Satisfiability checking in presence of DTDs

capturing well-typed references

Nicole Bidoit
LRI-Université Paris XI, Orsay

bidoit@Iri.fr

References for this talk

e Preliminary study in collaboration with S. Cerrito and V.
Thion.

» A first step towards modeling semistructured data

in hybrid multimodal logic, Journal of Applied
Non-Classical logic, Volume 14, No 4/2004.

e Recent results are joint work with Dario Colazzo
» Capturing well typed references in DTDs,

» Testing XML constraint satisfiability,

Motivation

e few investigations for typing references of semistructured data
and XML documents.

» REF and IDREF attributes
» key and foreign-key constraints

» XML Schema uses XPath to specify typed references

— requires a good amount of expertize to be used correctly

— reasoning about constraints defined with XPath is highly

intricate, if not impossible.

edztor

e \\

O C|> O

article

!

/ tztle author / k

author author tztle

Figure 1: The well-known library example without references

O

ed’LtO’f‘

publ’ishedby
s /
ok 2

/7

V ~

—
tztle author / k

author author tztle

Figure 2: The well-known library example with references

7 publ ﬁ
~

Goal and Approach

e extension of DTDs / schemas to capture well typed references

e a unique formalism for schemas, constraints and queries:
Hybrid Modal Logic

Why a unique formalism ?
» subtyping, constraint implication and satisfiability,

» query correctness, optimization

Why Modal logic ?

Why modal logic 7

e Modal propositional logics
simple languages for talking about any kind of graphs
tree-structures, transition networks, parse trees,
networks of properties, ontologies, flows of time, ...
possible worlds

e Usefuf in a wide range of applications

(simple syntax, often decidable)

logics of time, computation, parsing, ... linguistics
e relational structures are ubiquitous

e relational structures are models of classical model theory
Modal logic is a (decidable) fragment of classical logic

Semistructured document

e a document is a labelled graph (labels over edges)

e a Kripke model is a labelled graph
(interpretation for modal logic)

e 3 document is a Kripke model

A model (document) I is a Kripke structure (S,r, R, V):
» S is a finite set of states (nodes of the document)

» r is a distinguished element (root of the document),

» R = {r.le € £} is a set of binary accessibility relations on S
(labelled links of the document),

» V:PROP — Pow(S) assignes to each proposition p the set of
states where p holds (data component);

O

ed’LtO’f‘

publ’ishedby
s /
ok 2

/7

V ~

—
tztle author / k

author author tztle

Figure 3: The well-known library example

7 publ ﬁ
~

Modal logic and Semistructured Data: Related works

e Schemes subsumption
» hybrid modal logic [Alechina 97]
» description logic [Calvanese&all 98]

e DTDs encoded into a PDL-like description logic [Calvanese&all 99]

e Query languages
» TQL based on ambient logic [Cardelli,Ghelli 01]
» Xpath fragments vs CTL [Miklau,Suciu 02] [Gottlob, Koch 02]
» Xpath queries equivalence vs PDL [Marx 03]

e Constraints
» Path constraints vs Converse PDL [Alechina 03]
» Path constraints vs HML [Franceschet, de Rijke 03]

(Modal) Logics for Semistructured data [Demri 03]
(invited talk at M4M-3)

Organization of this talk

. Ref-schema capturing well typed references

. Hybrid Modal Logic (HML): an introduction.

. How ref-schema are expressed in HML
. Checking constraint satisfiability in presence of ref-schemas.

. Discussion and further research directions

Schema capturing well-typed references : an example

Start = (doc Doc)*, (editor Editor)”™
Editor ¥ (name Name)', (m Book)*
Doc ¥ (article Art)' + (book Book)'
Art ¥ (author Name)T, (title Name)', (date Dat)”, (czjg Doc)™
Book = (isbn Isb)', ((Tté Doc)* + ((author Name)™, (date Dat)’
(title Name)', (ﬁa Doc)*, (publisedbgj Editor)')

Name = A
Dat o A
Isb = A

T

non terminal

T

regular expression
symbols

Non terminal symbols: Start, Editor, Doc, Art,

Labels : name, artzcle author, ... child labels

publ zsﬁ czte publzsedby references

Schema capturing well-typed references : ref-schema

e The set of labels £ is partionned:
» labels in F are called child labels
» labels in E are called references.

e)V is a set of non terminal symbols among which Start and A.

e A ref-schema G is given by a typing function 6:
» 0(X) is a regular expression of the form:
R:=eX|R+R|R,R| R« |A.
» O satisfies that:
(1) if e is a child-label, then there exists a unique non terminal
symbol X such that the pattern (e X) appears in G
(2) for each non terminal X#Start, Start =% X holds.

Schema capturing well-typed references : a second example

Start

- - -

/1 \\ -

(&] e e (S] e e€

FOE® @ @@

Figure 4: A document conforming to the ref-schema

Ref-Schema validation

A document M = (S,r, R, V,L,om) satisfies the ref-schema
G =(&,V, Start,0), denoted M : G, if:

(1) 9 “restricted to” the child label edges ¢ is a tree;

(2) there exists a total mapping 9 : S — V such that:
(a) ¥(r) = Start,
(b) forall n € S if ¥(n) = X and 6(X) = R then

{{eY | (n,n') € Rz and Y = 9%(n')}} € [R]

Extension of regular expressions:
[eXT] = {{{ex}}
[R1 + R2] = [Ri1] U[R2]
[R1, Ra] {b1 w b2 | by € [Ri]}}
[R] {{brw...0bs | b; € [R], n >0} U{{}}}
[A] {{1B

Organization of this talk

. Ref-schema capturing well typed references

. Hybrid Modal Logic (HML): an introduction.

. How ref-schema are expressed in HML
. Checking constraint satisfiability in presence of ref-schemas.

. Discussion and further research directions

From modal to hybrid modal logic

e Syntax
a set of propositional symbols p,q, ...,

conjunction A, negation —,
the modality [e] where e € £

e Semantics : an internal and local perspective
To evaluate satisfaisability of a formula
» choose a node s inside the model 9N
» navigate from this node to the accessible ones

M, g,s E [e]y iff Vs’ such that (s,s’) € r. we have M, g,s" = ¢
M, g,s | (e)y iff s’ such that (s,s’) € r. with M, g, s = ¢

e Other modalities (behond first order)
G : accessibility via all path F : accessibility via one path

Modal logic:

editor

O -

publzshedby / |

; 7
~ s < s name

publ j
/ tztle author k

author author tztle

From modal to hybrid modal logic

e Modal Logics : What exactly is missing 7
» Nodes (states) are at the heart of modal logic
» But not really ... nothing to grip with them

No e-labelled edge from the node s to itself

~(e)

e One need to deal with nodes explicitly

— Hybrid Modal Logics [Blackburn]
e Syntax

nominals: names for nodes

state variables: capturing nodes
binder |z : binds x to the current node
at operator Q,: move to the node z

atomic formulas
atomic formulas
new modality
new modality

No e-labelled edge from the node s to itself

lz —{e)x

From modal to hybrid modal logic

e Back to Kripke structure
» a unique nominal root to name the root r of a document

A model (document) 9 is a Kripke structure (5,7, R, V,Z,om)

» Z,om(root) = r is the interpretation for nominals.

e Semantics of hybrid features

g is a valuation of state variables

M, g,s = aiff Iom(a) =s (a is a nominal)

M, g,s =z iff g(z) =s (x is a state variable)
M,g,s =1z if Mg ,s =19 with g~ ¢ and ¢'(z) = s
M, g,s F Q1 iff M, g,9(z) E 9

editor

O -

publzshedby / |
s /7
book 7 7 name

l P publish
/ -

/ t'Ltle author >

author author tztle

given any book z, if z is published by y then y publishes x

Modal logic:

editor

O -

publzshedby / |
s /7
book 7 7 name

l P publish
/ -

/ t'Ltle author >

author author tztle

a book has exactly one isbn number.

Constraints and Hybrid Modal Logic

e Result: HML is strictly more expressive than the language P
devised to define forward and backward constraints.

‘‘given any book z, if z is published by y then
Yy publishes z’’.

Q,-00t |doc][book|]x ([publ ishedb;&] (publz’s/%}x)

expressible in P = expressible in HML

a book has exactly one isbn number.

Q. p0t|doc][book|lx ({(isbn)ly (Q,|isbn]y))
expressible in HML but not in P

Organization of this talk

. Ref-schema capturing well typed references

. Hybrid Modal Logic (HML): an introduction.

. How ref-schema are expressed in HML
. Checking constraint satisfiability in presence of ref-schemas.

. Discussion and further research directions

Normalized ref-schema in HML

e Motivation
» historical reason, » sake of simplicity
» without loss of generality

¢ A normalized ref-schema (£,V, Start,) is a (marked)

ref-schema based on the normalized regular expressions defined by:
R:=B| R+ R, and
B:=A| ((é,p)X)°? | B, B where op is either ! or x.

Start
Editor
Doc
Art
Book

Name
Dat
Isb

(doc Doc)™, (editor Editor)™

(name Name)', (m Book)™

(article Art)' + (book Book)'

(author Name)t, (title Name)', (date Dat)”, (cz—té Doc)*
(isbn Isb)', (m Doc)* + ((author Name)T, (date Dat)',
(title Name)', (cz_té Doc)™, (publisedb{/ Editor)')

A

A

A

(e X)),

(pY + 02), (P Y + 7 2)*
(e X,e X)*

(e X,e X)*, e X

Expressing normalized ref-schema in HML

e Result :

Schema G TG
(normalized) (HML Formula)

\l, instance \l, satisfied by ()

Document

Kripke Model

(Semistructured data)

M:G if MrE=rg

Expressing normalized ref-schema in HML

7g is the conjunction of 3 formulas :

» tree enforces that the “subframe” of the document generated
by child labels is a tree.

> TgE checks that, given a state x reachable by an e child edge,
the edges (child edges as well as references) outgoing from e are the
ones allowed by the schema.

Q. p0t (TStart A /\eEE G* [G]TType(e))

> TQB checks the type of the nodes which are targets of

references.

oot (Avez G TN (Veconitace) GrootF* (0)2)).

Expressing normalized ref-schema in HML

» For each non terminal X, the formula 7x checks that the nodes
of type X are the sources of allowed edges.

7x = Y(0(X)) where:

1 W(A) = Ngee (E)T
2. \If(Rl + Rz) = \IJ(Rl) V \If(Rg)
3. If Ris ((é1,p1)X1)°P, -+, ((€x, pr)Xk)P* then

\II(R) — /\z’zl---k Ti A /\e not in R —'<€>—|—

where if op; is ! then 7, = Jx (€;)ly (pi A Qg lé]l(pi = v))

if op; is * then 7 = (€;)(T = V cprop.. P)
with Props, = {p | ((€;,p)Y)°? in 6(X)}

Expressing normalized ref-schema in HML:

Q@ 0t ((PRoot NG” [dOC]QODoc NG” [editor]ﬂoEditor/\
G*[Name|loName N G* [article]p art N GT [book]Y Book N
G™* [auteur|o Name N G [title]lo Name N GT [date]lopat AN G*[isbn]prsp)

=def /\eeg—{doc,editor‘} —~(e) T

PEditor =def lz (Name)ly (Qz[Name]y)A /\ees—{Name mm} —(e) T

dz (book)ly (@, [book]y)
A lz {article)ly (Qg[article]y)

A AeGS—{bookz,article} _'<€> T

Qroot (G [cite]lz (Qroos F* (doc)z) A

G™ [publish]lz (Qpo0t F'™* (book)x) N
G* [publishedby|lz (Q oot F'* (editor)z))

Expressing general ref-schema in HML

Ref-schema = Normalized Ref-schema + constraints

Result:

Let G be a ref-schema. Then there exists a normalized ref-schema G,,orm and an
HML constraint Cg such that:

1. for each model 9t there exists a model 9,,,,n such that M . G iff
Muorm : Gnorm and My orm, g,T |: Cg.

for each model 9M,,.,m there exists a model 991 such that M : G iff
Mnorm : Gnorm and 99(tnoo"ma g,T ‘: Cg.

Expressing general ref-schema in HML:

(e X)*,

(pY + 02)", (7Y 4+ 7 2)
(e X,e X)*

(e X,e X)*, e X

((e, po)X)x,

(p Y)*, (0 Z)x, (7 Y)*, (7 Z)* (< X)x
((e, p1)X)*, ((e, p2)X)*

((e, p3)X)*, ((e, pa)X)*, (e,ps5)X!

G*lz (e)ly (p1 A @ (@)lz (p2 A @[]z A Quyle)zAT)) A
G*lz (e)ly (p3s A @u(T)lz (pa A @[]z A Qule)z A T))

Expressing general ref-schema in HML:

~
o@_-—f” o

(S} e e (] (S] e e

EE®® @ @‘@

Expressing general ref-schema in HML:

o O
I

p
A/

// \\ -

/‘@‘@ @ @‘@

p1 p2 A (p1 P2 ‘b3 p4\ P5
/
\?._/ \~-7 \\7 /

Organization of this talk

. Ref-schema capturing well typed references

. Hybrid Modal Logic (HML): an introduction.

. How ref-schema are expressed in HML
. Checking constraint satisfiability in presence of ref-schemas

. Discussion and further research directions

Constraint Satisfiability in presence of ref-schema

e Statement of the problem

Given a schema G and a constraint C,
does a document 901 conforming to G exists such that

N satisfies C' 7
e Formal context

A5y

The schema “is” a HML formula 7¢
The constraint is a HML formula C

— Re-Statement of the problem
Is GAC (finitely) satisfiable 7
o Goal:

(terminating) proof system

Constraint Satisfiability: restriction

e normalized ref-schemas without markers (WLOG)

e HML is not decidable

<% non recursive schemas
— the depth of models of GAC are bounded

e not sufficient to enforce the finite model property

— relax "finite” satisfiability in a first step

see concluding discussion

Non Recursive ref-schema + constraint having no finite models

Schema: Start := (e E)* and E := (€ E)*.
Constraint: Y1 A Yo A Y3 A Py where

(e)ly ((€)y)

[e][€]y (Qroot(€)lz (mroot A —y A Q,(€)z))
lellz [€][€]ly @z (€)y

lellz [€1ly (Quy V @y[€]-x)

The tableau system

e geared to model building rather than refutation.
e the modalities G and F are not considered

e the schema formula G not used directly
the formulas 7x associated to types X are used

e a prefixed tableau system

» prefixes are naming nodes (states)

» prefixed formulas n : ¢ capture that
¢ has to be satisfied at the node named by n.

~

— encapsulation of the frame by prefixed formulas n : (€)m
e closed rectified formula in negation normal form

e shape of rules of the tableau system are as usual
» propositionnal rules
» state variables and hybrid rules
» transition rules.

The tableau system Standard rules

Propositional rules:
(a) n:peNyp, @
n:iep, n:y,

State variable rule:

(Ref) n:;,I), 3 if n occurs in ¢

Hybrid rules:
n:Qpp, O
@ Y
(@) m: e, P

The tableau system (e)-Transition Rule

n:{e)p, P

m: e, ® n : {(e)ym, M TType(e), M : @, P

forn: (eym € & for a new m

Type(e) is the unique non terminal symbol such that the pattern (e X) occurs in the

normalized schema

The tableau system (e)-Transition Rule I

P
. <6>s0@

‘
n

The tableau system (e)-Transition Rule II

The tableau system (@) - Transition Rule

n:(@yp, @

n:(e&Ym, m:p, ® root : m(€,m), m:p n:(€)m, &

forn;<?>m€q> for p: (f)m Gj _f)oranewmand
f € Lab(Type(€)) w (€, m) defined below

7(€,m) is the formula Veerab(Type(@))nE(VphepPath(e) @root O(ph) m)
Path(e) is teh set of paths starting from Start ending with an edge labelled by e in
the dependency graph associated with G

O(ph) is the modal fragment (e1) - - - (e,) when ph is the path ey, ..., e,.

For instance, for our running example, W(publisl_;, m) is Q,.,0¢ (doc){book)m.

The tableau system (€)-Transition Rule - Part I

The tableau system (*@)-Transition Rule - Part II

The tableau system (@)-Transition Rule - Part III

The tableau system le]-Transition Rules

n: [e]le, ®
n: ([e]ly, D), @

n: ([ele,N), @
Umentm: @, n: ([e]l¢e, NUN'), &

for N' # (where N' = {m|n : (€)m € &} — N

The tableau system le]-Transition Rule

Systematic construction of a G-tableau T for C

- Stage 1 - Begin with root : Tstart N C

- Stage i + 1 - Choose a leaf node L of the tableau as closed as possible
to the root of the tableau. Choose in L a (generalized) prefixed
formula n : ¢ in order to apply one of the tableau rules defined
above with the following priority :

(1) propositional rules, state variable rule, hybrid rules
(2) (e) rules, (3) (€) rules, (4) [e] rules.

Expand L by applying the corresponding rule with respect to n : ¢

in all manners.

Fairness of the systematic tableau construction

Infinite tableau

G-tableau T for C Correctness and Completness

Open/Closed G-Tableau
A branch B of T is closed iff one of its nodes contains either
some prefixed formula n : ¢ and ”its negation” n : -,

or some statement n : m for n # m.

A branch which is not closed is open and the tableau 7' is open iff

one of its branches is open (otherwise it is closed).

Correctness and completness of the tableau system
The proofs rest on the notion of G-Hintikka set.
— “weakly closed” under the rules of

the tableau system
— a model 9 of G A C and an open branch B of T

G-tableau T for C

Soundness

Let T be a G-tableau (systematic proof tree) build for the formula

root : Tsiari N\ C.

if B is an open branch of the tableau T
then
Hp is a G-Hintikka set (and satisfies C).

Hp is the set of prefixed formula ”gathered” all along the branch B

G-tableau T for C

Completness Given a schema G and a constraint C.

if there exists an instance 90 of G satistying the constraint C
then
the G-tableau T for C has at least one open branch B.

Remark

The G-tableau T for C ”constructs” some of the instances of G

satistfying the constraint C, not all of them.

and of course T may not build 90 at all.

G-tableau T for C Completeness

O

!

t/\\
O ¢
_

/—\/ \/\\
e O Q I

7/

Instance not generated by the tableau system

Future Work

Working on the tableau system
e Finite satisfiability
syntaxic restriction (interleaving of |z and @, operators)
bissimulation

e Implementation

Extending schema definition versus HML
e unordered elements and ordered elements
e using proposition over internal nodes (Colorful XML)

Working on optimisation
e investigating HML as a query language

e expressivity / complexity / automata ?

e optimization

