HExOEExOQOH=E HE HEOdYYEA

ALGORITHMIC CONCEPTUALIZATION OF
TOOLS FOR PROVING BY
INDUCTION « UNWINDING » THEOREMS
A CASE STUDY

FRANOVA M /HUTTER D / KODRATOFF Y

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud-LRI

05/2016

Rapport de Recherche N° 1587

CNRS - Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Batiment 650
91405 ORSAY Cedex (France)

Algorithmic Conceptualization of Tools for
Proving by Induction « Unwinding » Theorems -
A Case Study

Marta Franové, Dieter Huttef and Yves Kodratoff

nf@ri.fr, hutter@fki.de, yvkod@nail.com
1LRI, UMR8623 du CNRS & INRIA Saclay, Orsay, France
2German Research Center for Artificial Intelligencegf@en, Germany

Abstract: Information flow security is an interesting andatbnging problem in which
the use of inductive theorem proving is required f®aling with the so-called
‘unwinding theorems’. This paper examines wheth@onstructive Matching
Methodology (CMM) for proving theorems by induction can be used ats this
industry oriented framework. We show here that mgthmore than a minor extension
is to be considered, namely handling non recuriaetions and predicates. But many
solutions for this problem are already availableowidver dealing with possibly
incomplete recursive theories and their formulatienstill a problem. This paper
illustrates thaCMM is well suited in both automated and non-automeaggdions in the
context of information flow security.

l. Introduction

Our goal is to provide an algorithmic conceptudi@a of tools for proving by
induction the so-called ‘unwinding theorems’ neededhe field of information flow
security. The methodology we start from @onstructive Matching Methodology
(CMM) ([franova64], [franoval0]) and we shall specifettools needed to reach our
goal. In this paper, we focus on a particular edampthe domain of information flow
security. We thus do not need to explain the seimaimtthe security problem: To this
purpose the reader is referred to [rushby01]. Véenecall the basic facts that are used
for our formal development from the point of vielireductive theorem proving.

In the first part of this paper we recall the bagefinitions and results related to
security of an information system presented by Rysih [rushbyOl]. Then, in the
second part, we study an inductive proof for Rusghidgrmulation of a particular
‘unwinding’ theorem and we consider which tools eegquired to exten@MM in order
to perform such a proof. The presented ‘non-cleygoof differs from Rushby’'s
‘clever’ proof and we point out the main differescas well as the advantage of
considering automating ‘non-clever’ proofs.

Il. State-based information flow control - basic knowledge

Definition 1.
A system M is composed of

* aset S of states, with an initial staj&1sS
e aset A of actions, and
» aset O of outputs,

Security of information flow December 2015.doc 1 09/05/2016 || 15:09:18

together with the functions step and output:

e sStepSxA- S

e outputSxA- O.
We shall use the letters ... s, t, ... to denddgest letters a, b, ... from the front of the
alphabet to denote actions, and Greek letief} ... to denote sequences of actions.

Actions can be thought of as “inputs” or “instracts” to be performed by the
system;step(s,& denotes the state of the system resulting byoparhg actiona in
states, andoutpu(sa) denotes the result returned by the action.

In the following,A denotes an empty sequence ardknotes a concatenation.

We shall consider an extension of the funcsbtepto sequence of actions in the form
of a functionrun

e run:SxA - S,

defined by
(ax1) run(sp) = s
(ax2) run(sa-a) = run(stegsa),a)

Note that this definition definesun in terms of run(stegsa),a) and not
stefrun(sa),a). This is required by the semantic model of mampglex development
in which such a use is essential. Of course, sudefmition complicates recursive
proofs using this definition. In [franova62] we djfiathis kind of functionmutilating

The agents or subjects interacting with the sysa@ch observing the results obtained
will be grouped into “security domains”. Securitprdains represent clearances in
terms of persons and classifications in terms td.d&/e thus assume

» asetd of security domains, and

» afunctiondom A - dthat associates a security domain with each action
We shall use letters ... u, v, w ... to denote domains.

Information is said to flow from a domain u to antmn v when some actions
submitted by domain u cause the information abtwet behaviour of the system
perceived by domain v to be different from thatge@red when those actions are not
present. We shall consider the flow of informatamna reflexive relation-> ond. (i.e.
u=>» u for each domain u.)

A security policywill be specified by this relation od. We use-/> to denote the
complement relation (i.e. a ‘closed’ negationr&f ond x d), that is

-[> = dxd)\-»

where \ denotes set difference. We speak-Jef and -[> as theinterferenceand
noninterferencerelations, respectively. A policy is said to leansitive if its
interference is transitive.

We say that domain wnterfereswith domain v if u->» v. We say that an action
interfereswith domain v if there isdlom(@) such thatdom(a) interferes with v, i.e.
dom(a) => v.

An action a is said to be requiradninterferingwith domain v ifdonma) -[> v for all
action sequences that contain a.

In order to go from an action sequence to a sequdrat is purged of actions
noninterfering for a domain, the following functiendefined.

Security of information flow December 2015.doc 2 09/05/2016 || 15:09:18

Definition 2.
o purge A" xd - A’
is defined as follows
(ax3) purggA,v) = A

ac purgda,v), ifdoma)-»v

(ax4) purgga °a,v)

(axb) purgdga ca,v) purgdga,v),if dom(a) -1 v.

The machine isecureif a given domain v is unable to distinguish bedwehe state of
the machine after it has processed a given actemuence, and the state after
processing the same sequence purged of actionsaeédo be noninterfering with v.

Formally, the security is identified with the reqament that

outpufrun(s,a),a) = outpufrun(sy,purgga,dom@))),a).
For convenience, we introduce the functidosandtestto abbreviate the expressions in
the last requirement.

« doA S
e testA xA- O
where
do(a) = run(sy,0), and
test@,a) = outpu(do(a),a).
Then we say that system M is secure for the polieyf
tes{a,a) = tes{purgga,dom@)),a) 1)

for all actions sequencesand actions a.

As Rushby says [rushby01], the intuition behindgbeurity of a system is that, starting
in the initial state g the system performs an action sequene®d reaches statie(a).

At that point, the actioa and the corresponding tesid) are observed. We can think of
actiona and its output observation as an experiment paddrbydom(a) in order to
learn something about this action sequencdf dom(@) can distinguish between the
outputs of the action sequenaesandpurgdga,dom@)) then an action by some domain
u has “interfered” withdom(a), i.e. u=>» doma) and the system is not secure with
respect to policies that specify—[J> dom(a).

The non-interference definition of security is eegsed “globally” in (1) in terms of
sequences of actions and state transitions. Inrotdeobtain sufficient “local”
conditions for verifying the security of systemsjsRby introduces a set of conditions
on individual state transitions.

The first step in this development is to partititre states of the system into
equivalence classes that all “appear identical’atgiven domain. The verification
technique will then have to prove that each donsaurew of the system is unaffected
by the actions of domains that are required todyererfering with it.

The following part expresses this formally.

Definition 3.
A system M isview-partitionedif, for each domain u frond, there is an equivalence
relation~ on S. These equivalence relations are said tmub@it consistenit

(2)

sdqma)t = outpu(sa) = outputt,a).

Security of information flow December 2015.doc 3 09/05/2016 || 15:09:18

The following result allows relating the output sgstency to security of the system.

Lemma 1:
Let -> be a policy and M a view partitioned, output cstesiat system such that

do(a) ** do(purge(a, u). (3)
Then M is secure for>.

Proof:

It is sufficient to put u =dom(a@). Then, since M is output consistent, (2) holdsdoy
state s and t. Let us put now siga) and t =do(purgga,don(a)).

Since

do(c) **® do(purge(a,dona)))
by modus ponens form (2) we have

outpuf{do(a),a) = outpul{do(purgga,doma)),a).
But, in our notation, this is nothing else than (1)

Definition 4.

Let M be a view-partitioned system ang a policy.
We say that Mocally respects > if

dom(a) -[»>u = S'u"ster(s,a) ()
and that M isstep consistent

(6)

s™t = stedsa) ‘u"step(t,a).

The following theorem shows that the local condiidormulated are sufficient to
guarantee security.

Theorem 1: (Unwinding Theorem)

Let-> be a policy and M a view-partitioned system tlsat i
1. output consistent,
2. step consistent, and
3. locally respects .

Then M is secure for>.

We have thus recalled the basic knowledge fornmgjizhe information needed by an
automated theorem prover. The next section focfis#son a by-hand version of an
inductive proof forTheorem 1 based on use dfemma 1 This proof is then studied

from the point of view of its automation. The prgwesented in [rushby01] is a clever
human generalization of proving (3) taking into @eoat output consistency, step
consistency and the fact that M locally respeagts

We do not start with this generalization in ortteshow how a ‘non-clever’ proof

of Unwinding Theorem leads to detecting the need géneralization It is so because

we have realized decades ago that Cartesian methedlving problems generating
experiences (i.e. hints to the problems) and piogidhints for solving problems thus

! The need for generalization is a known problerautomation of inductive theorem proving. In mangezit is related to use of
mutilating functions.

Security of information flow December 2015.doc 4 09/05/2016 || 15:09:18

generated
e gives rise to questions specific to inductive tleeorproving and not to the
semantic of a particular problem as it is in theecaf solving problems based on
the intelligence of a clever computer scientistefEmore importantly
* hints at missing information of which such a congpuscientist might even
unaware.
We are therefore convinced that it is exactly Wy of ‘non-clever’ approach to proofs
that will bring, in the long term, most of knowlezlgseful for automation of inductive
theorem proving. This will allow to isolate the atghmic concepts that can, in some
cases, replace complex semantic considerationglefvar computer scientist and even
help this computer scientist with refining or coetplg the theory he is relying on or
trying to formulate in a formal way. In other wordastead of aiming at the direct
intelligence of a system, we follow one of the mapproaches to Al, that is building a
‘prosthesis’ for intelligence.

lIll. By-hand proof for Unwinding Theorem

As we said above, we shall suppose that system M is
1. output consistent,
2. step consistent, and
3. locally respects .

We shall study what operations have to be perforinedrder to prove the above
presented formula

do(ar) "™ do(purge(a,dom(b))), ®)

for arbitrary domairdom(b) and stater.
By definition ofd, do(a) is run(s,a) and similarly fordo(purgga,domb))). We thus
obtain:

run(so,a) dow(®) run(so,purgg(a,domb))) . (7)

Let us consider a proof by induction anThis means to consider the base stemfoer
A and the induction step fax = a ~a’, where a is an arbitrary action and’ is a
sequence of actions.

As the proof for the base step is easy, we focubhemroof of the induction step.

In the induction stepy isa°a’. The induction hypothesis is

run(so,a’) dow(®) run(so,purgga’,domb))) . (8)

The goal is to prove

run(sp,a ca’) dow(®) run(s,purgga a’,domb))) . ©)

using the induction hypothesis and the propertiéd.o
By definition,
run(sp,a °a’) = run(steds,a), a’)

and the yalue ofun(sy,purgda -a’,domb)) depends on whethdon(a) ->» domb) or
dom(a) -/ > dom(b) holds.

Let us consider the case

Security of information flow December 2015.doc 5 09/05/2016 || 15:09:18

dona) -» don(b). (10)
thenpurgga ~a’,domb)) = a cpurgga’,domb)) and saun(sy, a °purgga’,domb))) =
run(step(s,a),purgga’,domb))).
This means that, in this case we have to prove
. dom(b) , (11)
run(stedso,a),a’) run(stedso,a),purgga’,domb))) .
The induction hypothesis (8) cannot be applied smthis last formula becomes a new
lemma to be proved taking into account the condlit{@0). A possible answer to
classical problem can be to refine the case amsalysiorder to prove the theorem
without resort to induction. Our proposal, in thaper, is to stick to structural induction
and to treat the formula (11) as new lemma to lo@gat taking into account condition
(10). This behavior will lead us to isolate a gatieation condition, as we shall now
illustrate.
Sincea’ belongs to A, it is eitherA or ce yfor some c A andy O A”. Since the
base step for (11) is easy, we shall focus onrttiedtion step.

In the induction step for (119t = ¢ ° y and the induction hypothesis is

run(stedso,a),y) don(®) run(stefdso,a),purggy,domb))) .
The formula to be proved is

run(stedso,a), cey) OIQLT'(b)run(step(so,a),purge(c o y,domb))).

(12)

(13)
By definition,

run(stes,a), c°y) = run(stefdsted,a),c), y)
and, with respect to the conditidom(a) ->» dom(b),
run(ste{so,a),purge(c ° y,don(b)) = run(stef{stef{so,a),c) purggy,domb))
This means that we have to prove
run(stef(stef{s,a),c), y) dom(®) (14)
run(stef{ste{so,a),c) purge(y,domb)))
Once again, neither the induction hypothesis (Ii2)amy of the properties of M can be
applied.
However, the generated ‘failure’ formulas (7), (1d)d (14) are suggesting that a
generalization may be needed.
Let us have a closer look at these formulas. Far(j, i.e.

run(so,a) " run(s purge(a don(h)))
is the initial formula to prove. We attempt to peav by induction orax. This proof
generateg¢ll), i.e.

run(stedso,a),a’) dqmb)ru n(stegso,a),purgga’,domb))).

We are unable to prove (11) because the inductypothesis cannot be applied. We
then again try to prove (11) by induction ahsuch thata = a - a’and generate (14),
ie.

run(stefdstef,a),c), y) don(®)

run(stefstef{s,a),c) purgdgy,domb)))

Security of information flow December 2015.doc 6 09/05/2016 || 15:09:18

We observe a regularly growing sequence on bot#ssaflthese formula, namely:
run(so, ...
run(stedso,a), ...
run(stefstes,a),) ...
on both sides of these three formulas. We shaltppog a consideration of the
generalization of these growing sequences whenirggélrther indices in a proof of
the case

dor(a) -/> don(b). (15)

In this case,
purgga -a’,domb)) =purgga’,domb))

and so

run(so, a epurgga’,domb))) =run(so,purgga’,domb))).
This means that formula to be proved (9) evaluttes

. dom(b) , (16)
run(stedso,a),a’) run(so,purgg(a’, domb))).

Since doz®) is an equivalence relation, it means that the étidn hypothesis (8)

can be applied. In other words, the temm(sy,purgga’,domb))) can be replaced by
the left side of the induction hypothesis, i.e. them run(s,a’). This means that the
application of the induction hypothesis (8) to (l&ds to the formula

run(stef{so,a),a’) dox®) run(so,a’) (17)
which has to be proved. Since the only differenevben both terms of (17) are their
first arguments, namelstef{s,a) and g, we look among the given assumptions of the
Unwinding Theorem for one which \/ggwg allow to cturde that (17) is trlégmyye can
see that since M locally respeets, and~ " is symmetric, sted,a) donb)
wheneverdom(a) -[> dom(b), which is just tigj%n%zi\se we are considerrr%. IS an
equivalence relation and this means #stafis,a) — ~ S implies

run(stefso,a),1) dot®) run(so,1)

for anyp from A’. It holds therefore fop = a’. Thus, (17) is true.
The considered casknm(a) -/> dom(b) is thus proved without difficulties. Therefore,
let us return to the conditiaom(a) =» dom(b) where we had generated the sequence

run(so,q) do(®) run(so,purgg(a,domb))) .
run(stefs,a),a’) dox(®) run(step(s,a),purgga’,domb))).

run(stegstef{s,a),c), y) dow(®) run(stefstef{so,a),c) purgdy,domb)))

We now generalize this sequence to
) un(t,purge(a,dom(b))).

A clever reader may be aware that this formuleotstiue but we shall show just below
how our ‘non-clever’ approach finds a new suitagblenulation.

The above examples underline the fact that our odetlogy based on the attempt to
capture methodically and algorithmically non-cletagrhand proving of theorems (see
[franovald]) has the positive feature that it gates “well-ordered” sequences of

run(sa) (18)

Security of information flow December 2015.doc 7 09/05/2016 || 15:09:18

‘failure’ formulas that can be generalized. The ggahzation itself, however, is not a
part CMM for the time being. Generalizing is a problem rehyi different from our
present goals and can also left in the hands otislee who, now, knows at least what
has to be generalized.

Let us now show how we may be able to ‘prov€18):.

Base step :
In the base step, =A. The goal is to prove

run(s\) “ZCrun(t, purgeih donb))).
Using the definitions ofun andpurgewe obtain that the goal is to prove
dony(b)
s = t.

Since there is no assumption corresponding to fbrenula, (19) becomes a
precondition for the formula(18). In other words the failure to prove (18) leac to
discovery of a missing precondition. The failure pve the Unwinding Theorem
directly led us from (7) to a discovery 0f18) and now of the following formula (still
to be proven):

(19)

Jou) (20)

run(sa) dcAET'(b)run(t,purge(O(,dom(b)))

This formula is a generalization of (7) since wa pat $ = s =t and thus (20)
can be considered in its particular form (stilbeproven):
dom(b) (21)
S S =

run(so,a) “run(so,purge(a,dom(b)))

We go on, now trying to prove (20):
Base step :
In the base stejp, = A. Supposing

run(s) dQIT‘(b)run(t,purge(}\,dorT(b)).
Using the definitions ofun andpurgewe obtain that the goal is to prove

dor(b .
s?m)t , the goal is to prove

S dony(b) t (22)
This is our assumption and so the base step itvegko
Induction step:
In the induction stemy =d ° d and we have the induction hypothesis
Sy @3)
run(s’,) “ECrun(t, purge(,donb)))
that holds for each s’ and t’ (i.e. s’ and t’ arewersally quantified in (23)).
Le us suppose that
S dony(b) t (24)

holds. The goal is to prove

Security of information flow December 2015.doc 8 09/05/2016 || 15:09:18

run(s,d» 8) %= run(t,purged - ,don(b))) (25)
The evaluation ofun(s, d d) givesrun(stedsd),d). With respect to the definition of
purge for the ternrun(t,purggd » 6,dom(b)) two cases have to be considered:

case A: dom(d) -» dom(b), and

case B: dom(d) -/> dom(b).

Let us consider the case A, i.e. we assumedbat(d) -» dom(b) holds. In this case,
run(t,purggd » d,donmb))) =
run(t, de purggd,domb))) =

run(stegt, d),purggd,domb))).
Thus, in the case A we have to prove

run(ste(s),8) "= run(stertt, d),purge(d,don(b))).

Since no evaluations can be performed, we lookepbssibility to apply the induction
hypothesis. We can see that the instantiation dfysstedsa) and of t' bysteft, d)
could be done if

(26)

stedsa) doz®) steft, d) (27)
holds, i.e. we have that this particular inductiypothesis reads
run(sterts d).8) “=® run(stertt, d), purge(®,don(b))). (28)

it stesd) “stet,d)

We look at the properties of M to see whether thene relative testepfunction and
the termsstefs@a) and steft,d). We have onlystep consistencypf M. The step
consistencyf M means that

Jom(b) (29)

t = stegsd) ““Pstert,d)
holds. The antecedent of (29) is nothing but osuagption (24) and thus

sterts d) “=stertt,d)
holds. In consequence, the induction hypothesi8) ¢an be applied and (26) is thus

proved.
This completes the case A.

Let us consider now case B, i.e. we assumedibiafd) -/> dom(b) holds. In this case,
run(t,purggd ° d,domb))) =

run(t, purgg(d,dom(b)))
We have to prove

run(stetsd).8) = runt, purged,domb))). (30)
We can see that a particular case of the induttypothesis (23), namely
run(stes d).8) “=® run(t,purged,dom(b))), (31)
it stegsd) “Tt.
could be applied with the instantiation sstedsd) and t’ = t, provided that
stefdsd) OIQII(b)t (32)

Security of information flow December 2015.doc 9 09/05/2016 || 15:09:18

. ... domm(b
holds. We have at our disposal the COﬂdItIOIc‘)!r'T'(S)

Since M locally respects >,

dom(d) -/> don(b) = s “stesd)
is an equivalence relation and this means that fro
s 18O ¢

t and we would like that (32) holds.

(33)

holds2x®

and
S dcm'(b)step(s,d)

we have the truth of (32).
This completes a by-hand proof for the Unwindingditem.

The next section recalls the method for provinginguction atomic formulas called
Constructive Matching(CM) introduced in [franovalO]. This method is based o
Cartesian Intuitionism presented in [franova64]. Appendix we present the
development of the proof for (20) by this metho@kifig into account this machine
directed proof we analyze below the necessary tooéhlargegCMM and compare it to

the ‘human-brain’ proof presented in [rushby01].

IV. CM-formula construction

CM-formula construction guides the course of the atisle proofs of atomic formulas.
Its particularity relies on the fact that it hasbecustom-designed to deal with Godel’s
incompleteness results so that missing knowledgruggiested during the attempt to
prove a formula in an incomplete environment. Tame holds for suggesting missing
lemmas, i.e. the knowledge explicitly missing todide to complete the proof whereas
it is implicitly present in the given axioms of teidied problem.

For simplicity, let us suppose that the formulabeoproven has two arguments,
that is to say that we need to prove that,&|tis true, where F is a predicate andit
are terms of the axiomatic theory in use. We iniceda new type of argument in the
atomic formula that has to be proven true. We tteim pivotal arguments, since the
focus on them allows

» reducing what is usually called the search spadkeoproof, and
» decomposing complex problems (such as strategiecaspf a proof) on
conceptually simpler problems (such as a transfbomaf a term into another,
possibly finding a sufficient conditions etc.).
These arguments are denoted{gr &' etc.) in the following.

In the first step, the pivotal argument replaces purely syntactical way, one of
the arguments of the given formula. The first peoblis thus to choose which of the
arguments will be replaced by a pivotal arguniend/e do not propose yet a complete
algorithmic solution to this problem, as it will bene of the last problems to be
completely solved before implementing the whGIgIM. This is due not only to the
symbiotic character of developed tools but alsabsee in our research we focus too on
searching for problems that rise when an unsuitaigiment is chosen. This way
allows us to discover tools that are useful in sgistic approaches (see [franova08]
and [bundy13]).

In this presentation, let us suppose that we lchesen to work with Ff), the
second argument being chosen as the pivotal onan lartificial, but custom-made
manner, we state C =§{| F(t,8) is true}. Except the syntactical similarity withe

Security of information flow December 2015.doc 10 09/05/2016 || 15:09:18

formula to be proven, there is no semantic conata®r in saying that Hg) is true. It
simply represents a ‘quite-precise’ purpose ofnigyio go from F(&) to F(t,t). We
thus propose a ‘detour’ that will enable us to eralso the theorems that cannot be
directly proven by the so-called simplification nedls, i.e., without this ‘detour’.

In the second step, via the definition of F arasthinvolved in the formulation of
the term 1, we look for the features shown by all theuch that F(t¢) is true. Given
the axioms defining F and the functions occurrind;j we are able to obtain a sef C
expressing the conditions on the set § for which F(t,&) is true. In other words,
calling ‘cond’ these conditions and; @he set of the& such that condj is true, we
define G by G = {& | cond€)}. We can also say that, with the help of the give
axioms, we build a ‘cond’ such that the formul& [Cy, F(t,€) is true.

In the third step, using the characteristics gfoGtained in the second step, the
induction hypothesis is applied. Thus, we builé@aT of & such that F(t&) is related to
F(t1,t) by using the induction hypothesis. For the sdkaanity, let us calkc the result
of applying the induction hypothesis tq €&sulting in G = { & | cong(&c)}. Cais
thus such that R(Ec) is true. We are still left with a work to do: peothat $ belongs to
C.. In case4does not contain existential quantifiers, thidase by verifying congt,).

In case 4 contains existentially quantified variables, tisiglone by a detour. In the first
step we try to solve the problem cefid) = [Ib ¢ = ot,, whereo has to provide a
suitable instantiation for the existentially quéietl variables in & With such an
obtainedo we have then prove kf¢t,). In other words, we have to prove thatand ¢
can be made identical (modulo substitution) whamdg(@c) holds.

In the case of the success, this completes th@.drothe case of a failure, a new
lemma congéc) = o Ec = oty with an appropriate quantification of the involved
variables is generated. In some cases, an infsdtpience of ‘failure formulas’, i.e.
lemmas, may be generat€MM is conceived in such a way that the obtained sezpie
is well-behaving (see [franoval0]) so that one apply a generalization technique to
obtain a more general formula that has to be proVhd formula covers logically the
infinite sequence of lemmas and thus it fills tlag ghat cannot be overcome by purely
deductive formal approach to theorem proving.

A detailed description of handling the pivotal amgent in a rigorous framework
can be found in [franova24] and [franova34]. A b$the most important achievements
and experiences performed 6M can be found in [franova64].

V. Necessary extension for CUM

The proof presented in Appendix shows that, in otdeébe able to be execute a proof
for the Unwinding Theorem in a purely mechanized waMM needs to be extended
by a non-inductive theorem proving mechanism, agheorem proving mechanism
handling the predicates and the functions defir@d necursively. We intend to choose
one from the already available ones. The Beth'¢etalx method is one of the first
logical mechanization of non-inductive proofs. Thisethod serves as a logical
justification (see [franoval7]) of the basic nonctive parts inCMM. Therefore,
handling the implications in which the anteceden& iconjunction of atomic formulae
with non-recursively defined predicates has alrebegn dealt with (for more details
see in [franoval?7]).

VI. Comparison with the proof presented by Rushby

There is a very important difference of our preagah of a non-clever by-hand proof
of the Unwinding Theorem an the Rushby’s proof lilmg1]. Taking into account the

Security of information flow December 2015.doc 11 09/05/2016 || 15:09:18

assumptions of the Unwinding Theorem, the actuahéda to be proved is (7), i.e.

run(so,a) doz®) run(so,purgga,domb))).
However, Rushby switches directly to proving itegelization (20), i.e.
dany(b)
Ss™T 't =

run(sa) dQ‘rﬂb)run(t,purge(O(,dorT(b)))

leaving thus to the reader to make explicit thesoeang steps leading to this
generalization.

Our previous and current development ©@MM is based exactly on formalizing
algorithmically the invention process for the casésnissing knowledge. Indeed, the
problem of missing knowledge is deeply linked tce tincompleteness results
formulated by Gddel [godel02]. We shall go furtherthis point in a few moments.
Before that, let us say that we do not attemptotonélize the invention process of a
genius or of a clever mathematician. We do folloesBartes’ advice of finding once
for all a purpose built systematic way of handliagativity issues related to the
inductive theorem proving. Thus, our approach mtlicdiffers from the existing
approaches to mechanizing inductive proofs. (Th& kaown are the system ACL2
[boyer-mooreQ9], the system RRL [kapur03], the eystNUPRL [constable04], the
Oyster-Clam system [bundyl5], the extensions ofBEALE [paulson03], the system
COQ [paulin-mohring01] and Matita Proof AssistaaspertiOl].) These approaches
select already existing tools from those availahl€omputer Science and that were
initially developed for other purposes. Then thegksfor clever ways of putting these
tools synergistically together. As it can be sesymf our presentation of th€M-
formula construction, this way of handling atonaeriulas through pivotal argument is
an original way of directing inductive proofs aslwas of the process of a step-wise
construction of missing or relevant knowledge whenaecessary.

Of course, due to the above mentioned Goédel'sltsesin formalizing the
invention process, we cannot go further than suggesuch missing knowledge. It
will always have to be a human expert of the pobteciding on relevant character of
this suggested information, as we have alreadsgtithtied in the framework of robotics
[franova-kooliO1]. In other words, it is only suehhuman expert who can know about
the intended interpretation of the problem on hand.

The above mentioned step-wise construction ofréhevant knowledge can be
perceived easily by noting two essential differenisetween Rushby’s proof and that of
ours.

First of all, the induction hypothesis (23) contaitwo new universally quantified
variables s’ and t’, while for Rushby, the induatibypothesis does not contain new
variables. In our proof (see going from (26) to)j28&he instantiation of these
universally quantified variables leads to the ctindi (27) which has to be verified,
hinting thus at the relevant information to be ledKor in the given theory.

Since Rushby’s proof is clever (due to the hurbehind the proof), the going
from the formula 2.3. in [rushby01], i.e.

run(t, purgga oa,u)) = run(t, a > purgga,u))
to the successful conclusion of the case 1 of tesfps mathematically ‘beautiful’ in
contrast to the ‘cumbersome’ presentation of oumopr In the vocabulary of
mechanizing theorem proving it means that Rushlbiéserness reduces the search
space while our method switches the focus fromaackespace to the direct ‘hints’
about the knowledge to be looked for in a givernotiiefor any inductive theorem

Security of information flow December 2015.doc 12 09/05/2016 || 15:09:18

proving problem, even those related to the progsgnthesis [franova64]. This means
thatCMM and Cartesiafrormal Creativity[franova53] upon whiclCMM is being built
are worth more than a simple inductive theorem ipgpgtrategies but they are suitable
as a method for finding an axiomatic theory forlppeons that require recursive thinking
and that, at the beginning, are specified only rmfaly. We have illustrated this
already in [franova-kooli01], but we would like tooint out its importance and
usefulness in the context of security of the infation flow systems. This is why, in
future, we intend to look more closely at the wofkMantel [mantel02] from the point
of view examining the efficiency of our work angd gventual promoting as a tool to
make the process of building formalized theoriescimmore method oriented than
genius dependent.

To our best knowledge there is no other existiogkwelated to the automation of
the inductive proofs for a large variety of alreadymulated Unwinding Theorems
[graham-cumming01], [pinsky01], [haighO01], [milletjO

VIl. Future work

The problem of information flow security is very temesting, important and
challenging. As a complementary work to [hutterQblitter04], we plan to continue in
the search of the necessary extension<BIM in this field by the attempts for
mechanized proofs of Unwinding Theorems presenmtetMantel’s thesis [mantel02]
and, among others, [graham-cumming01], [pinsky(hpighO1], [millen01]. The
challenge is there the execution proofs for thearémat contain existential quantifiers
and that are related to the information flow systesacurity as well as handling non-
transitive relations. We are quite sure that oturii investigations concerning the use
of our method for formalizing deductive theoriegjuiging recursion will be very
fruitful and will suggest new problems to be haxdéend new tools to be developed in
the field of Machine Learning and Computational &irgty. Note that tools we
custom-create iICMM are symbiotic and thus the implementation carlyresghrt only
after the research is completed. This is not usu@lomputer Science today where the
systems are built from synergistically interactingependent modules which of course
provides a possibility of implementing partial rkstand allows linear developing of
trust of peers. However, in the long term our apphowill enable handling problems
that are not possible to solve by synergistic tottlsvill also provide inspiration for
new real world applications simply by the preseoiceew powerful creation tools.

VIIl. Conclusion

The automation of inductive theorem proving hasnb&tedied now for a long time. In
contrast to traditional way of accepting Godel’'sampleteness results as a limitation,
we used our interpretation of these results asieentive for changing the “automation
game” by
* switching
from the idea of once for all formally fixed theorechecking system
developed via already existing tools
to the idea of an ‘oscillating’ system ([franovap#dking into account
the particular requirements related to the indecproof at hand, and
» developing
not a toolbox of elements brought from other fielth&in inductive
theorem proving framework
but an on-purpose inductive theorem proving frant&wools solving

Security of information flow December 2015.doc 13 09/05/2016 || 15:09:18

problems discovered in the oscillating evolutiorthad system.
This direction of development requires that we gtundiuctive proving not only in its
‘well-behaving’ mathematical framework of naturaimbers, lists and trees but also in
challenging context of information flow securityr fproving Unwinding Theorems. In
this paper we have illustrated how our approachosisrs a suitable generalization of
the Unwinding Theorem as it was initially formuldtelhe study in this paper shows
that ourCMM is relevant also in this context even if we haweconsider a minor
extension.CMM provides experts of information security flow altavell-suited to
handling creativity issues met while proving thesemplex theorems. In particular,
some applications may require a change in the fspmon of the unwinding-type
theorems. The present paper provides a detailetstrdition on the way new
specifications can be proven or, if necessary, ¢etag or reformulated.
We thus aim at enlarging o@MM methodology in such a way that it could be used in
testing their hypotheses while formulating the domspecification (i.e. the formal
theory) for Unwinding Theorems specific to theirtgaular problem. We already have
illustrated this particular use &MM in the context of robotics [franova-kooliO1].

IX. Appendix

In this part we are going to present the inducttep for a proof of (20) as performed
following the CM-construction formula presented in Section 0. Nénetess, we shall
‘linearize’ the previous notatiog. Namely, the doiy relation ‘u-> v’ will be denoted
by intf(u,v) and consequently ‘t/ > v’ will be not(intf(u,v)). The equivalence relatio
‘s =~ t" will be denoted by EQ(u,s,t). Recall that EQan equivalence relation, i.e. it
holds for all triple of variables p, g, r from thet of states.

(reflexivity) EQ(p,p)
(symmetry) EQ(p,a)- EQ(a,p)
(transitivity) EQ(p,q) & EQ(q,nN= EQ(p,r)

We want to prove (20), i.e.,

EQ(u,s,t)= EQ(u,run(sy),run(t,purged,u))). (34)
where M locally respects EQ and is step consigt@Definition 4.).

We use the rules of Beth’s tableaux
» decompose the proof of this implication as a pafadn atomic formula (in the
IVALID column — see [beth03]) and the all conditsoim the VALID column)
» to any property of M introduce its particular casmsidered for any parameter
introduced.
In the induction step we hawe= ceo y. Thus, s, t, c angare parameters for which the
properties of M will be instantiated.

The goal is to prove

EQ(u,run(s,e y),run(t,purge(e y,u))) (35)
assuming the antecedent of (34), i.e.
EQ(u,st) (36)
as well as (since M locally respects EQ)
non(intf(dom(c),u))= EQ(u,r,step(r,c))) (37)

for any state r, and (since M is step consistent)

Security of information flow December 2015.doc 14 09/05/2016 || 15:09:18

EQ(u,s,t)= EQ(u,step(s,c),step(t,c)) (38)
and the induction hypothesis
EQ(u,s’,t") = EQ(u,run(sY),run(t’,purgey,u))) (39)
forany s’ and t'.

To be able to follow the steps as given in SectMnit is enough to state &
run(s,ce y) and % = run(t,purge(e y,u)).

The first step in our procedure is to replace ayuaent term of (35) by a so-called
pivotal argument (see Section IV). Since the thénn, i.e. 4, is the most complex (as
a tree), the third argument of (35) becomes thetphargumeng.

We thus consider

EQ(u,run(s,e V),£). (40)
By (ax2), this gives
EQ(u,run(step(s,cy),s). (41)

The consequent of the induction hypothesis (39) ampplied via instantiation s’ =
step(s,c) and the transformationéab run(t’, purgey,u)) if the condition
EQ(u,run(step(s,cy),run(t’, purgeg,u))) (42)

holds.
The question is whether the term run(t,purge(s,u)) can be transformed into
run(t’,purgeg,u)). To check this, we have to evaluate run(t,p(cg y,u)) first. The
definition of pg gives two cases to be considered.

* (ax4) gives the case condition intf(dom(c),u) and

* (axb) gives the case condition not(intf(dom(c),u)))

Let us consider case intf(dom(c),u).
Then, run(t,purge(ey,u)) = run(t, ¢ purgey,u)) = run(step(t,c),purgel)).
The question is thus whether run(step(t,c),pytg$ can be transformed into
run(t’,purgeg,u)). This can be done with the instantiation tstep(t,c) provided the
corresponding condition (42) is verified. Thus vevé to check

EQ(u,run(step(s,c)), run(step(t,c),purga))). (43)
Note that the predicate of this formula is not retely defined and thus this condition
is verified non-recursively in the context of thensidered properties (here (38)) of M
and the condition (36).
Thus this case is solved applying Modus Ponen3Gpgnd (38).

Let us consider case not(intf(dom(c),u)).

Then, run(t,purge(ey,u)) = run(t,purgefu)).

The question is thus whether run(t,pusge) can be transformed into

run(t’,purgey,u)). This can be done with the substitution t;, provides the appropriate

instantiation of the antecedent of the inductiopdtiiesis (39) holds. l.e. if
EQ(u,run(step(s,c)),t) (44)

holds. Once again, EQ is a non-recursively defipeatiicate, thus (44) is proved via

traditional theorem proving from the condition (3)d instantiation s for r in (37)

which gives EQ(u,s,step(s,c)).

But EQ is symmetric and thus EQ(u,s,t) gives EQ{u,Transitivity of EQ gives (from

EQ(u,t,s) and EQ(u,s,step(s,c))) that EQ(t,step(bolds and by symmetry of EQ we

have (44).

Security of information flow December 2015.doc 15 09/05/2016 || 15:09:18

X. References

[aspertiOl] A. Asperti, C. S. Coen, E. Tassi, Sccaroli: User Interaction with the
Matita Proof Assistant; Journal of Automated ReaspnAugust 2007, Volume
39, Issue 2, pp 109-139.

[beth03] E. Beth: The Foundations of Mathematiasistéerdam, 1959.

[boyer-moore09] R. S. Boyer, J S. Moore: A Compatal Logic Handbook;
Academic Press, Inc., 1988.

[bundy13] A. Bundy : The Automation of Proof by Matmatical Induction, in: A.
Robinson, A. Voronkov (eds.): Handbook of Automashsoning, vol. I, North-
Holland, 2001, pp. 845-912.

[bundy15] A. Bundy, F. Van Harnelen, C. Horn, A. &l The Oyster—Clam system;
In: Stickel, M.E. (ed.) 10th International Confecenon Automated Deduction,
vol. 449 of Lecture Notes in Artificial Intelligee¢pp. 647—648. Springer (1990).

[constable04] R. L. Constable: Implementing Mathgosawith the Nuprl Proof
Development System; Prentice-Hall, Inc., EnglewGdits, New Jersey, 1986.

[franova08] M. Franova: PRECOMAS Challenge; Rap.Rkcherche No0.376, L.R.I.,
Orsay, France, September 1987.

[franovalO] M. Franova: CM-strategy : A Methodoloigy Inductive Theorem Proving
or Constructive Well-Generalized Proofs; in: A. ¥ashi, (ed): Proceedings of
the Ninth International Joint Conference on Artdicintelligence; August, Los
Angeles, 1985, 1214-1220.

[franoval4] M. Franova: Why are we (almost alwagsle to prove inductive theorems
"by hand" and how to obtain an automatic systenh tdaes it the same way:
Introduction to inductive theorem proving for pastduate students; Rapport de
Recherche No. 327, L.R.l, Université de Paris-SOdsay, France, January,
1987.

[franoval7] M. Franova: Fundamentals of a new mathagy for Program Synthesis
from Formal Specifications: CM-construction of atomformulae; Thesis,
Université Paris-Sud, November, Orsay, France, 1988

[franova24] M. Franova: PRECOMAS - An Implementatiof Constructive Matching
Methodology; Proceedings of ISSAC'90 (Tokyo, Japaugust 20-24, 1990),
ACM, New York, 1990, 16-23.

[franova34] M. Franova: Constructive Matching metblogy and automatic plan-
construction revisited; Rapport de Recherche Nq.8/R.1., Univ. de Paris-Sud,
Orsay, France, November, 1993.

[franova53] M. Franova: Creativité Formelle: Méetleodt Pratique - Conception des
systemes ‘"informatiques” complexes et Brevet Emistégique; Publibook,
2008.

[franova62] M. Franova, Y. Kodratoff: Choosing arduction variable in universally
quantified atomic formulas; Rapport de Recherchel®it9, L.R.1., Université de
Paris-Sud, Orsay, France, February 2015.

[franova64] M. Franova: Cartesian versus Newtomaradigms for Recursive Program
Synthesis; International Journal on Advances irte8gs and Measurements, vol.
7, no 3&4, 2014, pp. 209-222.

[franova-kooli0O1] M. Franova, Kooli M.: Recursionadipulation for Robotics: Why
and How?; in: R. Trappl, (ed.): Cybernetics andst&ys '98; proc. of the
Fourteenth Meeting on Cybernetics and Systems Rd#seaAustrian Society for
Cybernetic Studies, Vienna, Austria, 1998, 836-841.

Security of information flow December 2015.doc 16 09/05/2016 || 15:09:18

[godel02] K. Godel: Some metamathematical result€@mpleteness and consistency,
On formally undecidable propositions of Principiaatdematica and related
systems |, and On completeness and consistency;). wan Heijenoort: From
Frege to Godel, A source book in mathematical lodi879-1931; Harvard
University Press, Cambridge, Massachusets, 19&76%8.

[graham-cumming01] J. Graham-Cumming, J.W. Sand@nsthe refinement of Non-
interference; Proc. of the IEEE Symposium on Ségcwamd Privacy, pp. 11-20,
1982.

[haighO1] J. T. Haigh, W. D. Young: Extending therihterference Version of MLS
for SAT; IEEE Trans. Software Eng. 13(2), pp. 14D,11987.

[hutter05] D. Hutter: Automating Proofs of UnwindifConditions; in: Serge Autexier,
Heiko Mantel (eds.): Workshop Proceedings VERIF@0@he International Joint
Conference on Automated Reasoning, Seattle, 2006.

[hutterO4] D. Hutter, H. Mantel, I. Schaefer, A.haaer: Security of multi-agent
systems: A case study on comparison shopping; dbwh Applied Logic,
Volume 5, Issue 2, pp. 303-332, June 2007.

[kapur03] D. Kapur: An overview of Rewrite Rule lahtory (RRL); J. Comput.
Math. Appl. 29(2), 91-114 (1995).

[mantel02] H. Mantel: A Uniform Framework for theoffmal Specification and
Verification of Information Flow Security; PhD thesUniversitty of Saarlandes,
2003.

[millen01] J. K. Millen: Unwinding Forward Corredidity; Proc. of the 7th IEEE
Computer Security Workshop, pp. 35-54, 1994.

[paulin-mohring01] C. Paulin-Mohring, B. Werner: rilgesis of ML programs in the
system Coq; Journal of Symbolic Computation; Volubie Issues 5-6, May—
June 1993, p. 607-640..

[paulson03] L. C. Paulson: The foundation of a gentheorem prover; Journal of
Automated Reasoning, September 1989, Volume 5¢18spp 363-397.

[pinsky01] S. Pinsky: Absorbing Covers and IntréimeiNon-Interference; Proceedings
of IEEE Symposium on Security and Privacy, pp. 1023, 1995.

[rushby01] J. Rushby: Noninterference, Transitivignd Channel-Control Security
Policies; Technical Report CSL-92-02, Computer &ote Laboratory SRI
International, December 1992.

Security of information flow December 2015.doc 17 09/05/2016 || 15:09:18

	RR1587entete
	RR1587rapp

