



- In the other direction, let (E−, E+) be a validatable re-
pair plan that satisfies every satisfiable q ∈ W and every
q ∈ U that is satisfiable w.r.t. (E−, E+). Take some vali-
datable repair plan (E ′−, E ′+) such that E− ⊆ E ′−, E+ ⊆ E ′+
and (E−, E+) �W,U (E ′−, E ′+). We observe that (E ′−, E ′+)
cannot satisfy more wanted answers than (E−, E+) since
(E−, E+) satisfies all satisfiable wanted answers, nor can it
satisfy more unwanted answers, since otherwise (E−, E+)
would not satisfy all unwanted answers that are satisfiable
w.r.t. (E−, E+).

The proof of Theorem 1 uses the coNP-hard problems pre-
sented in the two following lemmas.
Lemma 7. NP-hardness of SAT holds if we impose that at
least one variable appears in positive and negative form in
the formula.

Proof. Reduction from SAT. Let {C1, ..., Cm} be a set of
clauses. C1∧ ...∧Cm is satisfiable iff C1∧ ...∧Cm∧(z∨¬z)
is satisfiable, where z is a fresh variable.

Lemma 8. The following problem is NP-hard: given a set
{C1, ..., Cm, Cm+1} of clauses such that {C1, ..., Cm} is
satisfiable and Cm+1 is not a tautology: decide whether
{C1, ..., Cm, Cm+1} is satisfiable.

Proof. Reduction from SAT. Let {C1, ..., Cm} be a set of
clauses. C1 ∧ ... ∧ Cm is satisfiable iff (C1 ∨ ¬z) ∧ ... ∧
(Cm ∨ ¬z) ∧ z is satisfiable, where z is a fresh variable, and
(C1 ∨ ¬z) ∧ ... ∧ (Cm ∨ ¬z) is satisfiable.

Theorem 1. Deciding if a repair plan is globally �-optimal
is coNP-complete for �∈ {�{U,W},�U,W ,�W,U}, and in
P for �∈ {�W ,�U}. Deciding if a repair plan is locally �-
optimal is in P for �∈ {�U ,�W ,�{U,W},�U,W ,�W,U}.

Proof. The tractability results follow from the characteriza-
tions of optimality given in Proposition 2 together with the
complexity results of Proposition 1.

For the coNP upper bounds, we note that to show that R
is not �-optimal (for �∈ {�{U,W},�U,W ,�W,U}), we can
guess another repair plan R′ and verify in P that both plans
are validatable and thatR′ satisfies more answers thanR.

The lower bounds are as follows:
• Globally �U,W - (and �{U,W}-) optimal repair plans:

Let Φ be a CNF formula of the form Φ =
∧m+1
i=1 Ci over

the variables x1, ..., xn such that
∧m
i=1 Ci is satisfiable and

Cm+1 is not a tautology (cf. Lemma 8). Consider the QRP
defined as follows

T ={P v S,N v S}
A ={A(xj), B(xj)|1 ≤ j ≤ n}∪
{P (b, xj), N(b, xj) | 1 ≤ j ≤ n}

W ={∃xS(c1, x), ...,∃xS(cm+1, x)}
U ={∃xyzP (y, x) ∧N(z, x) ∧A(x) ∧B(x)}

where

Truereluser ={P (ci, xj)|xj ∈ Ci} ∪ {N(ci, xj)|¬xj ∈ Ci}

Falseuser ={P (b, xj), N(b, xj) | 1 ≤ j ≤ n}
Unkuser =A\Falseuser

Let ν be a valuation of the xj that satisfies
∧m
i=1 Ci. We show

that deciding if the repair (E−, E+) with

E− = Falseuser

E+ = {P (ci, xj) | xj ∈ Ci, ν(xj) = true, 1 ≤ i ≤ m}
∪ {N(ci, xj) | ¬xj ∈ Ci, ν(xj) = false, 1 ≤ i ≤ m}

is not globally �U,W -optimal iff Φ is satisfiable.
First observe that (E−, E+) is validatable and satisfies the

single unwanted answer. Moreover, as ν satisfies the clauses
c1, . . . , cm, all of the wanted answers concerning the individ-
uals c1, ..., cm are satisfied by (E−, E+).

If Φ is satisfiable, let ν′ be a valuation of the xj that sat-
isfies Φ. It is readily verified that the repair plan (E ′−, E ′+)
with

E ′− = Falseuser

E ′+ = {P (ci, xj) | xj ∈ Ci, ν′(xj) = true, 1 ≤ i ≤ m+ 1}
∪ {N(ci, xj) | ¬xj ∈ Ci, ν′(xj) = false, 1 ≤ i ≤ m+ 1}

is validatable and satisfies all unwanted and wanted answers,
so (E−, E+) is not �U,W -globally optimal.

In the other direction, if (E−, E+) is not globally �U,W -
optimal, then there must exist a repair plan (E ′−, E ′+) that is
validatable and satisfies all of the answers in U ∪ W . Then
it can be straightforwardly verified that Φ is satisfied by the
valuation ν′ of the xj defined by ν′(xj) = true iff there exists
ci such that P (ci, xj) ∈ E+. Indeed, every ci has an outgoing
edge in (A\E ′−) ∪ E ′+, and no xj has both P - and N - incom-
ing edges, since otherwise the unwanted answer would not be
satisfied.
• Globally �W,U -optimal repair plans:

The proof is by reduction from SAT when at least one vari-
able appears both in positive and negative form in the for-
mula. Take some CNF formula Φ =

∧m
i=1 Ci over the vari-

ables x1, ..., xn that satisfies this requirement, and consider
the QRP defined as follows:

T ={P v S,N v S}
A ={A(xj), B(xj)|1 ≤ j ≤ n}∪
{P (b, xj), N(b, xj) | 1 ≤ j ≤ n}

W ={∃xS(c1, x), ...,∃xS(cm, x)}
U ={∃xyzP (y, x) ∧N(z, x) ∧A(x) ∧B(x)}

where:

Truereluser ={P (ci, xj)|xj ∈ Ci} ∪ {N(ci, xj)|¬xj ∈ Ci}
Falseuser ={P (b, xj), N(b, xj) | 1 ≤ j ≤ n}
Unkuser =A\Falseuser

It is easy to see that the repair plan (E−, E+) =
(Falseuser, T rue

rel
user) is validatable and satisfies all wanted

answers but does not satisfy the unwanted answer because at
least one xj has both incoming N - and P -edges. In fact, we
can show that (E−, E+) is not globally �W,U -optimal (i.e.,
there is some validatable repair plan that satisfies all of U∪W)



iff Φ is satisfiable. Indeed, every validatable repair plan that
satisfies all unwanted and wanted answers gives rise to a sat-
isfying valuation for Φ, and conversely, any such valuation in-
duces such a repair plan (add eitherN(ci, xj) or P (ci, xj) for
each xj in such a way that every ci has an outgoing edge).

B Complexity proofs for Section 5
Proposition 3. A validatable deletion-only plan is optimal iff
it satisfies every q ∈ U such that every C ∈ causes(q,K) has
α ∈ C with user(α) = false, and every q ∈ W for which
there exists C ∈ causes(q,K) such that user(α) 6= false for
every α ∈ C and user(β) = false for every β ∈ confl(C,K).

Proof. In the case of deletion-only repair plans, being satisfi-
able or satisfiable w.r.t. a given repair plan is equivalent since
removing more false assertions can only improve the satisfied
answers (see Lemma 1). Hence, a validatable deletion-only
plan is optimal iff it satisfies every answer satisfied by the
‘maximal’ deletion-only plan {α | user(α) = false}, or more
precisely: every q ∈ U such that every C ∈ causes(q,K) has
α ∈ C with user(α) = false, and every q ∈ W for which
there exists C ∈ causes(q,K) such that user(α) 6= false for
every α ∈ C and user(β) = false for every β ∈ confl(C,K).

CNF formula for deletion-only repair plans.

Let ϕ = ϕU ∧ ϕW with

ϕU =
∧
q∈U

∧
C∈causes(q,K)

∨
α∈C

xα

ϕW =
∧
q∈W

∨
C∈causes(q,K)

wC

∧
∧
q∈W

∧
C∈causes(q,K)

∧
α∈C
¬wC ∨ ¬xα

∧
∧
q∈W

∧
C∈causes(q,K)

∧
β∈confl(C,K)

¬wC ∨ xβ

Lemma 9. The CNF formula ϕ has the following properties:
− there exists a potential solution iff ϕ is satisfiable (every

satisfying assignment corresponds to a potential solu-
tion);

− α is necessarily false iff ϕ ∧ ¬xα is unsatisfiable;
− α is necessarily nonfalse iff ϕ ∧ xα is unsatisfiable;
− there exist disjoint subsets S,H of the clauses in ϕ such

that the MCSWs correspond to the minimal correction
subsets (MCSs) of S w.r.t. H , i.e. the subsets M ⊆ S
such that (i) (S\M)∪H is satisfiable, and (ii) (S\M ′)∪
H is unsatisfiable for every M ′ (M .

Proof. First suppose that there exists a potential solution E ,
and let ν be a valuation of the variables of ϕ defined as
follows: ν(xα) = true iff α ∈ E , and ν(wC) = true iff
C ⊆ A\E and confl(C,K) ⊆ E for every C ∈ causes(q,K)
with q ∈ W .

Since E is a potential solution, it contains at least one as-
sertion of each cause of every unwanted answer, otherwise
this answer would still be entailed under brave semantics in

A\E . It follows that ϕU is satisfied by ν. Moreover, every
q ∈ W has at least one cause C without any conflict in A\E ,
so C ∩ E = ∅ and confl(C,K) ⊆ E . By the way we defined ν,
it satisfies ϕW , and hence the full formula ϕ.

In the other direction, suppose that the formula ϕ is satis-
fiable, with satisfying valuation ν. Let E = {α | ν(xα) =
true}. For every q ∈ U and C ∈ causes(q,K), E contains an
assertion α ∈ C, so there is no cause for q in A\E , so every
q ∈ U is satisfied by E . For every q ∈ W , there is a cause
C ∈ causes(q,K) such that ν(wC) = true. By the way we
defined ϕ, this means that for every α ∈ C, ν(α) = false, so
C ∩ E = ∅, and for every β ∈ confl(C,K), ν(β) = true, so
confl(C,K) ⊆ E . It follows that all q ∈ W are satisfied by E .

Since the assertions assigned to true in a satisfying assign-
ment correspond to a potential solution, α is necessarily false
(resp. necessarily nonfalse) iff ϕ ∧ ¬xα (resp. ϕ ∧ xα) is
unsatisfiable: α belongs to every potential solution (resp. no
potential solution) iff there is no satisfying valuation with α
assigns to false (resp. to true).

For the final point, let H = {
∨
C∈causes(q,K) wC | q ∈ W},

and S = ϕ\H . We will show thatM ⊆ W is a MCSW iff
M = {

∨
C∈causes(q,K) wC | q ∈ M} is a MCS of S w.r.t. H .

First suppose thatM is a MCSW. Since removingM from
W yields a QRP that has a potential solution E , the valuation
ν such that ν(wC) = false for every C ∈ causes(q) with
q ∈ M, and ν(xα) = true iff α ∈ E , and ν(wC) = true iff
C ⊆ A\E and confl(C,K) ⊆ E for C ∈ causes(q) with q ∈
W\M satisfies ϕ\M. Moreover, since removingM′ (M
from W does not yield a QRP that has a potential solution,
M is a MCS. The other direction is similar.

Lemma 10. Given two sets of soft and hard clauses S,H ,
deciding if M ⊆ S is a MCS of S w.r.t. H is BH2-complete.

Proof. To show that M is a MCS of S: show in NP that
(S\M) ∪H is satisfiable and in coNP that M is minimal (to
show in NP that M is not minimal, guess M ′ ⊆ M and a
valuation that satisfies (S\M ′) ∪H).

Hardness is shown by reduction from SAT-UNSAT: let
ϕS , ϕU be two CNF formulas that do not share variables.
Then ¬x is a MCS of ϕ = ϕS ∧ (ϕU ∨ x) ∧ ¬x iff ϕS is
satisfiable and ϕU is unsatisfiable.

Theorem 3. For complexity w.r.t. |A|, |U| and |W|, decid-
ing if a potential solution exists is NP-complete, deciding if
an assertion is necessarily (non)false is coNP-complete, and
deciding ifW ′ ⊆ W is a MCSW is BH2-complete.

Proof. The upper bounds follow from Lemma 9 and the fact
that the formula ϕ can be constructed in polynomial time in
|A|, |U| and |W|. Indeed, the construction relies upon com-
puting the causes and conflicts of (un)wanted answers, which
is known to be computable in P in |A|.

The lower bounds can be shown by reduction from propo-
sitional satisfiability related problems.
Existence: The proof is by reduction from satisfiability of a
CNF C1 ∧ ... ∧ Cm over x1, ...xn. Consider the following
QRP setting:

T0 ={∃P v S, ∃N v S}



A0 ={P (ci, xj)|xj ∈ Ci} ∪ {N(ci, xj)|¬xj ∈ Ci}
W0 ={S(c1), ..., S(cm)}
U ={∃x, y, zP (x, y) ∧N(z, y)}

We show that there exists a potential solution iff C1∧ ...∧Cm
is satisfiable. First suppose that E is a potential solution, and
let ν be the valuation defined as follows: ν(xj) = true iff
there exists some P (ci, xj) ∈ A0 \ E . Because E satisfies all
wanted answers, we know that for every Ci, the ABoxA0 \E
contains an assertion of the form P (ci, xj) or N(ci, xj). In
the former case, ν(xj) = true, so ν satisfies Ci. In the latter
case, since E satisfies the unwanted answer,N(ci, xj) ∈ A0\
E implies that ν(xj) = false, so ν satisfies Ci.

Conversely, if ν is a valuation of x1, ..., xn that satisfies
the set of clauses, then E = {P (ci, xj)|ν(xj) = false} ∪
{N(ci, xj)|ν(xj) = true} is a potential solution: it satisfies
every q ∈ U since no xj can have both incoming P - and
N -edges in A0\E , and every q ∈ W because every clause
contains some xj with ν(xj) = true or ¬xj with ν(xj) =
false, so every ci has an outgoing P - or N -edge in A0\E .
MCSWs: The proof is by reduction from deciding if a set
of clauses of an unsatisfiable set of clauses {C1, ..., Cm}
is a MCS, using the same QRP setting as for exis-
tence. Since the set of clauses is unsatisfiable, there
does not exist a potential solution. The MCSWs cor-
respond to the MCSes of {C1, ..., Cm}. Indeed, a set
{S(ci1), ..., S(cik)} is a MCSW iff there exists a potential
solution with W ′ = W\{S(ci1), ..., S(cik)} and for ev-
ery M ( {S(ci1), ..., S(cik)} there is no potential solution
with W ′ = W\M. Using the same arguments as in re-
duction for existence, one can show that the set of clauses
{C1, ..., Cm}\{Ci1 , ..., Cik} is satisfiable and for everyM (
{Ci1 , ..., Cik}, {C1, ..., Cm}\M is unsatisfiable. Indeed, a
potential solution forW\{S(ci1), ..., S(cik)} corresponds to
a valuation that satisfies {C1, ..., Cm}\{Ci1 , ..., Cik}, and if
there was a valuation satisfying {C1, ..., Cm}\M for some
M ( {Ci1 , ..., Cik}, there would be a potential solution for
the corresponding W\M. The argument in the other direc-
tion proceeds analogously.
Necessarily nonfalse: The proof is by reduction from unsat-
isfiability of C1 ∧ ... ∧ Cm+1 given that C1 ∧ ... ∧ Cm is
satisfiable (cf. Lemma 8). We use the same TBox T0 and set
U of unwanted answers as before, together with the following
slightly modified ABox and set of wanted answers:

A1 = {P (ci, xj)|xj ∈ Ci} ∪ {N(ci, xj)|¬xj ∈ Ci}
∪ {S(cm+1)}

W1 = {S(c1), . . . , S(cm+1)}

We argue that the assertion S(cm+1) is necessarily nonfalse
iff C1 ∧ ...∧Cm+1 is unsatisfiable. Since there exists a valu-
ation ν that satisfies C1 ∧ ... ∧ Cm, the repair plan

E = {P (ci, xj)|ν(xj) = false} ∪ {N(ci, xj)|ν(xj) = true}
∪ {P (cm+1, xj), N(cm+1, xj)} ∩ A1

is a potential solution: the wanted answer S(cm+1) is satis-
fied by the assertion S(cm+1), the other wanted answers are
satisfied by outgoing P - orN -edges as in proof for existence.

The set of clauses C1 ∧ ... ∧ Cm+1 is unsatisfiable iff no po-
tential solution contains the assertion S(cm+1) (i.e., we are
forced to keep S(cm+1) to satisfy the wanted answers).
Necessarily false: The proof is by reduction from unsatisfia-
bility of C1∧ ...∧Cm+1 given that C1∧ ...∧Cm is satisfiable
(cf. Lemma 8). We reuse the sets U and W1 of unwanted
and wanted answers from before, and consider the following
TBox and ABox:

T2 = T0 ∪ {E v S,U v ¬E}
A2 = {P (ci, xj)|xj ∈ Ci} ∪ {N(ci, xj)|¬xj ∈ Ci}

∪ {E(cm+1), U(cm+1)}

We show that U(cm+1) is necessarily false iffC1∧...∧Cm+1

is unsatisfiable. Since there exists a valuation ν that satisfies
C1 ∧ ... ∧ Cm, the repair plan

E = {P (ci, xj)|ν(xj) = false} ∪ {N(ci, xj)|ν(xj) = true}
∪ {U(cm+1)} ∪ {P (cm+1, xj), N(cm+1, xj)} ∩ A2

is a potential solution: the wanted answer S(cm+1) is satis-
fied by the assertion E(cm+1), and the other wanted answers
are satisfied by outgoing P - or N -edges as in proof for exis-
tence. The set of clauses C1 ∧ ... ∧ Cm+1 is unsatisfiable iff
every potential solution is such that S(cm+1) is satisfied by
means of the assertion E(cm+1), so the conflicting assertion
U(cm+1) is included in the potential solution.

C Proofs of algorithms
The algorithms OptRPU and OptRPW terminate provided
the user knows only a finite number of assertions that may be
inserted.

Theorem 2. The output of OptRPU (resp. OptRPW ) is glob-
ally �U (resp. �W ) and locally �{U,W}-optimal.

Proof. We give first the proof for OptRPU .
First observe that at every point during the execution of the

algorithm, the current repair plan is validatable, since only
true assertions are added to E+ and false assertions are added
to E− (they are either marked as false by the user, or conflict
with assertions that have been marked as true).

Step B adds to E− all assertions known to be false that
belong to a cause of some q ∈ U ∪ W or a conflict of some
cause of q ∈ W . Thus, at the end of this step, E− satisfies
every satisfiable answer in U , that is, every answer in U every
cause of which contains at least one false assertion (cf. proof
of Proposition 1). Hence (E−, E+) is globally �U -optimal at
the end of step B. Moreover, every false assertion that occurs
in a cause or conflict of a cause of a wanted answer has been
removed, so if q ∈ W is not satisfied at this point, then it has
no cause without any conflict in A\{α | user(α) = false}.

The purpose of Step C is to add new true assertions to cre-
ate causes for the wanted answers not satisfied after Step B,
while preserving SU (E−, E+). For every q ∈ W , while q
is not satisfied, the user is asked to input true assertions to
complete a cause for q in Step C.1. If he is unable to do so,
at Step C.2, we remove q from W (since it cannot be satis-
fied w.r.t. user); otherwise, we update E− and E+ using Tq
(C.3). Note that since Tq contains only true assertions, we



can remove its conflicts without affecting already satisfied
wanted answers; this step is necessary because Tq may con-
flict with assertions of A that are not involved in the causes
and conflicts presented at Step B. In Step C.4, we remove
false assertions appearing in a new cause for q or its conflicts
(such assertions may not have been examined in Step B). Step
C.5 removes false assertions of new causes of unwanted an-
swers, and Step C.6 undoes the addition of Tq if it affects
SU (E−, E+). Thus, at the end of Step C, for every wanted
answer, either it is satisfied, or the user is unable to supply
a cause that does not deteriorate SU (E−, E+). It follows that
(E−, E+) is locally �{U,W}-optimal.

For OptRPW , Step C.6 is removed, so every satisfiable
answer in W is satisfied at the end of Step C, and (E−, E+)
is globally �W -optimal. To see why (E−, E+) is locally
�{U,W}-optimal, observe that (E−, E+) satisfies every q ∈ U
that is satisfiable w.r.t. (E−, E+), i.e. is such that every cause
for q inA∪E+ contains some false assertion. Indeed, the as-
sertions of every such cause have been presented to the user
either at Step B or at Step C.5.

Theorem 4. The algorithm OptDRP always terminates, and
it outputs an optimal deletion-only repair plan.

Proof. Termination follows from the fact that every time we
return to Step B, something has either been added to E− or
deleted from W , nothing is ever removed from E− or added
to W , and only assertions from the original ABox A can be
added to E−.

Note first the following invariants:
• The set E− contains only false assertions, since every time
E− is modified, the assertions added have been marked as
false by the user, or are conflicts of assertions that have been
declared true. Hence, the output plan is validatable.
• The set E− ∪ A′ contains all assertions α ∈ A such that
user(α) = false. Indeed, A′ is initialized to A, and whenever
α is removed from A′, it is either added to E−, or it has been
shown to be nonfalse.
• The satisfiable answers (i.e. those that fulfil the conditions
of Proposition 3) are never removed from U andW . Indeed,
U is never modified and W is modified only at Step C.2.c,
where only answers that do not fulfil the conditions of Propo-
sition 3 are removed from W , since all their causes contain
some false assertion. It follows that if at some point E− satis-
fies every answer in U ∪W , then E− is optimal.

The algorithm can end at three different steps:
- If the algorithm ends at Step B.2.b.ii, then E− is a potential
solution for (K0,U ,W). That means that for every q ∈ U ,
(T ,A\E−) 6|=brave q, i.e. q is satisfied by E−, and for every
q ∈ W , (T ,A\E−) |=IAR q. Moreover, for every q ∈ W ,
Step 2.b.1 ensures that there is a cause of q inK = (T ,A\E−)
without conflicts that contains no false assertions, so q is sat-
isfied by E−. It follows that E− satisfies every satisfiable an-
swer since such answers always remain in U ∪W . The output
set E− is thus an optimal deletion-only repair plan.
- If the algorithm ends at Step B.2.c.i, the user has been re-
quired to input some false or true assertions at Step B.2.c and
he was not able to input anything, so the user has deleted

q1 q2 q3 q4
false true false true false true false true

c5 4 6 7 130 3 184 7 286
c29 4 6 8 130 4 184 24 286

Table 1: Number of false and true answers per query and
ABox.

all false assertions he knows among the relevant assertions,
and thus it is not possible to improve the current repair plan
further. Indeed, the set of relevant assertions contains every
assertion that appear in a cause of q ∈ U ∪W or in a conflict
of a cause of q ∈ W and has not be declared false, true or
nonfalse yet, so it is not possible to satisfy additional answers
by removing further assertions that are not relevant, either be-
cause they are not involved in the problem at all, or because
they are known to be nonfalse.
- If the algorithm ends at Step C.3, Step B of the general al-
gorithm OptRPU is applied: the user is asked to mark every
false and true assertion in the relevant assertions, so the out-
put is optimal since it takes into account everything the user
knows.

D Experiments details
Experimental setting. Figure 3 displays the queries used in
the experiments. We slightly modify the queries q1, q2, q3,
q4 used in [Bienvenu et al., 2016], changing only some con-
stants or variables, to get dependent answers (whose causes
and conflicts of causes share some assertions).

When building QRPs, the unwanted answers are picked
from a set of “false answers” that contains: (i) the answers
that were not answers over the initial consistent ABox c0,
and (ii) the answers such that all their causes contain some
assertions that we choose arbitrary and consider to be false.
We choose seven such assertions in total. The wanted answers
are picked from the complement of these false answers. Table
1 shows the number of false and true answers for each query
and ABox. We built in sequence 13 QRPs for c5, one being
obtained from the preceding QRP by adding further queries
answers to U orW . They have for each of the four queries 1
up to 25 wanted answers and 1 up to 7 unwanted answers. We
did the same for c29. QRPs have for each query 1 up to 25
wanted answers and 1 up to 24 unwanted answers. U ∪W’s
size varies from 8 to 121. We also randomly built a few QRPs
to get some QRPs with MCSW but we found at most one
MCSW.

Our hardware is an Intel Xeon X5647 at 2.93 GHz with
16 GB of RAM, running CentOS 6.7. Reported times are
averaged over 5 runs.

Experimental results. In all of our experiments, deciding if a
potential solution exists, as well as computing the relevant as-
sertions, takes a few milliseconds. The difficulty of comput-
ing the necessarily (non)false assertions correlates with the
number of relevant assertions induced by QRPs. For the c5
QRPs involving 85 to 745 relevant assertions, it takes 30ms
to 544ms, while it takes 24ms to 1333ms for the c29 QRPs
involving 143 to 1404 relevant assertions. Figure 4 shows
the time needed to compute necessarily (non)false assertions



q1 = ∃y Person(x) ∧ takesCourse(x, y) ∧ GraduateCourse(y) ∧ takesCourse(GraduateStudent131, y)∧
Person(GraduateStudent131)

q2 = ∃xEmployee(x) ∧memberOf(x,Department2.University0) ∧ degreeFrom(x, y)

q3 = ∃y teacherOf(x, y) ∧ degreeFrom(x, University532)

q4 = ∃z Employee(x) ∧ degreeFrom(x, University532) ∧memberOf(x, z)∧
Employee(y) ∧ degreeFrom(y, University532) ∧memberOf(y, z)

Figure 3: Queries.

Figure 4: Time (in seconds) to compute necessarily false and
nonfalse assertions w.r.t. the number of relevant assertions in-
duced by QRPs.

Figure 5: Time (in seconds) to rank relevant assertions that
are not necessariy (non)false w.r.t. their number.

w.r.t. the number of relevant assertions. While these times
seem reasonable in practice, ranking the remaining relevant
assertions based on their impact is time consuming (it re-
quires a number of calls to the SAT solver quadratic in the
number of assertions): it takes less than 10s up to ∼150 as-
sertions, less than 5mn up to∼480 assertions, and up to 25mn
for 825 assertions. Figure 5 shows the time needed to rank re-
maining assertions w.r.t. their number.
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