
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

ALGORITHMIC CONCEPTUALIZATION OF
TOOLS FOR PROVING BY

INDUCTION « UNWINDING » THEOREMS
A CASE STUDY

FRANOVA M / HUTTER D / KODRATOFF Y

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud-LRI

05/2016

Rapport de Recherche N° 1587

Security of information flow December 2015.doc 1 09/05/2016 || 15:09:18

Algorithmic Conceptualization of Tools for
Proving by Induction « Unwinding » Theorems –

A Case Study

Marta Franova1, Dieter Hutter2 and Yves Kodratoff1

mf@lri.fr, hutter@dfki.de, yvkod@gmail.com
1LRI, UMR8623 du CNRS & INRIA Saclay, Orsay, France

2German Research Center for Artificial Intelligence, Bremen, Germany

Abstract: Information flow security is an interesting and challenging problem in which
the use of inductive theorem proving is required for dealing with the so-called
‘unwinding theorems’. This paper examines whether Constructive Matching
Methodology (CMM) for proving theorems by induction can be used also in this
industry oriented framework. We show here that nothing more than a minor extension
is to be considered, namely handling non recursive functions and predicates. But many
solutions for this problem are already available. However dealing with possibly
incomplete recursive theories and their formulation is still a problem. This paper
illustrates that CMM is well suited in both automated and non-automated versions in the
context of information flow security.

I. Introduction

Our goal is to provide an algorithmic conceptualization of tools for proving by
induction the so-called ‘unwinding theorems’ needed in the field of information flow
security. The methodology we start from is Constructive Matching Methodology
(CMM) ([franova64], [franova10]) and we shall specify the tools needed to reach our
goal. In this paper, we focus on a particular example in the domain of information flow
security. We thus do not need to explain the semantic of the security problem: To this
purpose the reader is referred to [rushby01]. We just recall the basic facts that are used
for our formal development from the point of view of inductive theorem proving.
 In the first part of this paper we recall the basic definitions and results related to
security of an information system presented by Rushby in [rushby01]. Then, in the
second part, we study an inductive proof for Rushby’s formulation of a particular
‘unwinding’ theorem and we consider which tools are required to extend CMM in order
to perform such a proof. The presented ‘non-clever’ proof differs from Rushby’s
‘clever’ proof and we point out the main differences as well as the advantage of
considering automating ‘non-clever’ proofs.

II. State-based information flow control – basic knowledge

Definition 1.
A system M is composed of

• a set S of states, with an initial state s0 ∈ S
• a set A of actions, and
• a set O of outputs,

Security of information flow December 2015.doc 2 09/05/2016 || 15:09:18

together with the functions step and output:
• step: S × A → S
• output: S × A → O.

We shall use the letters ... s, t, ... to denote states, letters a, b, ... from the front of the
alphabet to denote actions, and Greek letters α, β, ... to denote sequences of actions.

Actions can be thought of as “inputs” or “instructions” to be performed by the
system; step(s,a) denotes the state of the system resulting by performing action a in
state s, and output(s,a) denotes the result returned by the action.
 In the following, λ denotes an empty sequence and ° denotes a concatenation.
We shall consider an extension of the function step to sequence of actions in the form
of a function run

• run: S × A* → S,
defined by
 (ax1) run(s,λ) = s

 (ax2) run(s,a °α) = run(step(s,a),α)

Note that this definition defines run in terms of run(step(s,a),α) and not
step(run(s,a),α). This is required by the semantic model of more complex development
in which such a use is essential. Of course, such a definition complicates recursive
proofs using this definition. In [franova62] we qualify this kind of function mutilating.

The agents or subjects interacting with the system and observing the results obtained
will be grouped into “security domains”. Security domains represent clearances in
terms of persons and classifications in terms of data. We thus assume

• a set d of security domains, and
• a function dom: A → d that associates a security domain with each action.

We shall use letters … u, v, w … to denote domains.

Information is said to flow from a domain u to a domain v when some actions
submitted by domain u cause the information about the behaviour of the system
perceived by domain v to be different from that perceived when those actions are not
present. We shall consider the flow of information as a reflexive relation -� on d. (i.e.
u -� u for each domain u.)

A security policy will be specified by this relation on d. We use -/� to denote the
complement relation (i.e. a ‘closed’ negation of -� on d × d), that is

 -/� = (d × d) \ -�

where \ denotes set difference. We speak of -� and -/� as the interference and
noninterference relations, respectively. A policy is said to be transitive if its
interference is transitive.

We say that domain u interferes with domain v if u -� v. We say that an action
interferes with domain v if there is dom(a) such that dom(a) interferes with v, i.e.
dom(a) -� v.

An action a is said to be required noninterfering with domain v if dom(a) -/� v for all
action sequences that contain a.

In order to go from an action sequence to a sequence that is purged of actions
noninterfering for a domain, the following function is defined.

Security of information flow December 2015.doc 3 09/05/2016 || 15:09:18

Definition 2.
• purge: A* × d → A*

is defined as follows
 (ax3) purge(λ,v) = λ

 (ax4) purge(a °α,v) = a ° purge(α,v), if dom(a) -� v

 (ax5) purge(a °α,v) = purge(α,v), if dom(a) -/� v.

The machine is secure if a given domain v is unable to distinguish between the state of
the machine after it has processed a given action sequence, and the state after
processing the same sequence purged of actions required to be noninterfering with v.

Formally, the security is identified with the requirement that
 output(run(s0,α),a) = output(run(s0,purge(α,dom(a))),a).
For convenience, we introduce the functions do and test to abbreviate the expressions in
the last requirement.

• do: A* → S
• test: A* × A → O

where
 do(α) = run(s0,α), and

 test(α,a) = output(do(α),a).
Then we say that system M is secure for the policy -� if
 test(α,a) = test(purge(α,dom(a)),a) (1)

for all actions sequences α and actions a.

As Rushby says [rushby01], the intuition behind the security of a system is that, starting
in the initial state s0, the system performs an action sequence α and reaches state do(α).
At that point, the action a and the corresponding test(α,a) are observed. We can think of
action a and its output observation as an experiment performed by dom(a) in order to
learn something about this action sequence α. If dom(a) can distinguish between the
outputs of the action sequences α and purge(α,dom(a)) then an action by some domain
u has “interfered” with dom(a), i.e. u -� dom(a) and the system is not secure with
respect to policies that specify u -/� dom(a).

The non-interference definition of security is expressed “globally” in (1) in terms of
sequences of actions and state transitions. In order to obtain sufficient “local”
conditions for verifying the security of systems, Rushby introduces a set of conditions
on individual state transitions.
 The first step in this development is to partition the states of the system into
equivalence classes that all “appear identical” to a given domain. The verification
technique will then have to prove that each domain’s view of the system is unaffected
by the actions of domains that are required to be noninterfering with it.
 The following part expresses this formally.

Definition 3.
A system M is view-partitioned if, for each domain u from d, there is an equivalence
relation ~u on S. These equivalence relations are said to be output consistent if

 s ~dom(a)
 t ⇒ output(s,a) = output(t,a).

(2)

Security of information flow December 2015.doc 4 09/05/2016 || 15:09:18

The following result allows relating the output consistency to security of the system.

Lemma 1:
Let -� be a policy and M a view partitioned, output consistent system such that

 do(α) ~u do(purge(α,u).
(3)

Then M is secure for -�.

Proof:
It is sufficient to put u = dom(a). Then, since M is output consistent, (2) holds for any
state s and t. Let us put now s = do(α) and t = do(purge(α,dom(a)).
Since

 do(α) ~dom(a)
 do(purge(α,dom(a))

(4)

by modus ponens form (2) we have
 output(do(α),a) = output(do(purge(α,dom(a)),a).
But, in our notation, this is nothing else than (1).

Definition 4.
Let M be a view-partitioned system and -� a policy.
 We say that M locally respects -� if

 dom(a) -/� u ⇒ s ~u step(s,a)
(5)

and that M is step consistent if

 s ~u t ⇒ step(s,a) ~u step(t,a).
(6)

The following theorem shows that the local conditions formulated are sufficient to
guarantee security.

Theorem 1: (Unwinding Theorem)
Let -� be a policy and M a view-partitioned system that is

1. output consistent,
2. step consistent, and
3. locally respects -�.

Then M is secure for -�.

We have thus recalled the basic knowledge formalizing the information needed by an
automated theorem prover. The next section focuses first on a by-hand version of an
inductive proof for Theorem 1 based on use of Lemma 1. This proof is then studied
from the point of view of its automation. The proof presented in [rushby01] is a clever
human generalization of proving (3) taking into account output consistency, step
consistency and the fact that M locally respects -�.
 We do not start with this generalization in order to show how a ‘non-clever’ proof
of Unwinding Theorem leads to detecting the need of a generalization1. It is so because
we have realized decades ago that Cartesian method of solving problems generating
experiences (i.e. hints to the problems) and providing hints for solving problems thus

1 The need for generalization is a known problem in automation of inductive theorem proving. In many cases it is related to use of
mutilating functions.

Security of information flow December 2015.doc 5 09/05/2016 || 15:09:18

generated
• gives rise to questions specific to inductive theorem proving and not to the

semantic of a particular problem as it is in the case of solving problems based on
the intelligence of a clever computer scientist. Even more importantly

• hints at missing information of which such a computer scientist might even
unaware.

We are therefore convinced that it is exactly this way of ‘non-clever’ approach to proofs
that will bring, in the long term, most of knowledge useful for automation of inductive
theorem proving. This will allow to isolate the algorithmic concepts that can, in some
cases, replace complex semantic considerations of a clever computer scientist and even
help this computer scientist with refining or completing the theory he is relying on or
trying to formulate in a formal way. In other words, instead of aiming at the direct
intelligence of a system, we follow one of the main approaches to AI, that is building a
‘prosthesis’ for intelligence.

III. By-hand proof for Unwinding Theorem

As we said above, we shall suppose that system M is
1. output consistent,
2. step consistent, and
3. locally respects -�.

We shall study what operations have to be performed in order to prove the above
presented formula

 do(α) ~dom(b)
 do(purge(α,dom(b))),

(3)

for arbitrary domain dom(b) and state α.
By definition of d, do(α) is run(s0,α) and similarly for do(purge(α,dom(b))). We thus
obtain:

 run(s0,α) ~dom(b)
 run(s0,purge(α,dom(b))) .

(7)

Let us consider a proof by induction on α. This means to consider the base step for α =
λ and the induction step for α = a °α’, where a is an arbitrary action and α’ is a
sequence of actions.
As the proof for the base step is easy, we focus on the proof of the induction step.

In the induction step, α is a °α’. The induction hypothesis is

 run(s0,α’) ~dom(b)
 run(s0,purge(α’,dom(b))) .

(8)

The goal is to prove

 run(s0,a °α’) ~dom(b)
 run(s0,purge(a °α’,dom(b))) .

(9)

using the induction hypothesis and the properties of M.
By definition,

run(s0,a °α’) = run(step(s0,a), α’)

and the value of run(s0,purge(a °α’,dom(b)) depends on whether dom(a) -� dom(b) or
dom(a) -/� dom(b) holds.

Let us consider the case

Security of information flow December 2015.doc 6 09/05/2016 || 15:09:18

 dom(a) -� dom(b).
(10)

then purge(a °α’,dom(b)) = a °purge(α’,dom(b)) and so run(s0, a °purge(α’,dom(b))) =
run(step(s0,a),purge(α’,dom(b))).
This means that, in this case we have to prove

 run(step(s0,a),α’) ~dom(b)
 run(step(s0,a),purge(α’,dom(b))) .

(11)

The induction hypothesis (8) cannot be applied and so this last formula becomes a new
lemma to be proved taking into account the condition (10). A possible answer to
classical problem can be to refine the case analysis in order to prove the theorem
without resort to induction. Our proposal, in this paper, is to stick to structural induction
and to treat the formula (11) as new lemma to be proved taking into account condition
(10). This behavior will lead us to isolate a generalization condition, as we shall now
illustrate.
 Since α’ belongs to A*, it is either λ or c ° γ for some c ∈ A and γ ∈ A*. Since the
base step for (11) is easy, we shall focus on the induction step.

In the induction step for (11), α’ = c ° γ and the induction hypothesis is

 run(step(s0,a),γ) ~dom(b)
 run(step(s0,a),purge(γ,dom(b))) .

(12)

The formula to be proved is

 run(step(s0,a), c ° γ) ~dom(b)
run(step(s0,a),purge(c ° γ,dom(b))).

(13)

By definition,

run(step(s0,a), c ° γ) = run(step(step(s0,a),c), γ)

and, with respect to the condition dom(a) -� dom(b),
run(step(s0,a),purge(c ° γ,dom(b)) = run(step(step(s0,a),c),purge(γ,dom(b))
 This means that we have to prove

 run(step(step(s0,a),c), γ) ~dom(b)

 run(step(step(s0,a),c),purge(γ,dom(b)))

(14)

Once again, neither the induction hypothesis (12) nor any of the properties of M can be
applied.
However, the generated ‘failure’ formulas (7), (11) and (14) are suggesting that a
generalization may be needed.
Let us have a closer look at these formulas. Formula (7), i.e.

 run(s0,α) ~dom(b)
run(s0,purge(α,dom(b)))

is the initial formula to prove. We attempt to prove it by induction on α. This proof
generates (11), i.e.

 run(step(s0,a),α’) ~dom(b)
run(step(s0,a),purge(α’,dom(b))).

We are unable to prove (11) because the induction hypothesis cannot be applied. We
then again try to prove (11) by induction on α’ such that α = a ° α’and generate (14),
i.e.

 run(step(step(s0,a),c), γ) ~dom(b)

 run(step(step(s0,a),c),purge(γ,dom(b)))

Security of information flow December 2015.doc 7 09/05/2016 || 15:09:18

We observe a regularly growing sequence on both sides of these formula, namely:
run(s0, …

run(step(s0,a), …
run(step(step(s0,a), c) …

on both sides of these three formulas. We shall postpone a consideration of the
generalization of these growing sequences when seeking further indices in a proof of
the case

 dom(a) -/� dom(b).
(15)

In this case,

purge(a °α’,dom(b)) = purge(α’,dom(b))

and so

run(s0, a °purge(α’,dom(b))) = run(s0,purge(α’,dom(b))).

This means that formula to be proved (9) evaluates to

 run(step(s0,a),α’) ~dom(b)
 run(s0,purge(α’,dom(b))).

(16)

Since ~dom(b)

 is an equivalence relation, it means that the induction hypothesis (8)
can be applied. In other words, the term run(s0,purge(α’,dom(b))) can be replaced by
the left side of the induction hypothesis, i.e. the term run(s0,α’). This means that the
application of the induction hypothesis (8) to (16) leads to the formula

 run(step(s0,a),α’) ~dom(b)
 run(s0,α’)

(17)

which has to be proved. Since the only difference between both terms of (17) are their
first arguments, namely step(s0,a) and s0, we look among the given assumptions of the
Unwinding Theorem for one which would allow to conclude that (17) is true. We can
see that since M locally respects -�, and ~dom(b)

 is symmetric, step(s0,a) ~dom(b)
 s0

whenever dom(a) -/� dom(b), which is just the case we are considering. ~dom(b)
 is an

equivalence relation and this means that step(s0,a) ~dom(b)
 s0 implies

run(step(s0,a),µ) ~dom(b)
 run(s0,µ)

for any µ from A*. It holds therefore for µ = α’. Thus, (17) is true.
The considered case dom(a) -/� dom(b) is thus proved without difficulties. Therefore,
let us return to the condition dom(a) -� dom(b) where we had generated the sequence

 run(s0,α) ~dom(b)
 run(s0,purge(α,dom(b))) .

 run(step(s0,a),α’) ~dom(b)
 run(step(s0,a),purge(α’,dom(b))).

 run(step(step(s0,a),c), γ) ~dom(b)
 run(step(step(s0,a),c),purge(γ,dom(b)))

 …
We now generalize this sequence to

 run(s,α) ~dom(b)
run(t,purge(α,dom(b))).

(18)

A clever reader may be aware that this formula is not true but we shall show just below
how our ‘non-clever’ approach finds a new suitable formulation.
The above examples underline the fact that our methodology based on the attempt to
capture methodically and algorithmically non-clever by-hand proving of theorems (see
[franova14]) has the positive feature that it generates “well-ordered” sequences of

Security of information flow December 2015.doc 8 09/05/2016 || 15:09:18

‘failure’ formulas that can be generalized. The generalization itself, however, is not a
part CMM for the time being. Generalizing is a problem entirely different from our
present goals and can also left in the hands of the user who, now, knows at least what
has to be generalized.

Let us now show how we may be able to ‘prove’ (18):

Base step :
In the base step, α = λ. The goal is to prove

run(s,λ) ~dom(b)
run(t,purge(λ,dom(b))).

Using the definitions of run and purge we obtain that the goal is to prove

 s ~dom(b)
 t.

(19)

Since there is no assumption corresponding to this formula, (19) becomes a
precondition for the formula (18). In other words the failure to prove (18) leads us to
discovery of a missing precondition. The failure to prove the Unwinding Theorem
directly led us from (7) to a discovery of (18) and now of the following formula (still
to be proven):

 s ~dom(b)
 t ⇒

 run(s,α) ~dom(b)
run(t,purge(α,dom(b)))

(20)

This formula is a generalization of (7) since we can put s0 = s = t and thus (20)
can be considered in its particular form (still to be proven):

 s0 ~dom(b)
 s0 ⇒

 run(s0,α) ~dom(b)
run(s0,purge(α,dom(b)))

(21)

We go on, now trying to prove (20):

Base step :
In the base step, α = λ. Supposing s ~dom(b)

 t , the goal is to prove

run(s,λ) ~dom(b)
run(t,purge(λ,dom(b)).

Using the definitions of run and purge we obtain that the goal is to prove

 s ~dom(b)
 t.

(22)

This is our assumption and so the base step is resolved.

Induction step:
In the induction step, α = d ° δ and we have the induction hypothesis

 s’ ~dom(b)
 t’ ⇒

 run(s’,δ) ~dom(b)
run(t’,purge(δ,dom(b)))

(23)

that holds for each s’ and t’ (i.e. s’ and t’ are universally quantified in (23)).
Le us suppose that

 s ~dom(b)
 t

(24)

holds. The goal is to prove

Security of information flow December 2015.doc 9 09/05/2016 || 15:09:18

run(s, d ° δ) ~dom(b)
 run(t,purge(d ° δ,dom(b)))

(25)

The evaluation of run(s, d ° δ) gives run(step(s,d),δ). With respect to the definition of
purge, for the term run(t,purge(d ° δ,dom(b)) two cases have to be considered:
 case A: dom(d) -� dom(b), and
 case B: dom(d) -/� dom(b).

Let us consider the case A, i.e. we assume that dom(d) -� dom(b) holds. In this case,
 run(t,purge(d ° δ,dom(b))) =
 run(t, d ° purge(δ,dom(b))) =
 run(step(t, d),purge(δ,dom(b))).

Thus, in the case A we have to prove

run(step(s,d),δ) ~dom(b)
 run(step(t, d),purge(δ,dom(b))).

(26)

Since no evaluations can be performed, we look at the possibility to apply the induction
hypothesis. We can see that the instantiation of s’ by step(s,a) and of t’ by step(t, d)
could be done if

step(s,a) ~dom(b)
 step(t, d)

(27)

 holds, i.e. we have that this particular induction hypothesis reads

 run(step(s,d),δ) ~dom(b)
 run(step(t, d),purge(δ,dom(b))),

 if step(s,d) ~dom(b)
step(t,d)

(28)

We look at the properties of M to see whether there is one relative to step function and
the terms step(s,a) and step(t,d). We have only step consistency of M. The step
consistency of M means that

 s ~dom(b)
 t ⇒ step(s,d) ~dom(b)

step(t,d)
(29)

holds. The antecedent of (29) is nothing but our assumption (24) and thus

step(s,d) ~dom(b)
step(t,d)

holds. In consequence, the induction hypothesis (28) can be applied and (26) is thus
proved.
This completes the case A.

Let us consider now case B, i.e. we assume that dom(d) -/� dom(b) holds. In this case,
 run(t,purge(d ° δ,dom(b))) =
 run(t, purge(δ,dom(b)))
We have to prove

 run(step(s,d),δ) ~dom(b)
 run(t, purge(δ,dom(b))).

(30)

We can see that a particular case of the induction hypothesis (23), namely

 run(step(s,d),δ) ~dom(b)
 run(t,purge(δ,dom(b))),

 if step(s,d) ~dom(b)
t.

(31)

could be applied with the instantiation s’ = step(s,d) and t’ = t, provided that

 step(s,d) ~dom(b)
t

(32)

Security of information flow December 2015.doc 10 09/05/2016 || 15:09:18

holds. We have at our disposal the condition s ~dom(b)
 t and we would like that (32) holds.

Since M locally respects -�,

 dom(d) -/� dom(b) ⇒ s ~dom(b)
step(s,d)

(33)

holds. ~dom(b)
 is an equivalence relation and this means that from

s ~dom(b)
 t

and

s ~dom(b)
step(s,d)

we have the truth of (32).

This completes a by-hand proof for the Unwinding Theorem.

The next section recalls the method for proving by induction atomic formulas called
Constructive Matching (CM) introduced in [franova10]. This method is based on
Cartesian Intuitionism presented in [franova64]. In Appendix we present the
development of the proof for (20) by this method. Taking into account this machine
directed proof we analyze below the necessary tools to enlarge CMM and compare it to
the ‘human-brain’ proof presented in [rushby01].

IV. CM-formula construction

CM-formula construction guides the course of the inductive proofs of atomic formulas.
Its particularity relies on the fact that it has been custom-designed to deal with Gödel’s
incompleteness results so that missing knowledge is suggested during the attempt to
prove a formula in an incomplete environment. The same holds for suggesting missing
lemmas, i.e. the knowledge explicitly missing to be able to complete the proof whereas
it is implicitly present in the given axioms of the studied problem.
 For simplicity, let us suppose that the formula to be proven has two arguments,
that is to say that we need to prove that F(t1,t2) is true, where F is a predicate and t1, t2
are terms of the axiomatic theory in use. We introduce a new type of argument in the
atomic formula that has to be proven true. We call them pivotal arguments, since the
focus on them allows

• reducing what is usually called the search space of the proof, and
• decomposing complex problems (such as strategic aspects of a proof) on

conceptually simpler problems (such as a transformation of a term into another,
possibly finding a sufficient conditions etc.).

These arguments are denoted by ξ (or ξ’ etc.) in the following.
 In the first step, the pivotal argument replaces, in a purely syntactical way, one of
the arguments of the given formula. The first problem is thus to choose which of the
arguments will be replaced by a pivotal argument ξ. We do not propose yet a complete
algorithmic solution to this problem, as it will be one of the last problems to be
completely solved before implementing the whole CMM. This is due not only to the
symbiotic character of developed tools but also because in our research we focus too on
searching for problems that rise when an unsuitable argument is chosen. This way
allows us to discover tools that are useful in synergistic approaches (see [franova08]
and [bundy13]).
 In this presentation, let us suppose that we have chosen to work with F(t1,ξ), the
second argument being chosen as the pivotal one. In an artificial, but custom-made
manner, we state C = {ξ │ F(t1,ξ) is true}. Except the syntactical similarity with the

Security of information flow December 2015.doc 11 09/05/2016 || 15:09:18

formula to be proven, there is no semantic consideration in saying that F(t1,ξ) is true. It
simply represents a ‘quite-precise’ purpose of trying to go from F(t1,ξ) to F(t1,t2). We
thus propose a ‘detour’ that will enable us to prove also the theorems that cannot be
directly proven by the so-called simplification methods, i.e., without this ‘detour’.
 In the second step, via the definition of F and those involved in the formulation of
the term t1, we look for the features shown by all the ξ such that F(t1,ξ) is true. Given
the axioms defining F and the functions occurring in t1, we are able to obtain a set C1
expressing the conditions on the set { ξ } for which F(t1,ξ) is true. In other words,
calling ‘cond’ these conditions and C1 the set of the ξ such that cond(ξ) is true, we
define C1 by C1 = {ξ │ cond(ξ)}. We can also say that, with the help of the given
axioms, we build a ‘cond’ such that the formula: ∀ξ ∈ C1, F(t1,ξ) is true.
 In the third step, using the characteristics of C1 obtained in the second step, the
induction hypothesis is applied. Thus, we build a form of ξ such that F(t1,ξ) is related to
F(t1,t2) by using the induction hypothesis. For the sake of clarity, let us call ξC the result
of applying the induction hypothesis to C1 resulting in C2 = { ξC │ cond2(ξC)}. C2 is
thus such that F(t1,ξC) is true. We are still left with a work to do: prove that t2 belongs to
C2. In case t2 does not contain existential quantifiers, this is done by verifying cond2(t2).
In case t2 contains existentially quantified variables, this is done by a detour. In the first
step we try to solve the problem cond2(ξC) ⇒ ∃σ ξC = σt2, where σ has to provide a
suitable instantiation for the existentially quantified variables in t2. With such an
obtained σ we have then prove F(t1,σt2). In other words, we have to prove that ξC and t2

can be made identical (modulo substitution) when cond2(ξC) holds.
 In the case of the success, this completes the proof. In the case of a failure, a new
lemma cond2(ξC) ⇒ ∃σ ξC = σt2 with an appropriate quantification of the involved
variables is generated. In some cases, an infinite sequence of ‘failure formulas’, i.e.
lemmas, may be generated. CMM is conceived in such a way that the obtained sequence
is well-behaving (see [franova10]) so that one can apply a generalization technique to
obtain a more general formula that has to be proved. This formula covers logically the
infinite sequence of lemmas and thus it fills the gap that cannot be overcome by purely
deductive formal approach to theorem proving.
 A detailed description of handling the pivotal argument in a rigorous framework
can be found in [franova24] and [franova34]. A list of the most important achievements
and experiences performed by CMM can be found in [franova64].

V. Necessary extension for CMM

The proof presented in Appendix shows that, in order to be able to be execute a proof
for the Unwinding Theorem in a purely mechanized way, CMM needs to be extended
by a non-inductive theorem proving mechanism, i.e. a theorem proving mechanism
handling the predicates and the functions defined non-recursively. We intend to choose
one from the already available ones. The Beth’s tableaux method is one of the first
logical mechanization of non-inductive proofs. This method serves as a logical
justification (see [franova17]) of the basic non-inductive parts in CMM. Therefore,
handling the implications in which the antecedent is a conjunction of atomic formulae
with non-recursively defined predicates has already been dealt with (for more details
see in [franova17]).

VI. Comparison with the proof presented by Rushby

There is a very important difference of our presentation of a non-clever by-hand proof
of the Unwinding Theorem an the Rushby’s proof [rushby01]. Taking into account the

Security of information flow December 2015.doc 12 09/05/2016 || 15:09:18

assumptions of the Unwinding Theorem, the actual formula to be proved is (7), i.e.

run(s0,α) ~dom(b)
 run(s0,purge(α,dom(b))).

However, Rushby switches directly to proving its generalization (20), i.e.

 s ~dom(b)
 t ⇒

 run(s,α) ~dom(b)
run(t,purge(α,dom(b)))

leaving thus to the reader to make explicit the reasoning steps leading to this
generalization.
Our previous and current development of CMM is based exactly on formalizing
algorithmically the invention process for the cases of missing knowledge. Indeed, the
problem of missing knowledge is deeply linked to the incompleteness results
formulated by Gödel [godel02]. We shall go further to this point in a few moments.
Before that, let us say that we do not attempt to formalize the invention process of a
genius or of a clever mathematician. We do follow Descartes’ advice of finding once
for all a purpose built systematic way of handling creativity issues related to the
inductive theorem proving. Thus, our approach radically differs from the existing
approaches to mechanizing inductive proofs. (The best known are the system ACL2
[boyer-moore09], the system RRL [kapur03], the system NuPRL [constable04], the
Oyster-Clam system [bundy15], the extensions of ISABELLE [paulson03], the system
COQ [paulin-mohring01] and Matita Proof Assistant [asperti01].) These approaches
select already existing tools from those available in Computer Science and that were
initially developed for other purposes. Then they seek for clever ways of putting these
tools synergistically together. As it can be seen from our presentation of the CM-
formula construction, this way of handling atomic formulas through pivotal argument is
an original way of directing inductive proofs as well as of the process of a step-wise
construction of missing or relevant knowledge whenever necessary.
 Of course, due to the above mentioned Gödel’s results, in formalizing the
invention process, we cannot go further than suggesting such missing knowledge. It
will always have to be a human expert of the problem deciding on relevant character of
this suggested information, as we have already illustrated in the framework of robotics
[franova-kooli01]. In other words, it is only such a human expert who can know about
the intended interpretation of the problem on hand.
 The above mentioned step-wise construction of the relevant knowledge can be
perceived easily by noting two essential differences between Rushby’s proof and that of
ours.
First of all, the induction hypothesis (23) contains two new universally quantified
variables s’ and t’, while for Rushby, the induction hypothesis does not contain new
variables. In our proof (see going from (26) to (28)), the instantiation of these
universally quantified variables leads to the condition (27) which has to be verified,
hinting thus at the relevant information to be looked for in the given theory.
 Since Rushby’s proof is clever (due to the human behind the proof), the going
from the formula 2.3. in [rushby01], i.e.

run(t, purge(a °α,u)) = run(t, a ° purge(α,u))

to the successful conclusion of the case 1 of his proof is mathematically ‘beautiful’ in
contrast to the ‘cumbersome’ presentation of our proof. In the vocabulary of
mechanizing theorem proving it means that Rushby’s cleverness reduces the search
space while our method switches the focus from a search space to the direct ‘hints’
about the knowledge to be looked for in a given theory for any inductive theorem

Security of information flow December 2015.doc 13 09/05/2016 || 15:09:18

proving problem, even those related to the program synthesis [franova64]. This means
that CMM and Cartesian Formal Creativity [franova53] upon which CMM is being built
are worth more than a simple inductive theorem proving strategies but they are suitable
as a method for finding an axiomatic theory for problems that require recursive thinking
and that, at the beginning, are specified only informally. We have illustrated this
already in [franova-kooli01], but we would like to point out its importance and
usefulness in the context of security of the information flow systems. This is why, in
future, we intend to look more closely at the work of Mantel [mantel02] from the point
of view examining the efficiency of our work and its eventual promoting as a tool to
make the process of building formalized theories much more method oriented than
genius dependent.
 To our best knowledge there is no other existing work related to the automation of
the inductive proofs for a large variety of already formulated Unwinding Theorems
[graham-cumming01], [pinsky01], [haigh01], [millen01].

VII. Future work

The problem of information flow security is very interesting, important and
challenging. As a complementary work to [hutter05], [hutter04], we plan to continue in
the search of the necessary extensions of CMM in this field by the attempts for
mechanized proofs of Unwinding Theorems presented in Mantel’s thesis [mantel02]
and, among others, [graham-cumming01], [pinsky01], [haigh01], [millen01]. The
challenge is there the execution proofs for theorems that contain existential quantifiers
and that are related to the information flow systems security as well as handling non-
transitive relations. We are quite sure that our future investigations concerning the use
of our method for formalizing deductive theories requiring recursion will be very
fruitful and will suggest new problems to be handled and new tools to be developed in
the field of Machine Learning and Computational Creativity. Note that tools we
custom-create in CMM are symbiotic and thus the implementation can really start only
after the research is completed. This is not usual in Computer Science today where the
systems are built from synergistically interacting independent modules which of course
provides a possibility of implementing partial results and allows linear developing of
trust of peers. However, in the long term our approach will enable handling problems
that are not possible to solve by synergistic tools. It will also provide inspiration for
new real world applications simply by the presence of new powerful creation tools.

VIII. Conclusion

The automation of inductive theorem proving has been studied now for a long time. In
contrast to traditional way of accepting Gödel’s incompleteness results as a limitation,
we used our interpretation of these results as an incentive for changing the “automation
game” by

• switching
from the idea of once for all formally fixed theorem checking system
developed via already existing tools
to the idea of an ‘oscillating’ system ([franova64]) taking into account
the particular requirements related to the inductive proof at hand, and

• developing
not a toolbox of elements brought from other fields than inductive
theorem proving framework
but an on-purpose inductive theorem proving framework tools solving

Security of information flow December 2015.doc 14 09/05/2016 || 15:09:18

problems discovered in the oscillating evolution of the system.
This direction of development requires that we study inductive proving not only in its
‘well-behaving’ mathematical framework of natural numbers, lists and trees but also in
challenging context of information flow security for proving Unwinding Theorems. In
this paper we have illustrated how our approach discovers a suitable generalization of
the Unwinding Theorem as it was initially formulated. The study in this paper shows
that our CMM is relevant also in this context even if we have to consider a minor
extension. CMM provides experts of information security flow a tool well-suited to
handling creativity issues met while proving these complex theorems. In particular,
some applications may require a change in the specification of the unwinding-type
theorems. The present paper provides a detailed illustration on the way new
specifications can be proven or, if necessary, completed or reformulated.
We thus aim at enlarging our CMM methodology in such a way that it could be used in
testing their hypotheses while formulating the domain specification (i.e. the formal
theory) for Unwinding Theorems specific to their particular problem. We already have
illustrated this particular use of CMM in the context of robotics [franova-kooli01].

IX. Appendix

In this part we are going to present the induction step for a proof of (20) as performed
following the CM-construction formula presented in Section 0. Nevertheless, we shall
‘linearize’ the previous notation. Namely, the binary relation ‘u -� v’ will be denoted
by intf(u,v) and consequently ‘u -/� v’ will be not(intf(u,v)). The equivalence relation
‘s ~u t’ will be denoted by EQ(u,s,t). Recall that EQ is an equivalence relation, i.e. it
holds for all triple of variables p, q, r from the set of states.
 (reflexivity) EQ(p,p)

 (symmetry) EQ(p,q) ⇔ EQ(q,p)

 (transitivity) EQ(p,q) & EQ(q,r) ⇒ EQ(p,r)

We want to prove (20), i.e.,

EQ(u,s,t) ⇒ EQ(u,run(s,α),run(t,purge(α,u))). (34)

where M locally respects EQ and is step consistent (see Definition 4.).

We use the rules of Beth’s tableaux

• decompose the proof of this implication as a proof of an atomic formula (in the
IVALID column – see [beth03]) and the all conditions in the VALID column)

• to any property of M introduce its particular case considered for any parameter
introduced.

In the induction step we have α = c ° γ. Thus, s, t, c and γ are parameters for which the
properties of M will be instantiated.

The goal is to prove

EQ(u,run(s,c ° γ),run(t,purge(c ° γ,u))) (35)

assuming the antecedent of (34), i.e.
EQ(u,s,t) (36)

as well as (since M locally respects EQ)
non(intf(dom(c),u)) ⇒ EQ(u,r,step(r,c))) (37)

for any state r, and (since M is step consistent)

Security of information flow December 2015.doc 15 09/05/2016 || 15:09:18

EQ(u,s,t) ⇒ EQ(u,step(s,c),step(t,c)) (38)
and the induction hypothesis

EQ(u,s’,t’) ⇒ EQ(u,run(s’,γ),run(t’,purge(γ,u))) (39)

for any s’ and t’.
 To be able to follow the steps as given in Section IV, it is enough to state t1 =
run(s,c ° γ) and t2 = run(t,purge(c ° γ,u)).

The first step in our procedure is to replace an argument term of (35) by a so-called
pivotal argument (see Section IV). Since the third term, i.e. t2, is the most complex (as
a tree), the third argument of (35) becomes the pivotal argument ξ.
We thus consider

EQ(u,run(s,c ° γ),ξ). (40)

By (ax2), this gives
EQ(u,run(step(s,c), γ),ξ). (41)

The consequent of the induction hypothesis (39) can be applied via instantiation s’ =
step(s,c) and the transformation of ξ to run(t’, purge(γ,u)) if the condition

EQ(u,run(step(s,c), γ),run(t’, purge(γ,u))) (42)

holds.
The question is whether the term run(t,purge(c ° γ,u)) can be transformed into
run(t’,purge(γ,u)). To check this, we have to evaluate run(t,purge(c ° γ,u)) first. The
definition of pg gives two cases to be considered.

• (ax4) gives the case condition intf(dom(c),u) and
• (ax5) gives the case condition not(intf(dom(c),u))).

Let us consider case intf(dom(c),u).
Then, run(t,purge(c ° γ,u)) = run(t, c ° purge(γ,u)) = run(step(t,c),purge(γ,u)).
The question is thus whether run(step(t,c),purge(γ,u)) can be transformed into
run(t’,purge(γ,u)). This can be done with the instantiation t’ = step(t,c) provided the
corresponding condition (42) is verified. Thus we have to check

EQ(u,run(step(s,c)), run(step(t,c),purge(γ,u))). (43)

Note that the predicate of this formula is not recursively defined and thus this condition
is verified non-recursively in the context of the considered properties (here (38)) of M
and the condition (36).
Thus this case is solved applying Modus Ponens to (36) and (38).

Let us consider case not(intf(dom(c),u)).
Then, run(t,purge(c ° γ,u)) = run(t,purge(γ,u)).
The question is thus whether run(t,purge(γ,u)) can be transformed into
run(t’,purge(γ,u)). This can be done with the substitution t’ = t, provides the appropriate
instantiation of the antecedent of the induction hypothesis (39) holds. I.e. if

EQ(u,run(step(s,c)),t) (44)

holds. Once again, EQ is a non-recursively defined predicate, thus (44) is proved via
traditional theorem proving from the condition (34) and instantiation s for r in (37)
which gives EQ(u,s,step(s,c)).
But EQ is symmetric and thus EQ(u,s,t) gives EQ(u,t,s). Transitivity of EQ gives (from
EQ(u,t,s) and EQ(u,s,step(s,c))) that EQ(t,step(s,c)) holds and by symmetry of EQ we
have (44).

Security of information flow December 2015.doc 16 09/05/2016 || 15:09:18

X. References

[asperti01] A. Asperti, C. S. Coen, E. Tassi, S. Zacchiroli: User Interaction with the
Matita Proof Assistant; Journal of Automated Reasoning, August 2007, Volume
39, Issue 2, pp 109-139.

[beth03] E. Beth: The Foundations of Mathematics; Amsterdam, 1959.
[boyer-moore09] R. S. Boyer, J S. Moore: A Computational Logic Handbook;

Academic Press, Inc., 1988.
[bundy13] A. Bundy : The Automation of Proof by Mathematical Induction, in: A.

Robinson, A. Voronkov (eds.): Handbook of Automated Reasoning, vol. I, North-
Holland, 2001, pp. 845-912.

[bundy15] A. Bundy, F. Van Harnelen, C. Horn, A. Smaill: The Oyster–Clam system;
In: Stickel, M.E. (ed.) 10th International Conference on Automated Deduction,
vol. 449 of Lecture Notes in Artificial Intelligence, pp. 647–648. Springer (1990).

[constable04] R. L. Constable: Implementing Mathematics with the Nuprl Proof
Development System; Prentice-Hall, Inc., Englewood Clifs, New Jersey, 1986.

[franova08] M. Franova: PRECOMAS Challenge; Rap. de Recherche No.376, L.R.I.,
Orsay, France, September 1987.

[franova10] M. Franova: CM-strategy : A Methodology for Inductive Theorem Proving
or Constructive Well-Generalized Proofs; in: A. K. Joshi, (ed): Proceedings of
the Ninth International Joint Conference on Artificial Intelligence; August, Los
Angeles, 1985, 1214-1220.

[franova14] M. Franova: Why are we (almost always) able to prove inductive theorems
"by hand" and how to obtain an automatic system that does it the same way:
Introduction to inductive theorem proving for postgraduate students; Rapport de
Recherche No. 327, L.R.I., Université de Paris-Sud, Orsay, France, January,
1987.

[franova17] M. Franova: Fundamentals of a new methodology for Program Synthesis
from Formal Specifications: CM-construction of atomic formulae; Thesis,
Université Paris-Sud, November, Orsay, France, 1988.

[franova24] M. Franova: PRECOMAS - An Implementation of Constructive Matching
Methodology; Proceedings of ISSAC'90 (Tokyo, Japan, August 20-24, 1990),
ACM, New York, 1990, 16-23.

[franova34] M. Franova: Constructive Matching methodology and automatic plan-
construction revisited; Rapport de Recherche No.874, L.R.I., Univ. de Paris-Sud,
Orsay, France, November, 1993.

[franova53] M. Franova: Créativité Formelle: Méthode et Pratique - Conception des
systèmes "informatiques" complexes et Brevet Épistémologique; Publibook,
2008.

[franova62] M. Franova, Y. Kodratoff: Choosing an induction variable in universally
quantified atomic formulas; Rapport de Recherche No.1579, L.R.I., Université de
Paris-Sud, Orsay, France, February 2015.

[franova64] M. Franova: Cartesian versus Newtonian Paradigms for Recursive Program
Synthesis; International Journal on Advances in Systems and Measurements, vol.
7, no 3&4, 2014, pp. 209-222.

[franova-kooli01] M. Franova, Kooli M.: Recursion Manipulation for Robotics: Why
and How?; in: R. Trappl, (ed.): Cybernetics and Systems '98; proc. of the
Fourteenth Meeting on Cybernetics and Systems Research, Austrian Society for
Cybernetic Studies, Vienna, Austria, 1998, 836-841.

Security of information flow December 2015.doc 17 09/05/2016 || 15:09:18

[godel02] K. Gödel: Some metamathematical results on completeness and consistency,
On formally undecidable propositions of Principia Mathematica and related
systems I, and On completeness and consistency; in: J. van Heijenoort: From
Frege to Godel, A source book in mathematical logic, 1879-1931; Harvard
University Press, Cambridge, Massachusets, 1967, 592-618.

[graham-cumming01] J. Graham-Cumming, J.W. Sanders: On the refinement of Non-
interference; Proc. of the IEEE Symposium on Security and Privacy, pp. 11-20,
1982.

[haigh01] J. T. Haigh, W. D. Young: Extending the Noninterference Version of MLS
for SAT; IEEE Trans. Software Eng. 13(2), pp. 141-150, 1987.

[hutter05] D. Hutter: Automating Proofs of Unwinding Conditions; in: Serge Autexier,
Heiko Mantel (eds.): Workshop Proceedings VERIFY06 at the International Joint
Conference on Automated Reasoning, Seattle, 2006.

[hutter04] D. Hutter, H. Mantel, I. Schaefer, A. Schairer: Security of multi-agent
systems: A case study on comparison shopping; Journal of Applied Logic,
Volume 5, Issue 2, pp. 303-332, June 2007.

[kapur03] D. Kapur: An overview of Rewrite Rule Laboratory (RRL); J. Comput.
Math. Appl. 29(2), 91–114 (1995).

[mantel02] H. Mantel: A Uniform Framework for the Formal Specification and
Verification of Information Flow Security; PhD thesis, Universitty of Saarlandes,
2003.

[millen01] J. K. Millen: Unwinding Forward Correctability; Proc. of the 7th IEEE
Computer Security Workshop, pp. 35-54, 1994.

[paulin-mohring01] C. Paulin-Mohring, B. Werner: Synthesis of ML programs in the
system Coq; Journal of Symbolic Computation; Volume 15, Issues 5–6, May–
June 1993, p. 607–640..

[paulson03] L. C. Paulson: The foundation of a generic theorem prover; Journal of
Automated Reasoning, September 1989, Volume 5, Issue 3, pp 363-397.

[pinsky01] S. Pinsky: Absorbing Covers and Intransitive Non-Interference; Proceedings
of IEEE Symposium on Security and Privacy, pp. 102 - 113, 1995.

[rushby01] J. Rushby: Noninterference, Transitivity, and Channel-Control Security
Policies; Technical Report CSL-92-02, Computer Science Laboratory SRI
International, December 1992.

	RR1587entete
	RR1587rapp

