Domino Snake Problems on Groups

Nathalie Aubrun, **Nicolás Bitar** September 19, 2023 LÍSN ABORATOIRE INTERDISCIPLINAIRE DES SCIENCES DU NUMÉRIQUE

FCT 2023

• Our story begins with Wang tiles:

First introduced by Hao Wang in 1961.

• They can be placed side by side if they share the same color along their common border.

Tilings

Domino Problem

Given a finite set τ of Wang tiles, does τ tile the plane?

Domino Problem

Given a finite set τ of Wang tiles, does τ tile the plane?

Theorem (Berger '64)

The Domino Problem is undecidable (Π_1^0 -comp.).

Snakes?

Snakes!

An a priori weaker version of the Domino Problem:

Infinite Snake Given a finite Wang tileset τ , does there exist a snake tiled by τ ? An a priori weaker version of the Domino Problem:

Infinite Snake Given a finite Wang tileset τ , does there exist a snake tiled by τ ?

Theorem (Adleman, J. Kari, L. Kari, Reishus '02) The infinite snake problem in \mathbb{Z}^2 is undecidable (Π_1^0 -comp).

In $\ensuremath{\mathbb{Z}}$ both the Domino Problem and Infinite Snake Problem are decidable. Why?

Where is the Undecidability?

As was done for the Domino Problem, we study our problem in a particular class of graphs: Cayley graphs of finitely generated infinite groups.

These graphs are infinite, locally finite, regular, transitive, edge labelled.

A Cayley graph is defined from a group ${\cal G}$ along with a finite generating set S:

- Vertices are elements of G,
- There is an edge from g to h if h = gs^{±1}.

Examples

More Examples

 $\langle a,b ~|~ a^3,~ b^4 \rangle$

Words and Paths

Given a Cayley graph for a group G with generating set S, there is a correspondence between paths and words in $(S \cup S^{-1})^*$.

For instance, cycles are described by the set

$$\mathsf{WP}(G,S) = \{ w \in (S \cup S^{-1})^* \colon w =_G \varepsilon \}.$$

- (Skeleton) $\omega : \mathbb{Z} \to G$ injective s.t. $\omega(i+1)\omega(i)^{-1} \in S \cup S^{-1}$,
- (Scales) ζ : ℤ → τ respecting local adjacency rules.

- (Skeleton) $\omega : \mathbb{Z} \to G$ injective s.t. $\omega(i+1)\omega(i)^{-1} \in S \cup S^{-1}$,
- (Scales) ζ : ℤ → τ respecting local adjacency rules.

- (Skeleton) $\omega : \mathbb{Z} \to G$ injective s.t. $\omega(i+1)\omega(i)^{-1} \in S \cup S^{-1}$,
- (Scales) ζ : ℤ → τ respecting local adjacency rules.

- (Skeleton) $\omega : \mathbb{Z} \to G$ injective s.t. $\omega(i+1)\omega(i)^{-1} \in S \cup S^{-1}$,
- (Scales) ζ : ℤ → τ respecting local adjacency rules.

In particular, we do not care if adjacent, but not sequentially adjacent, tiles match.

Our investigation went along the following lines:

1. Reducing the problem from one group to another:

Virtually nilpotent groups that are not virtually \mathbb{Z} admit a Cayley graph with undecidable infinite snake problem.

2. Expressing the problem in MSO logic:

Virtually free groups have decidable infinite snake problem on all Cayley graphs.

3. Finding decidability by restricting possible skeletons: The infinite snake problem on \mathbb{Z}^2 becomes decidable when considering geodesic skeletons. Our investigation went along the following lines:

1. Reducing the problem from one group to another:

Virtually nilpotent groups that are not virtually \mathbb{Z} admit a Cayley graph with undecidable infinite snake problem.

2. Expressing the problem in MSO logic:

Virtually free groups have decidable infinite snake problem on all Cayley graphs.

3. Finding decidability by restricting possible skeletons:

The infinite snake problem on \mathbb{Z}^2 becomes decidable when considering geodesic skeletons.

Virtually free \iff Finite tree-width \iff Decidable MSO logic

[Muller, Schupp '85]

[Kuskey, Lohrey '05]

Therefore, if the infinite snake problem can be expressed in MSO logic, it is decidable for this class of groups.

Theorem

The infinite snake problem is decidable on virtually free groups, for every generating set.

MSO logic of an S labelled graph Γ consists in:

- Variables are subsets of vertices, along with the constant set $\{v_0\}$,
- an operation $P \cdot s,$ representing all the vertices reached from P when reading s,
- Boolean operations $\lor, \land, \subseteq, \neg, ...$ and quantifiers \forall, \exists

Theorem

The infinite snake problem is decidable on virtually free groups, for every generating set.

Our investigation went along the following lines:

1. Reducing the problem from one group to another:

Virtually nilpotent groups that are not virtually \mathbb{Z} admit a Cayley graph with undecidable infinite snake problem.

2. Expressing the problem in MSO logic:

Virtually free groups have decidable infinite snake problem on all Cayley graphs.

3. Finding decidability by restricting possible skeletons:

The infinite snake problem on \mathbb{Z}^2 becomes decidable when considering geodesic skeletons.

Skeletons

Given a Cayley graph for a group G with generating set S, there is a correspondence between paths and words in $(S \cup S^{-1})^*$.

For instance, cycles are described by the set

WP(G, S) = {
$$w \in (S \cup S^{-1})^*$$
: $w =_G \varepsilon$ }.

This allows us to understand skeletons as bi-infinite words without loops.

 $\dots a \ a \ b \ a \ a \ b \ a^{-1} \ a^{-1} \ a^{-1} \ b \ b \ a \ b^{-1} \ a \ b \ a \ a \ a \ a \dots$

Let G be a f.g. group with S a set of generators.

The skeleton set of the pair $\left(G,S\right)$ is

$$X_{G,S} = \{ x \in (S \cup S^{-1})^{\mathbb{Z}} \mid \forall w \sqsubseteq x, \ w \notin \mathsf{WP}(G,S) \},\$$

For instance:

$$X_{\mathbb{Z}^2,\{a,b\}} = \left\{ x \in \{a^{\pm 1}, b^{\pm 1}\}^{\mathbb{Z}} \colon \forall w \sqsubseteq x, |w|_a \neq |w|_{a^{-1}} \lor |w|_b \neq |w|_{b^{-1}} \right\}.$$

Let $Y \subseteq X_{G,S}$ be a subset of skeletons.

Y-Snake Problem

Given a Wang tileset $\tau,$ does there exist a snake tiled by τ whose skeleton is contained in Y?

Lemma

If $\mathcal{L}(Y) = \{ w \in (S \cup S^{-1})^* \mid \exists x \in Y, w \sqsubseteq x \}$ is regular, then the Y-snake problem is decidable. A skeleton of particular interest is the set of bi-infinite geodesics:

$$X_{G,S}^g = \{ x \in X_{G,S} \colon \forall w \sqsubseteq x, w' =_G w \colon |w| \le |w'| \} \subseteq X_{G,S}$$

 $X^g_{\mathbb{Z}^2,\{a,b\}}$ has regular language!

Theorem

The Y-snake problem on \mathbb{Z}^2 is decidable for:

- Geodesic skeletons,
- 3 or less canonical directions,

or in general:

Theorem

If a group G with generating set S has a set of geodesics that is regular, then its geodesic snake problem is decidable.

This happens with many classes, such as hyperbolic groups.

Our investigation went along the following lines:

1. Reducing the problem from one group to another:

Virtually nilpotent groups that are not virtually \mathbb{Z} admit a Cayley graph with undecidable infinite snake problem.

2. Expressing the problem in MSO logic:

Virtually free groups have decidable infinite snake problem on all Cayley graphs.

3. Finding decidability by restricting possible skeletons: The infinite snake problem on \mathbb{Z}^2 becomes decidable when considering geodesic skeletons.

Thank you for listening!

Spooky appendix

Let \mathcal{P} be a group property (abelian, nilpotent, free, etc). We say a group is virtually \mathcal{P} if it contains a finite index subgroup satisfying \mathcal{P} .

For instance, $\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ is virtually \mathbb{Z} , the Honeycomb group $(\mathbb{Z}^2 \rtimes S_3)$ is virtually nilpotent, $SL(2,\mathbb{Z})$ is virtually free.

Virtually nilpotent \iff Polynomial growth rate, [Gromov '81]

Virtually free \iff Finite tree-width.

[Muller, Schupp '85]

Corollary

If Y is an effective \mathbb{Z} -subshift, then the Y-skeleton snake problem is Π_1^0 .

Corollary

If Y is an effective \mathbb{Z} -subshift, then the Y-skeleton snake problem is Π_1^0 .

What happens if Y is not closed?

Corollary

If Y is an effective \mathbb{Z} -subshift, then the Y-skeleton snake problem is Π_1^0 .

What happens if Y is not closed?

Theorem (Ebbinghaus '86)

Let us have the \mathbb{Z}^2 -skeletal subset

 $Y = \{x \in \{a, b, a^{-1}, b^{-1}\}^{\mathbb{Z}} \mid x \text{ is not eventually a line.}\}$

Then the Y-skeleton snake problem is Σ_1^1 -complete.

What happens in higher dimensions?

Proposition

The infinite snake problem in $\mathbb{Z}^d,$ with $d\geq 2$ is undecidable for all generating sets.