
SIAM J. DISCRETE MATH. © 2022 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 823--866

COMPUTATIONAL COMPLEXITY OF BIASED
DIFFUSION-LIMITED AGGREGATION\ast

NICOLAS BITAR\dagger , ERIC GOLES\ddagger , AND PEDRO MONTEALEGRE\ddagger

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Diffusion-limited aggregation (DLA) is a cluster-growth model that consists of a set
of particles that are sequentially aggregated over a two-dimensional grid. In this paper, we introduce
a biased version of the DLA model, in which particles are limited to moving in a subset of possible
directions. We denote by k-DLA the model where the particles move only in k possible directions. We
study the biased DLA model from the perspective of computational complexity, defining two decision
problems. The first problem is Prediction, whose input is a site of the grid c and a sequence S
of walks, representing the trajectories of a set of particles. The question is whether a particle stops
at site c when sequence S is realized. The second problem is Realization, where the input is a
set of positions of the grid, P . The question is whether there exists a sequence S that realizes P ,
i.e., all particles of S exactly occupy the positions in P . Our aim is to classify the Prediction
and Realization problems for the different versions of DLA. We first show that Prediction is \bfP -
Complete for 2-DLA (thus for 3-DLA). Later, we show that Prediction can be solved much more
efficiently for 1-DLA. In fact, we show that in that case, the problem is \bfN \bfL -Complete. With respect
to Realization, we show that when restricted to 2-DLA the problem is in \bfP , while in the 1-DLA
case, the problem is in \bfL .

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . diffusion-limited aggregation, computational complexity, space complexity, NL-
completeness, P-completeness

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 03D15, 68Q17, 68Q10

\bfD \bfO \bfI . 10.1137/18M1215815

1. Introduction. Diffusion-limited aggregation (DLA) is a kinetic model for
cluster growth, first described by Witten and Sander [26], which consists of an ide-
alization of the way dendrites or dust particles form, where the rate-limiting step is
the diffusion of matter to the cluster. The original DLA model consists of a series of
particles that are thrown one by one from the top edge of a d-dimensional grid, where
d \geq 2. The sites in the grid can be either occupied or empty. Initially all the sites
in the grid are empty, except for the bottom line which begins and remains occupied.
Each particle follows a random walk in the grid, starting from a random position in
the top edge, until it is adjacent to an occupied site, or the particle escapes from
the top edge or one of the lateral edges. In the case when the particle finds itself
neighboring an occupied site, the current position of the particle becomes occupied
and the next particle is thrown. The set of occupied sites is called a cluster.

Clusters generated by the dynamics are highly intricate and fractal-like (see Fig-
ure 1); they have been shown to exhibit the properties of scale invariance and multi-
fractality [12, 17]. DLA clusters have been observed to appear in electrodeposition,
dielectrics, and ion beam microscopy [7, 21, 22]. Nevertheless, perhaps the fundamen-

\ast Received by the editors September 21, 2018; accepted for publication (in revised form) December
12, 2021; published electronically March 31, 2022.

https://doi.org/10.1137/18M1215815
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : The first author was partially supported by CONICYT-PFCHA/Mag\'{\i}sterNacional/

2019 - 22190497. The second and third authors were partially supported by FONDECYT 1200006.
The third author was also partially supported by ANID via PAI + Convocatoria Nacional Subvenci\'on
a la Incorporaci\'on en la Academia A\~no 2017 + PAI77170068 and by FONDECYT 11190482.

\dagger Departamento de Ingenier\'{\i}a Matem\'atica, Universidad de Chile, Santiago, Chile (nbitar@dim.
uchile.cl).

\ddagger Facultad de Ingenier\'{\i}a y Ciencias, Universidad Adolfo Ib\'a\~nez, Santiago, Chile (eric.chacc@uai.cl,
p.montealegre@uai.cl).

823

https://doi.org/10.1137/18M1215815
mailto:nbitar@dim.uchile.cl
mailto:nbitar@dim.uchile.cl
mailto:eric.chacc@uai.cl
mailto:p.montealegre@uai.cl

824 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

Fig. 1. A realization of the dynamics for a 200\times 200 grid.

tal aspect of DLA is its profound connection to Hele-Shaw flow: it has been shown
that DLA is its stochastic counterpart [9, 13].

In this article we study restricted versions of DLA, which consist of the limitation
of the directions a particle is allowed to move within the grid. We ask what would
be the consequences of restricting the particle's movement in terms of computational
complexity. More precisely, we consider four models, parameterized by their number
of allowed movement directions, k \in \{ 1, 2, 3, 4\} . The 4-DLA model is simply the two-
dimensional DLA model, i.e., when the particles can move in the 4 cardinal directions.
The 3-DLA model is that in which the particles can only move in the south, east, or
west direction. In the 2-DLA model, the directions are restricted to the south and
east. Finally, in the 1-DLA model, the particles can only move downwards.

Even though the particles have restricted movements, note that it is possible for
the fractal-like structures to still be present in the clusters obtained by the restricted
DLA (see Figure 2).

It is interesting to note that, in fact, the 1-DLA model is a particular case of
another computational model created to describe processes in statistical physics, that
of the ballistic deposition (BD) model. In this model, there are a graph and a set of
particles that are thrown into the vertices at some fixed initial height h. The height
of the particle decreases one unit at a time until it reaches the bottom (that is, until
it reaches height 0) or meets another particle, i.e., there is a particle in an adjacent
vertex at the same height, or in the same vertex just behind. The 1-DLA model
corresponds to the BD model when the graph is an undirected path.

COMPUTATIONAL COMPLEXITY OF BIASED DLA 825

Fig. 2. DLA simulation for four (top left), three (top right), two (bottom left), and one (bottom
right) directions, when N = 100.

Due to the generated cluster's properties, theoretical approaches to the DLA
model are usually in the realm of fractal analysis, renormalization techniques, and
conformal representations [5]. In this article we consider a perhaps unusual approach
to studying the DLA model (and its restricted versions), related to its computa-
tional capabilities, the difficulty of simulating their dynamics, and the possibility of
characterizing the patterns they produce. Machta and Greenlaw studied, within the
framework of computational complexity theory, the difficulty of computing whether a
given site on the grid becomes occupied after the dynamics have taken place, i.e., all
the particles have stuck to the cluster or have been discarded [15]. Inspired by their
work, we consider two decision problems:

\bullet DLA-Prediction, which receives a sequence of trajectories for n particles
(i.e., the trajectories are deterministic and explicit) and the coordinates of a
site in the lattice as input. The question is whether the given coordinate is
occupied by a particle after the n particles are thrown.

\bullet DLA-Realization, which receives an n \times n sized pattern within the two-
dimensional grid as input, and whose question is whether that pattern can
be produced by the DLA model.

For each k \in \{ 1, 2, 3\} we call k-DLA-Prediction and k-DLA-Realization,
respectively, the problems DLA-Prediction and DLA-Realization restricted to
the k-DLA model.

The computational complexity of a problem can be defined as the amount of re-
sources, such as time or space, needed to computationally solve it. Intuitively, the
complexity of DLA-Prediction represents how efficiently (in terms of computa-

826 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

tional resources) we are able to simulate the dynamics of DLA. On the other hand,
the complexity of DLA-Realization represents how complex are the patterns pro-
duced by DLA model.

We consider four fundamental complexity classes: L, P, NL, and NP. Classes L
and P contain the problems that can be solved in a deterministic Turing machine that
use logarithmic space and take polynomial time, respectively. On the other hand NL
and NP are the classes of problems that can be solved in a nondeterministic Turing
machine, use logarithmic space, and take polynomial time, respectively. For detailed
definitions and characterizations of these classes we recommend the book of Arora
and Barak [2]. A convention among computer theorists states that P is the class of
problems that can be solved efficiently with respect to computation time. In that
context, NP can be characterized as the classes of problems that can be efficiently
verified with respect to computation time. Similarly, the same convention holds for
L and NL when swapping computation time for space.

It is easy to see that L \subseteq NL \subseteq P \subseteq NP, though it is unknown if any of
these inclusions is proper. Perhaps the most famous conjecture in computational
complexity theory is P \not = NP. Put simply, this conjecture states that there are some
problems whose solutions can be efficiently verified but cannot be efficiently found.
As mentioned in the previous paragraph, in this context efficiently means polynomial
time. Similarly, it is conjectured that L \not = NL, where ``efficiently"" refers to logarith-
mic space. It is also conjectured that NL \not = P, meaning that some problems can
be computed efficiently with respect to computation time but cannot be verified (or
computed) efficiently with respect to space [2].

The problems in P that are the most likely to not belong to NL (hence not
in L) are the P-Complete problems [11]. A problem is P-Complete if any other
problem in P can be reduced to it via a log-space reduction, i.e., a function calculable
in logarithmic space that takes yes-instances of one problem into the other. In a
nutshell, it is unlikely that some P-Complete problem belongs to NL, because in that
case we would have thatNL = P. Similarly a problem isNL-Complete if any problem
in NL can be reduced to it via an L reduction. NL-Complete problems are problems
in NL that are the most likely to not belong to L, because if some NL-Complete
problem were to belong in L, this would imply that NL = L [2].

One P-Complete problem is the Circuit Value Problem (CVP), which con-
sists of, given a Boolean circuit and a truth-assignment of its input gates, computing
the output value of a given gate. Roughly, this problem is unlikely to be solvable
(or verifiable) in logarithmic space because there is no better algorithm that sim-
ply sequentially computes truth values of each gate of the Boolean circuit, keeping
in memory the values of all gates already evaluated. One NL-Complete problem is
Reachability, which consists of, given a directed graph G and two vertices s and t,
deciding if there is a directed path between s and t. Roughly, this problem is unlikely
to be solvable in logarithmic space because there is no way to remember all paths
starting from s that do not reach t.

Within this context, it was shown by Machta and Greenlaw [15] that DLA-
Prediction is P-Complete. The proof of this fact consists of reducing it to a version
of the CVP, which is known to be P-Complete [11]. Within this proof, we noticed
that the gadgets used to simulate the circuits rely heavily on the fact that in the
DLA model, particles are free to move in any of the four cardinal directions. On the
other hand, in the context of the study of the BD model it was proven by Matcha
and Greenlaw [14] that 1-DLA-Prediction is in NC. The class NC is a complexity
class that contains NL and is contained in P.

COMPUTATIONAL COMPLEXITY OF BIASED DLA 827

1.1. Our results. We begin our study of the complexity of biased DLA ana-
lyzing the complexity of the DLA-Prediction problem. By extending the results
of Machta and Greenlaw to the 2-DLA model, we show that 2-DLA-Prediction
is P-Complete. This result is obtained following essentially the same gadgets used
for the nonrestricted case but carefully constructing them using only two directions.
More precisely, the construction of Machta and Greenlaw consists of a representa-
tion of an instance of Circuit Value Problem as a sequence of particle throws,
whose final positions represent the input Boolean circuit with its gates evaluated on
the given input. A gate evaluated true is represented by a path of particles, while
the false signals are represented by the lack of such a path. Since the construction
of the circuit must be done in logarithmic space, the sequence of particles must be
defined without knowing the actual output of the gates. Therefore, the trajectory
of the particles considers that, if they do not stick on a given position, they escape
through the top edge of the grid. Since this escape movement is not possible in the
2-DLA (nor 3-DLA) model (because particles cannot move upwards), we modify the
circuit construction to build the gates in a specific way in order to give the particles
enough space to escape through the rightmost edge or deposit at the bottom of the
grid without disrupting the ongoing evaluation of the circuit.

The fact that 2-DLA-Prediction is P-Complete directly implies that 3-DLA-
Prediction is also P-Complete, settling the prediction problem for these two biased
versions of the model.

We then study the 1-DLA model. Despite what one might guess, the dynamics
of the DLA model restricted to one direction are far from trivial (see section 2.2
for examples of the patterns produced by this model). Indeed, we begin our study
by showing that these dynamics can simulate simple sorting algorithms like Bead-
Sort. Then, we improve the result of Matcha and Greenlaw by showing that 1-DLA-
Prediction is in NL. This is in fact an improvement, because they showed that 1-
DLA-Prediction is in NC2 [14], and NL is a subclass of NC2 [11]. Our result holds
for the BD model, i.e., when the graph is not restricted to a path but is an arbitrary
graph given in the input (we call that problem BD-Prediction). We finish our study
of the prediction problem by showing that the complexity of BD-Prediction cannot
be improved. Indeed, we show that BD-Prediction is NL-Complete.

After this, we study the DLA-Realization problem. We observe that k-DLA-
Realization is in NP for all k \in \{ 1, 2, 3, 4\} . Moreover, the nondeterministic aspect
of the NP algorithm solving DLA-Realization only needs to obtain the order of
the sequence on which the particles are placed on the grid, rather than obtaining both
the order and the trajectory that each particle follows. In fact, the trajectories can
be computed in polynomial time, given the order in which the particles are placed in
the grid.

We then show 1-DLA-Realization can be solved much more efficiently. In fact,
we give a characterization of the patterns that the 1-DLA model can produce. Our
characterization is based on a planar directed acyclic graph (PDAG) that represents
the possible ways in which the particles are able to stick. Each occupied cell of the
grid is represented by a node of the PDAG, plus a unique sink vertex that represents
the ground. We show that a pattern can be constructed by 1-DLA if and only if there
is a directed path from every vertex to the ground. We use our characterization to
show that 1-DLA-Realization is in L, using a result of Allender et al. [1] solving
Reachability in log-space, when the input graph is a single sink PDAG.

Finally, we give an efficient algorithm to solve the realization problem in the 2-
DLA model, showing that 2-DLA-Realization is in P. Our algorithm uses the fact

828 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

that in the 2-DLA model, the particles are placed into the grid in a very specific way.
By establishing which particles force the order in which subsequent particles must be
placed, we are able to efficiently compute the order in which the particles are thrown,
obtaining a polynomial-time algorithm.

1.2. Related work. For dynamical properties of the restricted versions of DLA,
including BD, we refer the reader to [4, 16, 18, 23].

Some problems of similar characteristics have been studied in this context, such
as the Ising model, Eden growth, internal DLA, and Mandelbrot percolation, to name
a few [15, 19]. On the other hand, the problem of sandpile prediction is an example
where increasing the degrees of freedom increases the computational complexity of
the prediction problem. In particular, when the dimension is greater than 3, the
prediction problem is P-Complete, but when the dimension is 1, the problem is in
NC [20].

Another example of a complexity dichotomy that depends on the topology of the
system is the bootstrap percolation model [8]. In this model, a set of cells in a d-
dimensional grid are initially infected, and in consecutive rounds, healthy sites that
have more than half of their neighbors infected become infected. In this model, the
prediction problem consists of determining whether a given site becomes infected at
some point in the evolution of the system. In [10] it is shown that this prediction
problem is P-Complete in three or more dimensions, while in two dimensions it is in
NC. Other problems related to bootstrap percolation involve the maximum time that
the dynamics take before converging to a fixed point [6].

1.3. Structure of the article. Section 2 formally introduces the different com-
putational complexity classes, alongside problems of known complexity used through-
out the article. Next, the dynamics for the general case of DLA are presented, in
addition to the formal definition of the two associated prediction problems that are
discussed: Prediction and Realization. Section 3 focuses on the proof that DLA
restricted to two or three directions is P-Complete; this section also presents the non-
deterministic log-space algorithm for the generalized version of the one-direction DLA
problem, BD. Section 4 talks about the results concerning the Realization problem,
where the one-directional case is shown to be solvable in L, and the two-directional
case has a polynomial algorithm characterizing figures obtained from the dynamics.

2. Preliminaries.

2.1. Complexity classes and circuit value problem. In this subsection we
will define the main background concepts in computational complexity required in
this article. For a more complete and formal presentation we refer the reader to the
books of Arora and Barak [2] and Greenlaw, Hoover, and Ruzzo [11]. We assume that
the reader is familiar with the basic concepts dealing with computational complexity.
As we mentioned in the introduction, in this paper we will only consider complexity
classes into which we classify the prediction problems. P is the class of problems
solvable in polynomial-time by a deterministic Turing machine. More formally, if n
is the size of the input, then a problem is polynomial time solvable if it can be solved
in time n\scrO (1) in a deterministic Turing machine.

A logarithmic-space Turing machine consists of a Turing machine with three
tapes: a read-only input tape, a write-only output tape, and a read-write work tape.
The Turing machine is allowed to move as much as it likes on the input tape but can
only use \scrO (log n) cells of the work tape (where n is the size of the input). More-
over, once the machine writes something in the output tape, it moves to the next cell

COMPUTATIONAL COMPLEXITY OF BIASED DLA 829

and cannot return. L is the class of problems solvable in a logarithmic-space Turing
machine.

A nondeterministic Turing machine is a Turing machine whose transition function
does not necessarily output a single state but a set of possible states. A computation of
the nondeterministic Turing machine considers all possible outcomes of the transition
function. The machine is required to stop in every possible computation thread,
and we say that the machine accepts if at least one thread finishes on an accepting
state. A nondeterministic Turing machine is said to run in polynomial time if every
computation thread stops in a number of steps that is polynomial in the size of the
input. NP is the class of problems solvable in polynomial time in a nondeterministic
Turing machine. A nondeterministic Turing machine is said to run in logarithmic
space if every thread of the machine uses only logarithmic space in the work tape.
NL is the class solvable in logarithmic space in a nondeterministic Turing machine.

A problem \scrL is P-Complete if it belongs to P, and any other problem in P
can be reduced to \scrL via a logarithmic-space (many-to-one or Turing) reduction. A
P-Complete problem belonging to NL implies that P = NL.

One well-knownP-Complete problem is thePlanar-NOR-Circuit-Value Prob-
lem. A planar NOR Boolean circuit is a PDAG C, where each vertex of C has two
incoming and two outgoing edges, except for some vertices that have no incoming
edges (called inputs of C) and others that have no outgoing edges (called outputs of
C).

Each vertex of C has a Boolean value (True or False). A truth assignment of
the inputs of C, called I, is an assignment of values of the input gates of C. The
value of a noninput gate v is the NOR function (the negation of the disjunction) of
the value of the two incoming neighbors of v. A truth assignment I of C defines a
truth value of the output gates according to the truth values of the preceding gates.
We call C(I) the truth values of the output vertices of C when the input gates are
assigned I.

The Planar-NOR-Circuit-Value Problem is defined as follows.

Planar-NOR-Circuit-Value Problem (PNORCVP)
Input: A NOR Boolean circuit C of size n, a truth assignment I of C, and g an
output gate of C.
Question: Is g True in C(I)?

In [11] it is shown that this problem is P-Complete.

Proposition 2.1 (see [11]). PNORCVP is P-Complete.

A problem \scrL is NL-Complete if \scrL belongs to NL, and any other problem in
NL can be reduced to \scrL via a (many-to-one or Turing) reduction computable in
logarithmic space. An NL-Complete problem belonging to L implies that NL = L.

One NL problem is Reachability [2]. An instance of Reachability is a di-
rected graph G and two vertices s and t. The instance is accepted if there is a directed
path from s to t in G. Reachability is NL-Complete because the computation of
a nondeterministic log-space Turing machine (which is the set of possible states of
the machine plus contents of the work tape) can be represented by a directed graph
of polynomial size, and the difficulty of finding a directed path in that graph is the
difficulty of finding a sequence of transitions from the initial state to an accepting
state.

For our reductions we will need a specific variant of Reachability that we call

830 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

Layered DAG Exact Reachability (LDE-Reachability). In this problem,
the input graph G is a directed acyclic graph (DAG), which is layered, meaning that
vertices of a layer only receive inputs of a previous layer and only output to the next
layer (but vertices with in-degree zero are not necessarily in the first layer). Also,
besides G, s, and t, the input considers a positive integer k \leq | G| , where | G| is the
number of vertices of the input graph. The question is whether there exists a path of
length exactly k connecting vertices s and t. We show that this restricted version is
also NL-Complete.

Proposition 2.2. LDE-Reachability is NL-Complete.

Proof. Let us first consider the problem Exact-Reachability. This problem re-
ceives as input a directed graph G, two vertices s and t, and a positive integer k \leq | G| ,
and the question is whether there exists a directed path of length exactly k connecting
vertices s and t. Is easy to see that Exact-Reachability is NL-Complete. Indeed,
it belongs to NL because an algorithm can simply nondeterministically choose the
right vertices to follow in a directed path of length exactly k from s to t. The ver-
ification of such a path can be performed using \scrO (log n) by verifying the adjacency
of the vertices in the sequence, and keeping a counter of the length of the path (this
uses \scrO (log n) space because k \leq | G|). Observe also that Exact-Reachability is
NL-Complete because, if we have an algorithm \scrA solving Exact-Reachability, we
can solve Reachability running \scrA for k \in \{ 0, . . . , | G| \} .

Observe now that LDE-Reachability is in NL for the same reasons as Exact-
Reachability. We now show that LDE-Reachability is NL-Complete, reducing
Exact-Reachability to it. Let (G, s, t, k) be an instance of Exact-Reachability.
Consider the instance (G\prime , s\prime , t\prime , k) in LDE-Reachability defined as follows. The set
of vertices of G\prime is a set of k copies of V (G), the set of vertices of G. We enumerate
the copies from 1 to k and call them V1, . . . , Vk. Then the set of vertices of G\prime is
V (G\prime) = V1 \cup \cdot \cdot \cdot \cup Vk. If v is a vertex of G, we call vi the copy of v that belongs
to Vi. There are no edges in G\prime between vertices in the same copy of V . Moreover,
if u, v are two adjacent vertices in G, we add, for each i \in \{ 1, . . . , k - 1\} , a directed
edge from the ith copy of u to the (i+ 1)th copy v in G\prime . Formally,

(u, v) \in E(G) \Leftarrow \Rightarrow (ui, vi+1) \in E(G\prime) \forall i \in \{ 1, . . . , k\} .

Finally, s\prime = s1 and t\prime = tk. By construction we obtain that G\prime is layered, and more-
over (G, s, t, k) is a yes-instance of Exact-Reachability if and only if (G\prime , s\prime , t\prime , k)
is a yes-instance of LDE-Reachability.

Finally, we remark that we can build the instance (G\prime , s\prime , t\prime , k) in log space from
(G, s, t, k). Indeed, the algorithm has to simply make a counter j from 1 to k and
sequentially connect the vertices of the jth copy of V (G) with the vertices of the
(j + 1)th copy of V (G). We deduce that LDE-Reachability is NL-Complete.

2.2. The DLA model and its restricted counterpart. The dynamics of the
computational model of DLA are the following: We begin with a sequence of particles
which will undergo a random walk starting from a position at the top edge of an
N \times N lattice. The sequence specifies the order in which the particles are released.
Each particle moves until it neighbors an occupied site at which point it sticks to its
position, growing the cluster. We begin with an occupied bottom edge of the lattice.
If the particle does not stick to the cluster and leaves the lattice (exiting through the
top or lateral edges), it is discarded. A new particle begins its random walk as soon
as the previous particle sticks to the cluster or is discarded. This process goes on until
we run out of particles in our sequence.

COMPUTATIONAL COMPLEXITY OF BIASED DLA 831

To study this model from a computational perspective, it is convenient to consider
a deterministic version, where the sequence of sites visited by each released particle
is predefined. The prediction problem presented by Machta and Greenlaw [15] for a
d-dimensional DLA is as follows:

DLA-Prediction
Input: Three positive integers: N , M , L, a site p in the two-dimensional lattice
of size N2, a list of random bits specifying M particle trajectories of length L
defined by a site on the top edge of the lattice together with a list of directions
of motion.
Question: Is site p occupied after the particles have been thrown into the lattice?

For this prediction problem, Machta and Greenlaw showed [15]DLA-Prediction
is P-Complete. The proof consists of reducing a P-Complete variant of the CVP to
the prediction problem. Their construction relies heavily on the fact that the particles
can move in four directions (up, down, left, or right).

The question we would like to answer is what happens to the computational
complexity of the prediction problem as we restrict the number of directions the
particles are allowed to move along. Instead of the four permitted directions, we
restrict the particles to move in three directions (left, right, and downwards), two
directions (right and downwards), and one direction (only downwards).

We call the different directions d1 = down, d2 = right, d3 = left, and d4 = up.
From this, we define the following class of prediction problems for k \in \{ 1, 2, 3, 4\} :

k-DLA-Prediction
Input: Three positive integers: N , M , L, a site p in the N \times N lattice, a list
of random bits specifying M particle trajectories of length L defined by a site on
the top edge of the lattice together with a list of directions of motion, where the
allowed directions of motions are \{ d1, . . . , dk\} .
Question: Is site p occupied after the particles have been thrown into the
lattice?

Note that in the definition, 4-DLA-Prediction is the same asDLA-Prediction.
In addition, we ask for the computational complexity of determining whether a

given pattern or figure is obtainable through the different biased dynamics. To do
this, we codify a pattern on the two-dimensional grid as a binary matrix, where 0
represents an unoccupied site and 1 represents an occupied one (an example of this
can be found in section 4.2). We define the computational problem as follows:

k-DLA-Realization
Input: A 0-1 matrix M codifying a pattern on the two-dimensional grid.
Question: Does there exist a sequence of particle throws that can move only
on the allowed directions of motion, \{ d1, . . . , dk\} , whose end figure is represented
by M?

Intuitively, this problem is concerned with the spatial complexity of the figures
generated by the different DLA dynamics. We want to understand this complexity in
terms of the computational resources required to describe their structure.

To the best of our knowledge, this problem has not been studied from this angle
before.

832 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

3. DLA-prediction.

3.1. Two and three directions. In this section we show that the 2-DLA-
Prediction problem is P-Complete. This result directly implies that the 3-DLA-
Prediction problem is also P-Complete.

Theorem 3.1. 2-DLA-Prediction is P-Complete.

Proof. We assume without loss of generality that the two directions in which
the particles move are down and right. Our proof is an adaptation of the gadgets
given by Machta and Greenlaw in [15] for the 4-directional case. The proof consists
of using these directions of motion to simulate the evaluation of an instance of the
Planar-NOR-Circuit-Value Problem.

In the construction of [15], the different parts of the circuits are simulated by a
series of gadgets, representing the different parts of the input Boolean circuit. The
gadgets are constructed as a series of particle walks, and the truth values are rep-
resented by prescribed locations occupied (or not) by a particle. When a gadget
simulates the truth value False, some locations remain unoccupied, meaning that
some particles visit these locations but do not get stuck in them. This is realized
by specifying that, for some particles, the walk considers a trajectory in two phases.
First, the particle follows a given trajectory in order to reach a prescribed destina-
tion. Then, if the particle does not stick, the walk continues in the same trajectory
backwards.

In this context, the difference between our constructions and that of [15] is that, in
our limited version, the particles are not allowed to return through the same trajectory
(in the case that they do not stick in their destination). Therefore, our main challenge
consists of designing a way to discard these particles.

What we must first tackle is the way in which the information is transmitted
through the different gadgets. For this purpose, we create wires that transmit the
respective truth values. A coordinate occupied by a particle will represent True, and
an empty one will represent False. Through this representation, a wire carries the
value True if a stack of particles grows along it, while wires that carry the value
False remain unoccupied.

The wire is realized by having a preassigned particle for each site that makes it
up. See Figure 3 for a representation of the gadget and Figure 4 for an example of its
dynamic. The path of each particle begins at the top of the lattice and moves straight
down to its assigned location in the lattice. If the value the wire is transmitting is
True, the particle will stick at the site. If the value is False, the particle will not
stick. The particle is then instructed to move two positions to the right, and then to
move indefinitely downwards to be discarded by means of getting stuck to the bottom,
effectively transmitting the value of the wire. We note that the particle only realizes
this trajectory in the case that it has not stuck; that is, the value transmitted by the
wire is False.

We must discard the particles transmitting the value False this way because we
cannot make use of the upwards direction to do so (through the top of the lattice,
as was the case for the original 4-directional construction). This means that when
we finally put the circuit together, each wire must be isolated by a distance of at
least four columns from the next to permit discarding particles. This separation will
later guarantee that the discarded particles do not interfere with the evaluation of
the circuit: transmitting a False value of length n corresponds to discarding a stack
of particles that will only reach a height of n - 1. In a similar way, this construction

COMPUTATIONAL COMPLEXITY OF BIASED DLA 833

Input signal
Positions for

discarded particles

Output signal

Fig. 3. Gadget for the simulation of wires. A series of particles are thrown from the column
aligned with the input position, following the trajectories depicted with red pointed arrows. (See
online version for color.)

Input signal

Output signal

Input signal

Output signal

Fig. 4. Dynamics of the wire when the input is True (top) and when the input is False (bot-
tom). In the bottom case, the discarded particles are not necessarily stuck in that position and
eventually fall further down.

can be adapted to allow wires to turn a signal in a right or left direction, as well as
allowing the multiplication of signals.

We now explain the simulation of the NOR gate. It receives two inputs from the
preceding layer. Each of these inputs is grown as mentioned before to the sites a
and b, as shown in Figure 5. It is important to remember that both input cables are
separated by a distance of four columns to allow for the discarding of particles. In
addition, we grow a power cable to operate the gate (it is a wire that always carries
the True value). As before, site c must be at least four columns away from site b.
Once everything is in place, the gate is evaluated as follows (see Figure 6): A particle
makes the journey a \rightarrow b \rightarrow c. If input 1 is True, then the particle will stick at a.
The same goes for input 2 and site b. If both inputs are False, the particle will then
stick at site c. In any of the three cases, a new wire is grown starting from site d.
This results in the simulation of a NOR gate.

The power cable is simply a path of occupied cells, growing from the rightmost
part of the circuit. Here we find a second difference in our construction with respect to
the construction of [15]. In the latter, the power cable snakes around the configuration.

834 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

ba c

d

Input 1 Input 2

Power

Output

Fig. 5. Gadget for the simulation of a NOR gate. Both inputs are grown until they reach
the sites directly below sites a and b, respectively. Two successive particles then follow the path
a \rightarrow b \rightarrow c following the dotted line, stopping according to the inputs. The output is then grown
from site c.

ba c

d

ba c

d

(discarded)

ba c

d

ba c

d

(discarded)

a c

d

a

d

b cb

Fig. 6. Examples of the dynamics of a NOR gate when one of the two inputs is True (top
and middle rows) and when both inputs are False (bottom row). The three lines in the left column
depict as a red pointed line the trajectory of the particle that follows a \rightarrow b \rightarrow c. Notice that in
the first and second lines the particle is fixed before reaching position c, while in the third line the
particle reaches position c. The right column also depicts the trajectory of the wire that grows from
d, which is only fixed in that position in the third line. (See online version for color.)

Starting from the first layer, the power cable grows from right to left, then it grows
through the second layer, and continues to grow left to right, and so on. The gates
are constructed following the power cable. In our case, the gates also grow following
the power cable. The difference is that we grow a new branch of the power cable for
each layer of the circuit. The reason for this change is given by the restriction of the
movement directions of the particles. Indeed, in our case, the gates of the same layer
are evaluated always from right to left.

Once a NOR gate is evaluated, the power cable continues to grow in order to allow
the evaluation of the next gate. In Figure 7 it is shown how to grow the power cable
in order to cross the information over the NOR gate, independently of its evaluation.

COMPUTATIONAL COMPLEXITY OF BIASED DLA 835

c

d1234567891011

12

131415

a b

Fig. 7. Growing the power cable after the evaluation of the NOR gate. One particle is thrown
on every column in the order given by the numbers in the corresponding positions. The trajectories
are straightforward, except for particles reaching positions 12, 13, and 14, which require a turn. As
necessarily after the evaluation of the NOR gate one of a, b, or d is occupied, after throwing these
15 particles, a particle is fixed in the last position.

A given circuit might have gates with outputs in different layers, implying that in
the simulation, we may find wires that cross a layer, possibly crossing power cables.
A second gate is defined to cope with this problem, which we call a single input OR
gate, following the nomenclature of [15]. The construction will be described with the
help of Figure 8. The input wire is grown up to site p. There, two particles make
specific trajectories: the first visits a\rightarrow b, while the second visits c\rightarrow d. After these
particles have completed their trajectories, the power cable is grown starting at the
site to the left of d. If the input is true, then the first of the walks will stop at a and
the second at c. The wire is grown from p, and the power cable is grown as mentioned
before, crossing the two of them. If the input is negative, then the walks will end at
b and d, respectively. As before, the wire and the power cable are grown, crossing
them. We restate the importance of the distance between the cables germinated at p,
c, and a for the discarding of particles. These trajectories are shown in Figure 9.

b

apc

d

Signal In

Power InPower Out

Signal Out

Fig. 8. Gadget for the simulation of an OR gate. The input is grown up to site p. A first
particle then follows the trajectory a \rightarrow b, stopping according to the truth value of the gadget's input.
Then, a second particle makes the trajectory c \rightarrow d, also stopping according to the truth value of the
input. To finalize, the power wire is grown starting from site d, and the output is grown from site
p. This OR gate with a single input, in fact, simulates the crossing of the input wire with the power
wire.

836 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

b

apc

d

\times 4

bdb

ac p

d

ac p

bd

ac p

b

apc

d b

apc

d

\times 4

Fig. 9. Dynamics associated to the OR gate when the input is True (top) and False (bottom).

In the following, we give two examples of simple circuits in order to illustrate the
resulting reduction.

Example. Let us look at a brief example of how the simulation works. Let
us take a circuit consisting of a single NOR gate with inputs labeled x and y. In
order to simplify the description, let us represent each particle in our simulation by
a tuple p \in \{ 1, . . . , N\} \times \{ D,R\} \ast , where the first coordinate represents the column
into which the particle is released and the second is a word that codes the trajectory
of the particle, with D representing a downwards movement and R a movement to
the right. Following the description of the simulation of a NOR gate given above, the
skeleton of the construction of this gate is given in Figure 10.

x y Power

NOR gate

Output

Fig. 10. Skeleton of the construction of a circuit consisting of only one NOR gate.

Observe that everything is contained in a 19 \times 19 grid. We begin by initializing
the truth values of the variables x and y. If x = True, we add the particles (5, D19)
and (5, D19); otherwise, we add nothing. Similarly, if y = True, we add the particles
(10, D19) and (10, D19); otherwise, we add nothing.

For the transmission of the truth values through wires we assign a position in the
wire to each particle. For the position t = (i, j) in the lattice, we add the particle pt
given by

pt = (i,Dj\underbrace{} \underbrace{}
Position

\circ R2DN - j\underbrace{} \underbrace{}
Discard

).

For example, if the variable x has truth valueTrue, we add particles for every position
tj = (5, 18 - j) with j \in \{ 1, 2, 3, 4\} . As we can see in Figure 11, pt1 will come down
to position t1 and stick because of the particle at (5, 18). Let us analyze the case
when x = False. In this case we add the same particles corresponding to positions

COMPUTATIONAL COMPLEXITY OF BIASED DLA 837

x

t1

t2

t3

t4

x

t1

t2

t3

t4

Fig. 11. Evaluation of the wire transmitting the value of gate x, when x = True (right) and
x = False (left).

tj , but when they come down, they have nothing to attach to, so they are discarded,
as shown in Figure 11.

For the power cable, we simple add a particle for each position on the cable,
without the suffix R2DN - j because these particles are never discarded. Adding ev-
erything up, in Figure 12 we show the state after all the particles have been released
in the case where x = True and y = False. Now, we move to the evaluation of the
gate. For this purpose we add a particle P = (3, D13R11) as was described above for
the execution of the NOR gate. In our case, because position (5, 14) will be occupied
by the transmitted value from x = 1, P will stick at (5, 13). Finally, we transmit the
value for the output wire (0 in our particular case) through the same means described
before.

x y Power

NOR gate

Output

discarded particles

x y Power

NOR gate

Output

discarded
particles

Fig. 12. Left: Evaluation of the wires transmitting values x = True and y = False, as well as
the power cable. Right: Evaluation of the NOR gate for that case.

Therefore, our instance of the 2-DLA-Prediction problem will be all the parti-
cles mentioned along with the output site, which becomes occupied if and only if the
corresponding circuit (in this case just one gate) outputs True.

Let us now consider the simulation of a slightly more complex circuit, consisting
of three inputs and four NOR gates, as shown Figure 13. In the same figure, we give
a schema of the simulation, including the power cables and the single input OR gates.
Then, in Figure 14 we give a skeleton of the construction, where we illustrate some
of the positions that the particles visit in their trajectories. Finally, in Figure 15 we
show the relative order in which the particles are thrown in the different layers.

838 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

xyz xyz

NOR

NOR

OR

NOR

NOR

Fig. 13. A second example of a circuit with tree inputs and two NOR gates. Left: A planar
NOR circuit with three inputs and four NOR gates. Right: A schema of the reduction, where the
power cables are represented in red. (See online version for color.)

NOR gate NOR gate

NOR gate

NOR gate

OR gate

Output

y Powerz x

Fig. 14. Schema of the positions of the particles in a simulation of the circuit given in Figure
13. For simplicity, we omit the positions of the discarded particles.

COMPUTATIONAL COMPLEXITY OF BIASED DLA 839

y
Power

NOR gate

z

NOR gate

x

NOR gate

NOR gate

OR gate

Output

NOR gate NOR gate

NOR gate

NOR gate

OR gate

Output

y Powerz x

NOR gate NOR gate

NOR gate

NOR gate

OR gate

Output

y Powerz x

Fig. 15. Schema of the order in which the particles are thrown in a simulation of the circuit
given in Figure 13 for the gates in the first layer (top), the second layer (middle), and finally the
third layer (bottom). The colors show in which order the particles are released: first red, then orange,
then yellow, then green, and finally gray. Particles of the same color are thrown from left to right
and/or respecting the order given in the definition gates. (See online version for color.)

840 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

The reduction described above shows that an instance of the Planar-NOR-
Circuit-Value Problem is correctly evaluated by the growth of the 2-DLA cluster.
A planar embedding of a planar circuit can be computed in NC. From such an
embedding, we can compute the positions of the corresponding gadgets (inputs, gates,
and wires). Furthermore, the size of each gate is constant. We deduce that this is an
NC reduction. The key point is that the choice of paths for the walks is independent
of the evaluation of the circuit. The full layout of the walks is given globally by the
planar layout of the original circuit. All calculations required to compute these walks
can be performed in NC.

Corollary 3.2. 3-DLA-Prediction is P-Complete.

Proof. The particles in this case are allowed to move downwards, left, and right.
Thus, the proof of the P-Completeness is straightforward. Because we already showed
that given two directions the prediction problem is P-Complete, we can just ignore
one of the lateral directions and execute the same constructions shown in the previous
theorem.

Because the aforementioned proofs rely only on the use of two dimensions, both
results are directly extended to the dynamics in an arbitrary number of dimensions.

Corollary 3.3. 2-DLA-Prediction and 3-DLA-Prediction in \BbbZ d are P-
Complete.

3.2. One direction. By restricting the directions in which we allow particles
to move, our problem statement simplifies. Nevertheless, the behavior of the model
remains complex and fractal-like as evidenced in Figure 16. Because particles are
only permitted to fall, there is no need to specify the whole trajectory of the particles
but just the column of the N \times N lattice we are throwing it down. Therefore, as a
first method for representing the given behavior, we describe our input as a sequence
of particle drops: S = a1a2 . . . an - 1an where each ai \in [N] represents the column
where the ith particle is dropped, and [n] denotes the set \{ 1, . . . , n\} for each integer
n.

This one-dimensional case is actually a particular instance of a more general
model called ballistic deposition (BD), first introduced by Vold and Sutherland to
model colloidal aggregation [24, 25]. The growth model takes the substrate to be an
undirected graph G = (V,E), where each vertex defines a column through a ``height""
function h : V \rightarrow \BbbN , which represents the highest particle at the vertex. In addition,
a sequence of particle throws is given by a list of vertices S = v1v2 . . . vn - 1vn, where
a particle gets stuck at a height determined by its vertex and all vertices neighboring
it. It is easy to see that the one-dimensional DLA problem on an N\times N square lattice
is the special case when G = ([N], \{ (i, i+ 1) : i \in [N]\}).

Our prediction problem is as follows:

BD Prediction
Input: A graph G = (V,E), a sequence S of particle throws, and a site t =
(h, v) \in \BbbN \times V , where v is a vertex and h a specified height for it.
Question: Is site t occupied after the particles have been thrown into the graph?

This problem was shown to be inNC2 by Matcha and Greenlaw using a minimum-
weight path parallel algorithm [14]. We improve this result to show that the problem
is in fact NL-Complete.

COMPUTATIONAL COMPLEXITY OF BIASED DLA 841

Fig. 16. A realization of the one-directional dynamics of the system on a one-dimensional strip.

3.2.1. Computational capabilities of the dynamics. As a first look at the
computational capabilities of the model, and sticking to the 1-DLA version of BD, we
show that we can sort natural numbers, simulating the Bead-Sort model described
by Arulanandham, Calude, and Dinneen [3]. This model consists of sorting natural
numbers through gravity: numbers are represented by beads on rods, such as on an
abacus, and are let loose to be subjected to gravity. As shown in [3], this process
effectively sorts any given set of natural numbers. It is reasonable to think that
because of the dynamics and constraints of our model (one direction of movement for
the particles), the same sorting method can be applied within our model, which is in
fact the case.

Lemma 3.4. Bead-Sort can be simulated.

Proof. Let A be a set of n positive natural numbers, with m being the biggest
number in the set. We create a 2m \times 2m lattice where we will be throwing the
particles. Here the kth rod from the Bead-Sort model is represented by row 2k - 2 on
our lattice. Now, for each number a \in A we create the sequence Sa = 2 4 6. . . 2a. The
total sequence of launches S is created by concatenating all Sa for a \in A. We note that
because of the commutativity of our model, the order in which the concatenation is
made is not relevant. Thus, throwing sequence S into our lattice effectively simulates
the Bead-Sort algorithm.

Let us give an example using the set A = \{ 7, 4, 1, 10\} . Following the proof, we
must simulate 1-DLA on a 20 \times 20 square lattice and create the sequences S1 = 2,
S4 = 2 4 6 8, S7 = 2 4 6 8 10 12 14, and S10 = 2 4 6 8 10 12 14 16 18 20. By releasing
the sequence S = S1 \circ S4 \circ S7 \circ S10 into the lattice we obtain Figure 17, which is
ordered increasingly, effectively sorting set A.

842 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

10 \rightarrow
7 \rightarrow
4 \rightarrow
1 \rightarrow

Fig. 17. Figure obtained by throwing sequence S into the lattice. Set A is ordered decreasingly
from the first row onwards.

A key aspect of the present model is the commutativity of throws through non-
consecutive vertices of the graph. Given a figure, \scrF , we define \varphi v(\scrF) as the figure
that results after throwing a particle through vertex v. We notice that because of
the dynamics of our model, the point at which a given particle freezes is determined
uniquely by the state of the vertex it has been dropped in, and by the state of its
neighbors. Therefore, given v \in V ,

(\varphi v \circ \varphi u)(\scrF) = (\varphi u \circ \varphi v)(\scrF) \forall u /\in NG(v).

We will later use this fact to create a better algorithm for the prediction problem.

3.2.2. Nondeterministic log-space algorithm. There is a critical aspect of
the dynamics that is exploitable when creating an algorithm: If two particles are
thrown on nonadjacent vertices, their relative order in the input sequence is reversible.
By using this, our aim is to shuffle the sequence into another sequence with the same
final configuration but ordered in a way that allows us to quickly solve the prediction
problem. Specifically, if we are able to reorganize the input sequence into one that
releases particles according to the height they will ultimately reach, the remaining
step to solve the problem is checking among the particles for the target height if the
target vertex appears.

Let S be the input sequence of BD Prediction. Formally, a sequence S =
s1 . . . sn is composed of the vertices onto which each particle will be released. From
S, we are able define a sequence of particles p1, . . . , pn that represents the same realiza-
tion as the input sequence. We define a particle p as a triple (V (p),num(p),pos(p)) \in
V \times [n]\times [n], where the first coordinate, V (p), denotes the vertex onto which the par-
ticle is thrown, the second coordinate, num(p), is an integer representing the number
of particles thrown onto vertex V (p) before p, and the third, pos(p), is the position
of the particle within sequence S. The particle description of S is easily obtained by
setting V (pi) = si, num(pi) = | \{ j \in [n] : sj = si \wedge j \leq i\} | , and pos(pi) = i.

Let us call \BbbP = \{ p1, . . . , pn\} the set of particles of S.
To further break down the problem, we define the following sets:

A(p) := \{ q \in \BbbP : pos(q) < pos(p)\} ,
N(p) := \{ q \in A(p) : V (q) \in NG(V (p)) \cup \{ V (p)\} \} ,
N=(p) := \{ q \in N(p) : V (q) = V (p)\} .

In words, A(p) denotes the set of particles thrown before p, N(p) denotes the set of
particles that are thrown before p on vertices adjacent to p, and N=(p) denotes the
subset of particles that belong to N(p) and are in the same vertex as p.

COMPUTATIONAL COMPLEXITY OF BIASED DLA 843

For a particle p \in \BbbP , the row of p, denoted row(p), is the height at which the
particle ends up after the dynamics have taken place. In other words, row(p) =
h(V (p)) after releasing the sequence S\prime = s1 . . . spos(p). Relative to this definition, we
call Nr the set of particles thrown before p in vertices adjacent to p that stick at row
r. Formally,

Nr(p) = \{ q \in N(p) : row(q) = r\} .
We translate the dynamics into this new notation in the following lemma.

Lemma 3.5. Let p \in \BbbP be a particle, and let

r =

\biggl\{
1 if N(p) = \emptyset ,

max\{ row(q) : q \in N(p)\} if N(p) \not = \emptyset .

Then,

row(p) =

\biggl\{
r + 1 if Nr(p) \cap N=(p) \not = \emptyset ,
r if Nr(p) \cap N=(p) = \emptyset .

Explicitly, if the particle is the first of its neighbors to be thrown (N(p) = \emptyset), its
row is 1. If not, that is, if its neighbors are higher than the vertex it is thrown in
(Nr(p)\cap N=(p) = \emptyset), the particle sticks at their height. Lastly, if the vertex that the
particle is thrown in is higher than its neighbors (Nr(p) \cap N=(p) \not = \emptyset), the particle
sticks one row higher than the last particle in the vertex.

Proof. Let p be a particle such that N(p) = \emptyset . This implies that p is the first
particle thrown through vertex V (p) and its adjacent vertices. From the commu-
tativity property, we deduce that row(p) = 1. On the other hand, r = 1 and
Nr(p) \cap N=(p) = \emptyset , so row(p) = r.

Suppose now that N(p) \not = \emptyset , and let q be a particle in Nr(p). Observe that
row(q) = r, and row(u) \leq r for all u \in N(p). Then, when p is thrown, the first
particle that it encounters is q. Suppose that we can pick q such that V (q) = V (p) (i.e.,
Nr(p)\cap N=(p) \not = \emptyset). Since V (q) = V (p), we deduce that row(p) = row(q)+1 = r+1.
On the other hand, if Nr(p) \cap N=(p) = \emptyset , then the coordinate (V (p), r) is empty
when p is thrown, but some of (u, r), for u \in NG(V (p)), are occupied. We deduce
that row(p) = row(q) = r.

We create a weighted graph that codifies the dependence of the particles to each
other. Let GS be a weighted directed graph defined from S as follows: The vertex set
of GS is the set of particles \BbbP plus one more vertex g, called the ground vertex. The
edges of GS have weights, given by the weight function W defined as

W (p, q) =

\left\{
1 if (p = g) \wedge (N(q) = \emptyset),
1 if p \in N=(q),
0 if p \in N(q) \setminus N=(q),
 - \infty otherwise.

Observe that we keep only the edges whose weight is different from - \infty , the
obtained graph has no directed cycle, i.e., it is a DAG. Moreover, the set of incoming
edges of vertex p is N(p) if N(p) \not = \emptyset and is \{ g\} otherwise. For p \in \BbbP , we call \~\omega gp the
longest (maximum weight) path from g to p in GS .

Theorem 3.6. For every p \in \BbbP , row(p) = \~\omega gp.

Proof. We reason by induction on pos(p). Let p \in \BbbP be the particle such that
pos(p) = 1. Observe that p has only one incoming edge, which comes from g, and
W (g, p) = 1. Then \~\omega gp = 1 = row(p).

844 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

Suppose now that row(p) = \~\omega gp for every particle q such that pos(q) \leq k, and let
p be a particle with pos(p) = k + 1. If N(p) = \emptyset , then, as in the base case, the only
incoming edge of p is g, and from Lemma 3.5 we deduce that row(p) = 1 = \~\omega gp.

Suppose now that N(p) is different from \emptyset . Let q be a particle in N(p) such that
row(q) is maximum, i.e., row(q) = max\{ row(u) : u \in N(p)\} . Observe that, from the
induction hypothesis and the choice of q, \~\omega gq \geq \~\omega gu for all u \in N(p) \setminus \{ q\} . Moreover,
\~\omega gp \leq \~\omega gq + 1.

Suppose that q can be chosen such that V (q) = V (p). Lemma 3.5 then implies
that row(p) = row(q)+1. On the other hand, the path from g to p that passes through
q is of weight \~\omega gq + 1. We deduce that \~\omega gp = \~\omega gq + 1 = row(q) + 1 = row(p).

Suppose now that for all u \in N=(p), row(u) is strictly smaller than row(q). In
this case, Lemma 3.5 implies that row(p) = row(q). On the other hand, the path from
g to p that passes through q is of weight \~\omega gq, which is greater than or equal to \~\omega gu,
for all u \in N(p) \setminus N=(p) and strictly greater than \~\omega gu for all u \in N=(p). We deduce
that \~\omega gp = \~\omega gq = row(q) = row(q).

We now present an NL-algorithm for the prediction problem.
Given a site (h, v), we want to nondeterministically obtain a path through graph

GS that will guarantee the site will be occupied by a particle. At each step of our
algorithm we will nondeterministically guess a pair consisting of the next particle and
the corresponding weight of the transition between the last particle and the new one,
such that the sum of the weights is the maximum weight up to the final particle.

We say a particle p is valid for an input sequence S if p \in \BbbP . The following
log-space algorithm verifies that a particle is valid.

Algorithm 3.1.

Input: A sequence S and a particle p \in V \times [n]\times [n]
Output: Accept if particle p is valid.
Check if V (p) = spos(p)
Sum \leftarrow 0
for i \in \{ 1, . . . ,pos(p)\} do

if si = V (p) then
Sum \leftarrow Sum + 1

end

end
if Sum = num(p) then

Accept
else

Reject.
end

At each step of the for loop of the algorithm, we must remember the value of
Sum, the particles vertex, V (p), and the current index of the iteration. This amounts
to using \scrO (log(n)) space.

We also present a log-space algorithm to determine whether the obtained transi-
tion weight corresponds to the value of the weight function.

COMPUTATIONAL COMPLEXITY OF BIASED DLA 845

Algorithm 3.2.

Input: A sequence S, two valid particles p, q \in V \times [n]\times [n], and w \in \{ 0, 1\}
Output: Accept if W (p, q) = w.
if p = g then

for i < pos(q) do
Check that si is not adjacent to V (q)

end
Accept

end
if w = 1 then

Check that pos(p) < pos(q) and V (p) = V (q)
Accept

end
if w = 0 then

Check that pos(p) < pos(q)
Check that V (p) \not = V (q)
Check that V (p) is adjacent to V (q)
Accept

end
Reject

For this algorithm, the only case where information needs to be stored is when
p = g. For this instance, each iteration of the for loop must remember the index of
the iteration, and the vertex V (q). Therefore, this algorithm uses \scrO (log(n)) space.

Combining these two subroutines, we are now ready to present the main algo-
rithm.

Algorithm 3.3. NL-algorithm for BD Prediction.

Input: A graph G = (V,E), a sequence S and a site t = (x, v) \in \BbbN \times V
Output: Accept if a particle occupies site t and reject otherwise.
Nondeterministically obtain m, the number of particles, and p1. Write them down.
Check if p1 is valid and that W (g, p1) = 1
Sum \leftarrow 1
Write down Sum.
for j \in \{ 2, . . . ,m\} do

Nondeterministically obtain particle pj and the transition weight wj - 1,j , and write
them down.

Check if pj is valid.
Check if W (pj - 1, pj) = wj - 1,j

Sum \leftarrow Sum + wj - 1,j

Erase pj - 1 and wj - 1,j

end
if Sum = x and V (pm) = v then

Accept
else

Reject
end

At the jth step of this algorithm, we must retain the following information: The
sum of the weights so far, particles pj - 1 and pj , and the current weight wj - 1,j . This

846 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

means that around 4 log(n) = \scrO (log(n)) space is used on the work tape.

Proposition 3.7. BD-Prediction is in NL.

Proof. Let us show that Algorithm 3.3 decides BD Prediction. Let S be an
input sequence and P = (h, v) an input site.

If the release of S onto the underlying graph results in site P being occupied, by
Theorem 3.6 we know that there exists a particle q \in \BbbP such that h = row(q) = \~\omega gq

and V (q) = v. Let C = g p1 p2 . . . pm - 1 pm be the maximum weight path of weight
\~\omega gq, where pm = q. Then, for the jth nondeterministic choice the algorithm makes,
it obtains the pair pj and W (pj - 1, pj).

If the algorithm accepts for S and P , we will obtain a sequence of particles such
that the sum of the transition weights is exactly h and that V (pm) = v. This means
that the weight from the ground to the last particle will indeed be h = \~\omega gpm

. Due
to Theorem 3.6, this means that row(pm) = \~\omega gpm

= h. Therefore, particle pm indeed
occupies site P .

Theorem 3.8. BD-Prediction is NL-Complete.

Proof. Given Proposition 2.2, in order to show that the problem is NL-Hard, we
will reduce an instance of LDE-Reachability to the BD problem.

Let (G, s, t, k) be an instance of LDE-Reachability, where m is the number of
layers of G, and let i \in [m] be the index such that s \in Vi. The idea is to throw two
particles for each vertex in all layers from i to i + k. This way, the height at which
the particles freeze will increase with each layer. Formally, for every i < j \leq i+k and
every u \in Vj we create the sequence Su = uu (two particles are thrown in vertex u).
Concatenating these sequences, we obtain a sequence of throws on the whole layer
Sj =\bigcirc u\in Vj

Su. We note that due to the structure of the graph and the commutativity
of the dynamics, the order in which these sequences are concatenated does not matter
because no two vertices in the same layer are adjacent.

Finally, our input sequence will be the concatenation of the sequences associated
to every layer from the ith layer to the (i+k)th one, S = Ss \circ \bigcirc i+k

j=i+1Sj . The order in
which these sequences are concatenated is important, and must be done in increasing
order according to their indices. At any point in this process the only information
retained is the vertex for which we are currently creating the sequence Su. This only
requires log(n) space to store, making this process a log-space reduction.

By defining the site P = (k + 1, t), we create an instance of BD-Prediction:
(G,S, P). Let us prove that this is indeed a reduction.

If (G, s, t, k) \in LDE-Reachability, then there exists a directed path C =
v0 . . . vk in G, where s = v0 and t = vk. Because of the layered structure of
the graph, if s \in Vi, then vj \in Vi+j . Then, by construction, for every vertex on C two
particles will be dropped, and thus the height of the last particle dropped in vj will be
j+1, meaning that the last particle dropped on vk = t will have a height of k+1. This
means that site P will in fact be occupied, and therefore (G,S, P) \in BD-Prediction.

If (G,S, P) \in BD-Prediction, site P = (k+ 1, t) is occupied after the sequence
of particles, S, has been released onto G. Due to our construction, if site P is occupied,
site (k, t) must also be occupied by a particle. Let l \in [m] be such that t \in Vl. Because
only two particles are thrown at each vertex, for the latter site to be occupied there
must exist a vertex v1 \in Vl - 1 adjacent to t such that sites (k, v1) and (k - 1, v1) are
occupied.

Iterating this process, we obtain a sequence v1 . . . vk - 1 such that vi is adjacent
to vi - 1, and sites (k - i+1, vi) and (k - i, vi) are occupied for every i \in \{ 2, . . . , k - 1\} .

COMPUTATIONAL COMPLEXITY OF BIASED DLA 847

By virtue of the construction of S, the only possible way in which site (1, vk - 1) can
be occupied is if s = vk - 1. This proves that (G, s, t, k) \in LDE-Reachability,
concluding our proof.

4. Shape characterizations and realization. Although the figures obtained
by simulating the dynamics are complex and fractal-like, not every shape is obtainable
as an end product. This naturally leads to the problem of characterizing the figures
which are obtainable through the dynamics for the different restrictions of the DLA
model.

A crucial observation is the fact that not all connected shapes are realizable.
Figure 18 shows shapes that are not achievable for each of the restricted versions.

Fig. 18. Four nonconstructible figures with their respective maximum number of directions
where they are not constructible. The last figure is not constructible even with four directions.

Given a fixed number of allowed directions, determining whether a given figure
is realizable is an NP problem, where the nondeterministic choices of the algorithm
are the order in which the particles are released. Having the order, it is possible to
compute the trajectories that each particle takes in polynomial time by finding a path
that does not neighbor the already constructed cluster from the place at which it is
released to its final destination.

We give better algorithms for the shape characterization problems for both 1-
DLA and 2-DLA, showing that the former belongs to the class of log-space solvable
problems, L, and the latter belongs to P.

4.1. One direction. To characterize shapes created by the one-directional dy-
namics, given a sequence of drops S and its corresponding shape \scrF (S) \in \{ 0, 1\} m\times n,
we construct a planar directed acyclic graph (PDAG), G = (V,E), that takes into ac-
count the ways in which a shape can be constructed with the dynamics. We construct
G in two steps. We begin by constructing Ga = (Va, Ea), where

Va = \{ ij : \scrF (S)ij = 1\} \cup \{ g\} ,
E1 = \{ (ij, ij + 1) : \scrF (S)ij = \scrF (S)ij+1 = 1\} ,
E2 = \{ (ij, ij - 1) : \scrF (S)ij = \scrF (S)ij - 1 = 1\} ,
E3 = \{ (ij, i+ 1j) : \scrF (S)ij = \scrF (S)i+1j = 1\} ,
E4 = \{ (nj, g) : \scrF (S)nj = 1\} ,

and Ea = E1 \cup E2 \cup E3 \cup E4. The intuition is the following: We create a vertex for
each block in the shape and one representing the ground where the initial particles

848 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

stick. E1 and E2 account for the particles that stick through their sides, E3 accounts
for particles falling on top of each other, and finally E4 connects the first level to the
ground.

For example, given the sequence S = 2 7 7 2 6 3 4 4 4 5 6 3 2 6 2, we depict the
obtained shape and corresponding graph in Figure 19.

g

5, 2
5, 7

4, 2 4, 3 4, 4

3, 4

2, 4 2, 5 2, 62, 32, 2

4, 74, 6

1, 61, 2

Fig. 19. Shape and graph obtained from sequence S = 2 7 7 2 6 3 4 4 4 5 6 3 2 6 2.

Lemma 4.1. A configuration is constructible if and only if for all ij \in Va \setminus \{ g\}
there exists a directed path between ij and g.

Proof. Given a constructible configuration, by virtue of the definition, there is
a sequence S of particle drops that generates the configuration. Therefore, by the
dynamics of our system and the construction of the graph, for each node in our
graph, there exists a directed path to the ground, represented by node g.

Now, let G = (V,E) be the graph corresponding to a given configuration on the
grid. If we have that for all ij \in V \setminus \{ g\} there exists a directed path between ij
and g, we start by reversing the direction of the arcs in our graph and running a
breadth-first-search-like algorithm starting from node g to determine the minimum
distance from g to each of the other nodes. For all nodes with distance 1 from g,
\{ ikjk\} nk=1, we create the sequence S1 = j1 . . . jn. Then for all nonvisited nodes, with
distance d from g, \{ akbk\} mk=1, we create the sequence Sd = b1 . . . bm. Let us show
that the sequence S = S1 \circ S2 \circ \cdot \cdot \cdot \circ SM , with M = max\{ dist(ij, p) : ij \in V \setminus \{ g\} \} ,
corresponds to the configuration. We do this by induction over | S| = n.

For n = 1, we have only one occupied state on our configuration, which is the
only particle present in S. It is straightforward to see that \scrF (S) actually corresponds
to the configuration.

Assuming the sequence is correct for n, let us prove that it is also correct for n+1.
Because of the way S was constructed, the only possible way for the configuration
not to be achieved is if Sn+1 ends up higher or lower in \scrF (S) on its column than in
the given configuration. Due to the dynamics, the only way for a particle to become
immobile is to stick to another particle; this means that it sticks to either a particle
in its own column or a particle in a neighboring column. By the induction hypothesis,
S \setminus Sn+1 actually corresponds to the configuration of the first n particles. Therefore,
if without loss of generality Sn+1 ends up lower, this means that when generating the
sequence S, a node that was at a smaller distance from g than the particle to which
it sticks was added after all other nodes that were at the same distance, which is a
contradiction.

COMPUTATIONAL COMPLEXITY OF BIASED DLA 849

Next, we obtain G from Ga through the following procedure:
1. For every v \in Va \setminus \{ g\} , we create two vertices v1 and v2, connected by an arc

from the former to the latter.
2. For every e = (v, u) \in E1, we create an edge (v1, u1).
3. For every e = (v, u) \in E2, we create an edge (v2, u2).
4. For every e = (v, u) \in E3, we create an edge (v2, u1).
5. For every e = (v, g) \in E4, we create an edge (v2, g).

v

u w

g

v1

v2

u1

u2

w1

w2

g

This procedure turns Ga into a PDAG.
It is straightforward to see that there is a directed path from a vertex v \in Va to

g on graph Ga if and only if there is a path from vertex v1 to g on graph G.
Due to our construction, graph G is what is known as a multiple source single sink

PDAG (MSPD), that is, it is a graph where there are multiple vertices with in-degree
zero and one vertex with out-degree zero. Allender et al. showed that the reachability
problem on MSPD is in fact log-space solvable [1].

Theorem 4.2 (see [1, Theorem 5.7]). MSPD reachability is in L.

Proposition 4.3. Determining whether a given figure is a valid configuration for
1-DLA is in L.

The proof of this proposition consists of creating a log-space reduction from our
realization problem to MSPD reachability. This stems from the fact that if a problem
is log-space reducible to a log-space solvable problem, it is itself log-space solvable
(the proof of this fact can be found in [2]).

Proof. Let M be a matrix representing the configuration, using the same conven-
tion as the definition shape. We can see that the directed graph is constructible from
a shape in NC1. By assigning a processor for each pair of coordinates in the matrix,
that is, \scrO (n2) processors in total, we are able to construct the nodes and arcs of our
graph. Because NC1 \subseteq L, this procedure is realizable in log space. This procedure
creates the MSPD G.

For each vertex v \in V , we can solve the MSPD reachability problem for the
instance (G, v, g) in log space. Due to Lemma 4.1, this solves the one-directional
realization problem.

4.2. Two directions. To characterize shapes generated by the two-directional
dynamics, we follow an approach similar to what we did for one-directional dynamics.
We define for each figure a directed graph called the dependency graph, which has as a
vertex set the set of all particles in the input figure F . The dependency graph satisfies

850 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

the fact that if a particle u is an in-neighbor of a particle v, then u must be fixed
before v on every realization of the figure. Moreover, we show that the dependency
graph characterizes the realizable figures. More precisely, we show that a figure is
realizable if and only if its is acyclic.

LetM be the input matrix of an instance of 2-DLA-Realization. For simplicity,
in this section we assume that M is a matrix of dimensions [N + 1] \times [N] where all
the coordinates in row N + 1 have value 1 (representing the ground). Moreover, we
assume that N is large enough so M has a border of zeros. More precisely, every
coordinate of M that equals 1 and that is not in row N + 1 is in a row and column
of M that are greater than 3, and in a column less than N - 3. More formally, we
assume that M = (mij) satisfies

i \leq 3 \vee j \leq 3 \vee j \geq N - 3\Rightarrow mij = 0.

We will say a coordinate (i, j) \in [N] \times [N] is a particle if Mij = 1. The set of
all particles is called a figure F . We denote the row and column of a particle p \in F
by row(p) and col(p), respectively. Two particles p and q are said to be adjacent if
| col(p) - col(q)| + | row(p) - row(q)| = 1. We call n the total number of particles, i.e.,
n = | F | .

Definition 4.4. Let F \subseteq \{ 0, 1\} N\times N be a figure. A 2-DLA-realization of F is a
bijective function \varphi : F \rightarrow [n] such that for every t \in [n] the following hold:

\bullet Each particle is fixed to an adjacent particle already fixed, i.e., \varphi - 1(t) has an
adjacent particle in \varphi - 1(\{ 1, . . . , t - 1\}) or row(\varphi - 1(t)) = N .

\bullet There exists an available path for \varphi - 1(t), that is to say, a path P = p0, . . . pk
such that

-- the path starts in (0, 0) and reaches pk, i.e., p0 = (0, 0) and pk = \varphi - 1(t);
-- the particle is not fixed before its final destination, i.e., for each 0 <

\ell < k, cell p\ell is not adjacent to any cell in \varphi - 1(\{ 1, . . . , t - 1\}) and
row(p\ell) < N ;

-- the path reaches the cell using only two directions, i.e., for each 0 \leq \ell <
k, cell p\ell +1 = (row(p\ell) + 1, col(p\ell)) or p\ell +1 = (row(p\ell), col(p\ell) + 1).

Let us better understand how the relative position of particles affects the order in
which they must be placed. For a particle u \in F , we define the shadow of the particle
as

S(u) = \{ (i, j) : row(u) > i \wedge col(u) > j\} .
The set is shown in Figure 20.

u

S(u)

Fig. 20.

Definition 4.5. Let F be a 2-DLA constructible figure. A realization \varphi of F is
said to be canonical if

\forall u, v \in F : u \in S(v) =\Rightarrow \varphi (u) < \varphi (v).

COMPUTATIONAL COMPLEXITY OF BIASED DLA 851

The following lemma states that every figure that is realizable admits a canonical
realization.

Lemma 4.6. F admits a 2-DLA realization if and only if F has a canonical real-
ization.

Proof. If F has a canonical realization, it is trivially 2-DLA constructible.
Let us suppose that F is 2-DLA constructible but has no canonical realization.

We will say a pair of particles u, v is a bad pair of a realization \varphi if \varphi (u) > \varphi (v) and
u \in S(v). Let \varphi be the realization with the least number of bad pairs. We will show
that it is possible to define a realization with a lower number of bad pairs, giving us
a contradiction.

From all possible bad pairs (v, u), let us take one that minimizes col(v). Fixing
such v, let us take u as the first cell to be placed in S(v) after v. In order to reach a
contradiction, we consider two cases.

Case 1. Let us suppose that u is strictly in the interior of S(v), that is, col(u) >
col(v) + 1 and row(u) > row(v) + 1 as seen in Figure 21.

v

u

Fig. 21. Case 1: u is in the interior of S(v).

For w \in F let us call Fw(\varphi) the set of particles such that

Fw(\varphi) = \{ z \in F : \varphi (z) \leq \varphi (w)\} .

It is clear that in this case, we must have that u must be adjacent to a particle
in Fv(\varphi). If it were not, we would have a contradiction by the fact that u is the fist
element to be placed after v, and this means it would be placed without a contact
point.

We now define \~\varphi as the realization that equals \varphi , except that we place u right
before v. More formally,

\~\varphi (p) =

\left\{
\varphi (p) if \varphi (p) < \varphi (v),

\varphi (v) if p = u,

\varphi (p) + 1 if \varphi (v) \leq \varphi (p) < \varphi (u),

\varphi (p) if \varphi (p) > \varphi (u).

Let us see that \~\varphi is a realization. Let w be any particle of F . Let pw denote
the trajectory the particle takes to reach cell w in the realization given by \varphi . Clearly
if \varphi (w) < \varphi (v) or \varphi (w) > \varphi (u), then Fw(\varphi) = Fw(\~\varphi), and then pw is still available
as a trajectory for the new realization \~\varphi . If w = u, then Fw(\~\varphi) \subseteq Fw(\varphi), and then
Pw is also available as a trajectory for the new realization \~\varphi . Suppose then that
\varphi (v) \leq \varphi (w) < \varphi (u). If u is not adjacent to any of the coordinates on pw (for
example, when w = v), this path is also valid as a trajectory for the new realization
\~\varphi . We can observe that this is always the case: if w \not \in S(v), pw can never be adjacent

852 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

to u. If w \in S(v), we know that \varphi (u) > \varphi (w), and therefore u cannot be adjacent to
pw.

Therefore, \~\varphi is a realization of F . Moreover, \~\varphi has a lower number of bad pairs.
Indeed, on the one hand, (v, u) is no longer a bad pair of \~\varphi . On the other hand,
suppose that (w1, w2) is a bad pair of \~\varphi that is not a bad pair of \varphi . Then necessarily
w1 = u, and w2 \in S(u) is such that \varphi (v) < \varphi (w2) < \varphi (u). We obtain a contradiction
by the fact that S(u) \subset S(v), and u was the first particle in S(v) to be placed after
v. We deduce that \~\varphi is a realization of F with a lower number of bad pairs than \varphi ,
which is a contradiction by the choice of \varphi .

Case 2. Let us now suppose that u is in the border of S(v), that is, col(u) =
col(v) + 1 or row(u) = row(v) + 1. Without loss of generality let us assume that
col(u) = col(v) + 1, as shown in Figure 22.

v

u

Fig. 22. Case 2: When u is in the border of v (col(u) = col(v) + 1).

Let pu denote the trajectory the particle takes to reach cell u in the realization
given by \varphi . We have that pu must necessarily contain a coordinate (i, j) such that
j = col(v) and i < row(v). Let C(\varphi ;u) be the connected component of [N] \times [N] \setminus
(S(v) \cup pu) that contains z = (col(v), N). An example of this component is shown in
Figure 23.

v

u

z

pu(\varphi)

C(\varphi ;u)

Fig. 23. Construction of C(\varphi ;u).

Now let us define the set C(u, v) as the set of particles that are placed in C(\varphi ;u)
after v and before u according to \varphi . More precisely,

C(u, v) = \{ w \in P (C(\varphi ;u)) : \varphi (v) < \varphi (w) < \varphi (u)\} .

Finally, let us define the realization \~\varphi as follows:
\bullet First, set all the elements in Fv \setminus \{ v\} preserving the order given by \varphi .
\bullet Then, set all the elements of C(u, v) preserving the order given by \varphi .
\bullet Then, set u followed by v.
\bullet Finally, set the rest of the elements of F preserving the order given by \varphi .

COMPUTATIONAL COMPLEXITY OF BIASED DLA 853

Once again let us prove that \~\varphi is in fact a realization of F . Let w \in F be a
particle. If \~\varphi (w) < \varphi (v) or \~\varphi (w) > \varphi (u), then it is clear that pw is still available in \~\varphi ,
because Fw(\~\varphi) = Fw(\varphi). For the particles w \in C(u, v) we have that Fw(\~\varphi) \subseteq Fw(\varphi),
and then the path pw is also available in \~\varphi . The same argument holds for w = u.

For the remaining options, let us define

X = \{ w \in F : \varphi (v) \leq \varphi (w) < \varphi (u)\} \setminus C(u, v).

This set is not empty because it contains v. Let us take w \in X, and suppose that no
coordinate in pw is adjacent to C(u, v). In this case pw is also available in \~\varphi . Suppose
then that pw intersects C(u, v). Since w is not contained in C(u, v), necessarily pw
intersects pu (because pu is the frontier of the component C(\varphi ;u)). Let y \in pu \cap pw
be the coordinate of the last time pu intersects pw. Then define the trajectory \~pw
of w in \~\varphi as p1 and p2, where p1 equals pu from the top of the grid until reaching
y, and p2 is equal to pw from y until reaching w. We obtain that \~pw is an available
trajectory for w in the realization \~\varphi . We deduce that \~\varphi is a realization of F .

To reach a contradiction, now we show that \~\varphi has a lower number of bad pairs
than \varphi . Obviously (v, u) is not a bad pair of \~\varphi . Let us suppose that there is a bad
pair (p, q) for \~\varphi that is not a bad pair for \varphi . The only possible way for this to happen
is if

q \in C(u, v) \cup \{ u\} and p \in \{ z \in F : z \not \in C(u, v) \wedge \varphi (v) \leq \varphi (z) < \varphi (v)\} .

In this case we would obtain a bad pair for \varphi where col(q) < col(v), which is not
possible due to the choice of v. We conclude that in this case, \~\varphi is a realization that
has a strictly smaller number of bad pairs than \varphi , which is a contradiction by the
existence of \varphi .

This lemma allows us to better structure the proof that 2-DLA constructible
figures can be characterized through canonical realizations. Given a particle p \in F ,
we define the particles scope as

L(p) = \{ (i, j) : row(p) < i \wedge col(p) < j\} = \{ q \in F : p \in S(q)\} .

The geometrical relation between the scope and shadow can be seen in Figure 24.

u

S(u)

L(u)

Fig. 24. The shadow S(v) and scope L(v) of a particle v.

854 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

With this at hand, we reinterpret Lemma 4.6 as follows: A figure F is 2DLA-
realizable if and only if there exists a canonical realization \varphi , that is, a realization
such that, for every u \in F ,

\varphi (z) < \varphi (u) < \varphi (x) \forall z \in S(u), \forall x \in L(u).

In the following we only focus on canonical realizations. Because of the previous
result, when we construct a figure and want to add a particle x = (i, j) we can
guarantee that there will be an interrupted path from the top of the grid to the
coordinate (i - 2, j - 2) \in L(x), as exemplified in Figure 25.

x

Fig. 25. We assume that for every occupied site x = (i, j), when a particle is placed in x there
is an available path that starts in (1, 1) and reaches (i - 2, j - 2).

This means that, to build a realization of a figure, it is sufficient to select one
that satisfies that, for each particle (i, j), there is a path from (i - 2, j - 2) to (i, j)
that avoids the collision with other particles already fixed. For a particle x \in F , we
define the vicinity of x, denoted by V (x), as the set of sites depicted in Figure 26.
More formally, if x = (i, j), then V (x) = V1(x) \cup V2(x) \cup V3(x) \cup V4(x) where

V1((i, j)) = \{ (i - 3, j), (i - 2, j), (i - 1, j), (i - 2, j + 1), (i - 1, j + 1)\} ,

V2((i, j)) = \{ (i, j - 3), (i, j - 2), (i, j - 1), (i+ 1, j - 2), (i+ 1, j - 1)\} .

xx

V2(x)V1(x)

Fig. 26. Visual representation of V (x). Sets V1(x) and V2(x) are highlighted in red. (See
online version for color.)

Due to the nature of the dynamics, we have to consider only four different possible
paths a particle can take to reach x from y = (row(x) - 2, col(x) - 2). We denote
these paths as Q1, Q2, Q3, and Q4, which are shown in Figure 27.

COMPUTATIONAL COMPLEXITY OF BIASED DLA 855

x

y

x

y

x

y

x

y

Q1 Q2

Q3 Q4

Fig. 27. A representation of the four choices of paths starting from y = (i - 2, j - 2) and
reaching coordinate x = (i, j).

More formally, in Table 1 are given the four possible choices of paths starting
from (i - 2, j - 2) and reaching coordinate (i, j), with the list of visited cells and the
cells adjacent to each path. For k \in \{ 1, 2, 3, 4\} we call Qk((i, j)) the union of the set
of visited and adjacent cells of path Qk((i, j)). Given a realization \varphi of F , we say
that a path Qk is available if all cells c in the second and third columns of the kth
row of the table satisfy the fact that \varphi (c) > \varphi ((i, j)). Otherwise, we say that Qk is
unavailable.

Table 1
Definition of possible choices of paths starting from (i - 2, j - 2) and reaching coordinate (i, j),

with the list of visited cells and the cells adjacent to each path. In a realization, we say that a path
Qi is available if all cells in the second and third columns of the ith row are empty.

Path Sequence of visited cells Adjacent cells in V (x)

Q1((i, j))
(i - 2, j - 2), (i - 2, j - 1),

(i - 2, j), (i - 1, j)
(i - 3, j), (i - 2, j + 1),

(i - 1, j + 1)

Q2((i, j))
(i - 2, j - 2), (i - 2, j - 1),

(i - 1, j - 1), (i - 1, j)
(i - 2, j), (i - 1, j + 1),

(i, j - 1)

Q3((i, j))
(i - 2, j - 2), (i - 1, j - 2),

(i, j - 2), (i, j - 1)
(i, j - 3), (i+ 1, j - 1),

(i+ 1, j - 1)

Q4((i, j))
(i - 2, j - 2), (i - 1, j - 2),

(i - 1, j - 1), (i, j - 1)
(i, j - 2), (i+ 1, j - 1),

(i - 1, j)

Remark 4.7. There exist two other possible choices for paths reaching cell (i, j)
from cell (i - 2, j - 2), namely the paths (i - 2, j - 2), (i - 2, j - 1), (i - 1, j - 1), (i, j -
1), (i, j) and (i - 2, j - 2), (i - 1, j - 2), (i - 1, j - 1), (i - 1, j), (i, j). However, these paths
require more available cells than Q2 and Q3, respectively. Therefore, any trajectory
that uses any of such paths has Q2 or Q4 available.

4.2.1. The dependency graph. We are now ready to define the dependency
graph of a figure. The dependency graph H of a figure F is a directed graph satisfying

856 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

that, if u, v \in F and (u, v) \in E(H), then u must be fixed before v on every canonical
realization of v. To precisely define the set of edges, we apply a number of applications
of a set of rules, described below.

First, let us denote Ground as the set \{ N + 1\} \times [N], that is to say, the set of
particles in the bottom of the figure we are trying to construct. The vertex set of the
dependency graph H is F \cup Ground. The construction starts with the set of edges

E0 = (Ground\times F \setminus Ground) \cup \{ (u, v) \in F \times F : u \in S(v)\} .

We start this way because all the edges in the bottom must be fixed (i.e., are fixed
from the beginning) before all particles in F . Moreover, as we are considering only
canonical realizations, where all the particles in S(v) are fixed before v. Then, we
iteratively add edges to E0 according to two rules defined below, obtaining in this way
sets E1, E2, The process stops when no new edges satisfy any of the two rules.
The resulting set is the set of edges of H.

For \ell \geq 0 and a node v \in V (H), let us define

N(v) = \{ (row(v), col(v)\pm 1), (row(v)\pm 1, col(v))\} \cap V (H),

D -
\ell (v) = \{ w \in V (H) : (w, v) \in E\ell \} ,

D+
\ell (v) = \{ w \in V (H) : (v, w) \in E\ell \} ,

which are called, respectively, the sets of adjacent nodes and the sets of predecessors
and successors of v with respect to edge set E\ell . Given E\ell , we construct E\ell +1 adding
edges to E\ell according to the following two rules.

The first rule is used to enforce that a particle that is not adjacent to the ground
must have at least one adjacent particle that is potentially fixed before it. This rule
is applied over vertices v \in F such that D -

\ell (v) = \emptyset . First, let us call R\ell (v) the set of
neighbors of v defined by

R\ell (v) = N(v) \setminus

\left(\bigcup
w\in D+

\ell (v)

D+
\ell (w) \cup D+

\ell (v)

\right) .

In words, R\ell (v) is the set of particles adjacent to v that are neither successors of v
nor successors of these successors. If R\ell (v) = \emptyset , then all neighbors of v must be fixed
after v, and therefore the figure is not realizable. To represent this, we add edge (v, v)
to E\ell +1. Now suppose that R\ell (v) is nonempty and that there exists u \in R\ell (v) such
that R\ell (v) \setminus (D+

\ell (u) \cap \{ u\}) = \emptyset . Then, necessarily u must be a predecessor of v. We
conclude with the following definition of Rule 1.

Definition 4.8 (Rule 1). For each v \in F such that D -
\ell (v) = \emptyset ,

\bullet if R\ell (v) = \emptyset , then we add edge (v, v) to E\ell +1;
\bullet if R\ell (v) \not = \emptyset and there exists u \in R\ell (v) satisfying that R\ell (v)\setminus (D+

\ell (u)\cup \{ u\}) =
\emptyset , then we add (u, v) to E\ell +1.

Rule 2 states that when a particle is fixed there must exist an available path
reaching v from (row(v) - 2, col(v) - 2). This implies that we must fix v before the
cells that block all the available paths of v. More precisely, for a particle v \in F , we
call B\ell (v) the set of currently unavailable paths of v. Formally,

B\ell (v) = \{ k \in \{ 1, 2, 3, 4\} : Qk(v) \cap D -
\ell (v) \not = \emptyset \} .

COMPUTATIONAL COMPLEXITY OF BIASED DLA 857

The set of available paths of v is A\ell (v) = \{ 1, 2, 3, 4\} \setminus B\ell (v). Now let us define
\scrI \ell (v) as the set of particles in the intersection of all available paths. Formally,

\scrI \ell (v) =
\bigcap

k\in A\ell (v)

Qk(v).

Then, Rule 2 states that all particles in \scrI v must be fixed after v. We deduce the
following definition.

Definition 4.9 (Rule 2).
For each v \in F ,
\bullet if A\ell (v) = \emptyset , then we add edge (v, v) to E\ell +1;
\bullet if u \in \scrI v, then we add (v, u) to E\ell +1.

Therefore, the construction of the dependency graph consists of the applications
of Rule 1 and Rule 2 until no new edges are created. Since a figure contains n particles,
there are at most n2 possible edges between them. Therefore, the construction finalizes
in at most n2 applications of the rules. Observe also that each rule can be applied in
polynomial time. We formalize previous construction in Algorithm 4.1.

858 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

Algorithm 4.1. Constructing the edges of the dependency graph of figure F .

Input: A figure F represented by a set of coordinates in [N]\times [N]
Output: A set of edges E
Ground\leftarrow (\{ N + 1\} \times [N]) // the cells in the bottom

E0 =\leftarrow \{ (u, v) : u \in S(v)\} \cup (Ground\times (F \setminus Ground))
for u = (i, j) \in F do

N(u)\leftarrow \{ (i+ 1, j), (i - 1, j), (i, j + 1), (i, j - 1)\} \cap (F \cup Ground)
Q1(u) = \{ (i - 3, j), (i - 2, j), (i - 1, j), (i - 2, j +1), (i - 1, j +1)\} \cap (F \cup Ground)
Q2(u) = \{ (i - 2, j), (i - 1, j), (i - 1, j + 1), (i, j - 1)\} \cap (F \cup Ground)
Q3(u) = \{ (i, j - 3), (i, j - 2), (i, j - 1), (i+1, j - 2), (i+1, j - 1)\} \cap (F \cup Ground)
Q4(u) = \{ (i, j - 2), (i, j - 1), (i+ 1, j - 1), (i - 1, j)\} \cap (F \cup Ground)

end
for \ell \in \{ 1, . . . , n2\} do

E\ell +1 \leftarrow E\ell

for x \in F do
D+(x)\leftarrow \{ w \in F : (x,w) \in E\ell \}
D - (x)\leftarrow \{ w \in F : (w, x) \in E\ell \}
R\ell (x)\leftarrow N(x) \setminus

\Bigl(\bigcup
w\in D+

\ell (x) D
+
\ell (w) \cup D+

\ell (x)
\Bigr)

B\ell (x)\leftarrow \{ k \in \{ 1, 2, 3, 4\} : D - (x) \cap Qk(x) \not = \emptyset \}
A\ell (x)\leftarrow \{ 1, 2, 3, 4\} \setminus B\ell (x).

\scrI \ell (x)\leftarrow
\bigcap

k\in A\ell (x)

Qk(x)

end
for v \in F do

// Rule 1

if D -
\ell (v) = \emptyset and R\ell (v) = \emptyset then
E\ell +1 \leftarrow E\ell +1 \cup \{ (v, v)\}

end

if D -
\ell (v) = \emptyset and R\ell (v) \not = \emptyset then
for u \in R\ell (v) do

if R\ell (v) \setminus (D+(u) \cup \{ u\}) = \emptyset then
E\ell +1 \leftarrow E\ell +1 \cup \{ (u, v)\}

end

end

end
// Rule 2

if A\ell (v) = \emptyset then
E\ell +1 \leftarrow E\ell +1 \cup \{ (v, v)\}

else
for u \in F \cup Ground do

if u \in \scrI v then
E\ell +1 \leftarrow E\ell +1 \cup \{ (v, u)\}

end

end

end

end

end
return En2 \setminus (Ground\times F \setminus Ground)

COMPUTATIONAL COMPLEXITY OF BIASED DLA 859

Fig. 28. Three examples of figures and their corresponding dependency graphs. Observe that
the middle and bottom figures are not 2DLA-realizable, and their dependency graphs are not acyclic.

Definition 4.10. The dependency graph of a figure F is the graph with vertex
set F and a set of edges obtained as the output of Algorithm 4.1 on input F .

Figure 28 depicts an example of a figure F and its corresponding dependency
graph.

Lemma 4.11. Let H = (F,E) be the dependency graph of a 2DLA-realizable figure
F . For every pair of particles u, v \in F , if (u, v) \in E, then u is fixed before v on every
canonical realization of F .

Proof. We prove the result by induction on \ell , showing that every edge in E\ell has
the above property. The base case \ell = 0 is trivial because E0 contains only the edges
(u, v) such that u \in S(v). Now suppose that for a given \ell \geq 0 all the edges in (u, v)
satisfy that u is fixed before v on every canonical realization of F . If E\ell +1 = E\ell , then
E(H) = E\ell and we are done. Therefore, suppose that E\ell +1 contains an edge (u, v)
not in E\ell , and assume that there exists a canonical realization \varphi that fixes v before

860 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

u. We will reach a contradiction by showing that (u, v) cannot be created with Rule
1 or Rule 2.

First, as v can be fixed before u in \varphi , there must exist a neighbor w \in N(v) that
is fixed before v and u. From the induction hypothesis, this w must be contained in
R\ell (v), and moreover, w /\in D+

\ell (u)\cup \{ u\} \cup D
+
\ell (v). Then (u, v) was not created according

to Rule 1. Second, since u can be fixed after v in \varphi , there must exist an available path
k \in A\ell (u) such that v /\in Qk(u). We deduce that (u, v) cannot be created according
to Rule 2. We deduce that, if (u, v) is an edge of E\ell +1, then u must be fixed before v
on every canonical realization of F .

Our approach consists of constructing a canonical realization of F by removing
one by one the particles of F , applying the following recursive algorithm. First, if
| F | = 1, i.e., the input figure consists of a single particle, the algorithm returns a
realization consisting of this single particle. If | F | > 1, we compute the set of edges
E of the dependency graph of F . Then, we look for a removable particle u, defined
as follows.

Definition 4.12. A removable particle is a particle satisfying the following con-
ditions:

\bullet C(u) = \{ k \in \{ 1, 2, 3, 4\} : (F \cup Ground) \cap Qk(u) = \emptyset \} \not = \emptyset , meaning that there
is at least one available path u not touching any particle in F \cup Ground.

\bullet D+(u) = \{ w \in F : (t, w) \in E\} = \emptyset , meaning that no other particle needs to
be fixed after u.

\bullet The dependency graph of F \setminus \{ u\} is acyclic.

If no such particle u is found, the algorithm rejects. Otherwise, we recursively run
the algorithm in F \setminus \{ u\} . Finally, if the recursive call of the algorithm does not reject,
the output is a realization \~\varphi of F \setminus \{ u\} . The realization of F is obtained by fixing
u after all the particles in F \setminus \{ u\} according to \~\varphi , obtaining in this way a canonical
realization \varphi . The pseudocode of algorithm is written in Algorithm 4.2.

Lemma 4.13. Let F be a figure with an acyclic dependency graph H; then H
contains a removable particle.

Proof. Let F be a figure such that its corresponding dependency graph H is
acyclic. Let W be the set of particles with out-degree zero in H. Formally, W = \{ v \in
F : D+(v) = \emptyset \} . This set is nonempty as H is acyclic. Now let us pick the particle
in u \in W such that col(u) is minimum, and over all possible choices, we pick the one
such that row(u) is maximum. In other words, u is the bottom leftmost particle in
W .

We are going to show that u is a removable particle, by showing a series of claims.
First, we define the following four sets relatively to u:

SNE(u) = \{ w \in F : row(w) \leq row(u) and col(w) \geq col(u)\} \setminus \{ u\} ,

SNW (u) = \{ w \in F : row(w) < row(u) and col(w) < col(u)\} ,

SSE(u) = \{ w \in F : row(w) > row(u) and col(w) > col(u)\} ,

SSW (u) = \{ w \in F : row(w) \geq row(u) and col(w) \leq col(u)\} \setminus \{ u\} .

Observe that SNW (u) is the scope of u and SSE(u) is the shadow of u. Observe
that the scope of u is empty, because u has out-degree zero in H.

Claim 1. All nodes in SSW (u) are ancestors of u in H. Formally, for every
w \in SSW (u) there is a w, u-directed path in H.

COMPUTATIONAL COMPLEXITY OF BIASED DLA 861

Algorithm 4.2. Constructing the realization of F .

Input: A figure F \subseteq [N]\times [N] of size n with an acyclic dependency graph.
Output: A realization of F .
if | F | = \{ u\} then

return a list \varphi containing u as a single element.
else

Compute E as the output of Algorithm 4.1 on input F
for x \in F do

D+(x)\leftarrow \{ w \in F : (x,w) \in E\}
Cx \leftarrow \{ k \in \{ 1, 2, 3, 4\} : F \cap Qk(x) \not = \emptyset \}

end
\alpha \leftarrow \{ u \in F : Cx \not = \emptyset \}
\beta \leftarrow \{ u \in F : D+(u) = \emptyset \}
\gamma \leftarrow \alpha \cap \beta
for u \in \gamma do

Compute E\prime as the output of Algorithm 4.1 on input F \setminus \{ u\}
if H = (F \setminus \{ u\} , E\prime) contains a cycle then

\gamma \leftarrow \gamma \setminus \{ u\}
end

end
Pick any u \in \gamma
\~\varphi \leftarrow output of Algorithm 4.2 on input F \setminus \{ u\}
\varphi \leftarrow list \~\varphi adding u in the end.
return \varphi

end

Proof of Claim 1. Let w0 be an arbitrary particle in SSW (u). From the choice of
u, we know that w0 has at least one out-neighbor in H. Let P = w0, w1, . . . , wk be a
longest directed path in H starting from w0. Then wk has out-degree zero, implying
that it is not contained in SSW (u). Let w\ell with 0 < \ell \leq k be the first node in P
not contained in SSW (u). If w\ell = u, we are done. If w\ell belongs to SSE(u), then
(w\ell , u) \in E(H) and P \prime = w0, . . . , w\ell , u is a directed path in H. Finally, suppose that
w\ell belongs to SNE . Then necessarily (w\ell - 1, w\ell) is created by Rule 2 and w\ell belongs
to V1(w\ell - 1). Observe that u is also contained in V1(w\ell - 1), and then (w\ell - 1, u) is also
an edge created by Rule 2. We conclude that P \prime \prime = w0, . . . , w\ell - 1, u is a directed path
of H.

Claim 2. u has an available path in F , i.e., C(u) \not = \emptyset .
Proof of Claim 2. Suppose that Q3(u) intersects F , and pick w \in Q3(u) \cap F .

Observe that w \in SSW (u). Therefore, by Claim 1 there is a directed path from w
to u, and moreover, (w, u) is an edge in E(H). Then, by Rule 2 there is an edge
connecting u with all the particles in V1(u). Since u has out-degree zero, necessarily
V1(u)\cap F is empty. We deduce that Q1(u) is an available path for u and then 1 \in C(u).
We conclude that \{ 1, 3\} \cap C(u) \not = \emptyset .

Claims 1 and 2 imply that u satisfies the first two conditions of the definition
of removable particle. It remains to show that the dependency graph of F \setminus \{ u\} is
acyclic. In the following we call E(H - u) the dependency graph of F \setminus \{ u\} .

Claim 3. E(H) \setminus (F \times \{ u\}) is a subset of E(H - u).
Proof of Claim 3. Suppose that E(H) \setminus (F \times \{ u\}) contains an edge e = (w1, w2)

862 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

not in E(H - u). From all possible choices, let us pick the one that is created in
the earliest iteration of Algorithm 4.1. Observe that e cannot be created by Rule 1.
Indeed, if R\ell (w2) does not contain u, then necessarily e is also an edge of E(H - u),
and if R\ell (w2) contains u, then necessarily u also belongs to D+(w1) (u must be
different from w1 because u has out-degree zero). In both cases we have that if e is
created by Rule 1, then e must be an edge of E(H - u). Then necessarily e is created
with Rule 2. However, as u has out-degree zero, it cannot block any path of another
node. We deduce that e cannot exist and then E(H) \setminus (F \times \{ u\}) \subseteq E(H - u).

Claim 4. Let e = (w1, w2) be an edge of E(H - u) \setminus E(H). Then w1 \not = w2

(i.e., e is not a self-loop), and w1 belongs to SNE(u). Moreover, if w2 also belongs
to SNE(u), then w2 is closer to u than w1 in Manhattan distance, i.e., | row(w2) -
row(u)| + | col(w2) - col(u)| < | row(w1) - row(u)| + | col(w1) - col(u)| .

Proof of Claim 4. Let \ell 1 < \cdot \cdot \cdot < \ell t be the iterations of Algorithm 4.1 in which
an edge of E(H - u) \setminus E(H) is created. If e = (w1, w2) is created in iteration \ell 1,
then necessarily e is created by Rule 1 (as u has out-degree 0, it cannot block any
path of another node). Then necessarily w2 is a neighbor of u such that D+(w2) = \emptyset .
Observe that R\ell 1(w2) \setminus \{ u\} \not = \emptyset because, otherwise, (w2, u) is an edge of E(H). Then
w1 \not = w2, and w2 is closer to u than w1 in Manhattan distance.

Now suppose that the claim is true for all edges created in steps up to \ell i, with
i \in \{ 1, . . . , t - 1\} , and suppose that e = (w1, w2) is created in iteration \ell i+1.

If (w1, w2) is created by Rule 1, then necessarily w2 has an out-neighbor w3 not
present in E(H) that was created in iterations \ell 1, . . . , \ell i. Then w2 belongs to SNE(u)
by the induction hypothesis. Observe that R\ell i+1

(w2) \setminus w3 \not = \emptyset ; otherwise, (w2, w3) is
an edge of E(H). Then w1 \not = w2. Suppose by contradiction that w1 is not contained
in SNE(u). Then necessarily w1 belongs to SSE(u), with w1 = (row(w2)+1, col(w2)).
Moreover, w3 belongs to SNE(u). Then, by the induction hypothesis, w3 is closer to
u than w2, meaning that w3 = (row(w2), col(w2) - 1). This implies that (w1, w3) is an
edge of E(H) and then (w1, w2) must be also an edge of E(H). We deduce that w1

is contained in SNE(u). As the distance from w2 to w3 is smaller than the distance
of w1 to w3, we deduce by the induction hypothesis that the distance from w2 to u is
smaller than the distance from w1 to u.

If (w1, w2) is created by Rule 2, then necessarily w1 has an incoming edge from
a node w0 \in V (w1) such that (w0, w1) is not in E(H) and was created in iterations
\ell 1, . . . , \ell i. From the induction hypothesis we know that w0 belongs to SNE(u) and
is closer to u than w1. Then w0 belongs to V1(w1). If (w0, w1) is created with Rule
1, then there is a path P from w1 to one of the adjacent particles of u where all
the edges in that path are edges in E(H - u) \setminus E(H) created by Rule 1 (this is
proven in the previous paragraph). Then P either contains w2 or contains a node
w\prime such that row(w\prime) = row(w2) and col(w\prime) > col(w2). Indeed, the other possibility
is that (v0, v1) and (v1, v2) are edges of P , with v0 = (row(w2) - 1, col(w2) + 1),
v1 = (row(w2) - 1, col(w2)), and v2 = (row(w2) - 1, col(w2) - 1). However, this is
impossible because in that case, (w2, v1) must be an edge of E(H), and then (v0, v1)
is also an edge of E(H). Then, there is a directed path of Rule 1 edges connecting w1

and a neighbor of u. This implies that w2 is either in SNE(u) or in SSW (u). In any
case we have that (w1, w2) satisfies the conditions of the claim. It remains the case
when (w0, w1) is created with Rule 2 in some iteration \ell 1, . . . , \ell i. Let P

\prime = v0, . . . , vk
be the longest directed path of edges in E(H - u) \setminus E(H) that are created with Rule
2 in iterations \ell 1, . . . , \ell i, such that vk = w0. Then v0 must have an incoming neighbor
z0 such that (z0, w0) is an edge of E(H - u) \setminus E(H) created by Rule 1, and such that
z0 = (row(v0) - 1, col(v0)). Following the same argument as in the previous case (i.e.,

COMPUTATIONAL COMPLEXITY OF BIASED DLA 863

taking the path of edges of E(H - u) \setminus E(H) created by Rule 1 connecting w0 with a
particle adjacent to u) we deduce that (w1, w2) satisfies the conditions of the claim.
This finishes the proof of Claim 4.

Observe that Claim 4 implies that the edges of E(H - u) \setminus E(H) form a directed
acyclic graph. On the other hand, we know that H is acyclic. Finally, it is impossible
to have a cycle containing a combination of edges in E(H - u) \setminus E(H) and E(H),
because all the outgoing neighbors of nodes in E(H - u)\setminus E(H) also belong to E(H -
u) \setminus E(H). We deduce that the dependency graph of F \setminus \{ u\} is acyclic. We conclude
that u is a removable particle of F .

We remark that the third condition of Definition 4.12 is not necessarily deduced
from the first two conditions, in the sense that there are figures with particles u
satisfying that C(u) \not = \emptyset and D+(u) = \emptyset but that are not removable. For instance,
the realizable figure depicted in Figure 29 contains a particle u such that C(u) \not = \emptyset ,
D+(u) = \emptyset , and F \setminus \{ u\} is not realizable.

We are now ready to give the main result of this section.

Theorem 4.14. A figure F is 2-DLA-realizable if and only if its dependency graph
H is acyclic.

Proof. Let us assume that H contains a cycle, and let u be a node in a cycle of H.
Lemma 4.11 implies that u must be placed before itself on any canonical realization.
Therefore, F does not admit a canonical realization. From Lemma 4.6 we deduce that
F is not realizable.

Conversely, suppose that H = (F,E) is acyclic. Then, Lemma 4.13 implies that
we can successively decompose F , finding removable nodes. The obtained canonical
realization of F is the output of Algorithm 4.2.

Corollary 4.15. 2-DLA-Realization is solvable in polynomial time.

Remark 4.16. An implementation of the algorithm solving 2-DLA-Realization
can be found in https://github.com/pedromontealegre/2DLA-Realization.

5. Conclusion. The introduction of restrictions to discrete dynamical systems,
coming from statistical physics, has been shown to change the computational com-
plexity of the system's associated decision problem. We have once again observed
this phenomenon with the changes in computational complexity when restricting the
directions a particle can move in the DLA model. By adapting the P-Complete proof
of the 4-DLA-Prediction we showed that both 3-DLA-Prediction and 2-DLA-
Prediction are P-Complete. For 1-DLA-Prediction, we tackled the generalized
problem
Ballistic Deposition and showed that by exploiting the commutativity exhibited
by the dynamics of the system, we created a nondeterministic log-space algorithm to
solve the problem, and showed that 1-Prediction is NL-Complete. What is inter-
esting to note is that the algorithm does not depend on the topological properties of
the model but exclusively works on the input word (the sequence of particle throws
in this case).

Finally, we showed that characterizing the shapes that are obtainable through the
dynamics is an interesting problem, and we exhibited that the associated computa-
tional problem is in L for the one-directional dynamics and in P for the two-directional
one. This is interesting due to the fact that for the figures produced when executing
the probabilistic versions of the dynamics, as shown in Figure 2, the computational
complexity of examining these shapes is efficient.

https://github.com/pedromontealegre/2DLA-Realization

864 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

Fig. 29. An example of a figure containing a node of coordinates u = (5, 4) such that C(u) \not = \emptyset
(as Q1(u) is available), D+(u) = \emptyset , but F \setminus \{ u\} contains a cycle. In the first row are depicted the
figure F and its dependency graph. And in the second row is depicted F \setminus \{ u\} and its corresponding
dependency graph. Nodes (5, 5), (4, 6), (5, 6) form a cycle in this graph. Observe that F does contain a
removable particle, for instance, v = (3, 6). In the third row is depicted F \setminus \{ v\} and its corresponding
(acyclic) dependency graph.

5.1. Future work. An interesting extension of the presented problem is deter-
mining, given a figure, the minimum number of directions necessary to produce it if
achievable at all. We have shown that figures generated by the 1-Prediction model
are characterizable in L, and those of the two-directional model in P. It remains to be
seen if the latter can be improved as an NC algorithm or if the problem is in fact P-
Complete. The definition of the dependency graph seems intrinsically sequential, and
we believe it is unlikely that the problem could be solved by a fast-parallel algorithm.

In addition, the complexity classification of the realization problem for three and
four directions remains open. We believe that the definition of a dependency graph
for these cases is plausible, but several assumptions (such as the existence of canonical
realizations) must be redefined.

COMPUTATIONAL COMPLEXITY OF BIASED DLA 865

A related problem, not treated in this article, consists of the reachability ; i.e.,
given a figure F and a subfigure F \prime , decide if it is possible to construct F given that
F \prime is already fixed. This problem can be also studied when restricting the number
of directions in which the particles are allowed to move. Our belief is that there is
room to create more complex gadgets, indicating that these problems are possibly
NP-Complete at least for three or more movement directions.

Acknowledgment. We would like to thank the anonymous reviewers for letting
us know about the ballistic deposition model, of which we had no previous knowledge.

REFERENCES

[1] E. Allender, T. Chakraborty, D. A. M. Barrington, S. Datta, and S. Roy, Grid graph
reachability problems, in Proceedings of the 21st Annual IEEE Conference on Computa-
tional Complexity (CCC'06), IEEE, 2006, pp. 15--29.

[2] S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge Uni-
versity Press, 2009.

[3] J. Arulanandham, C. Calude, and M. Dinneen, Bead--sort: A natural sorting algorithm,
Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, no. 76 (2002), pp. 153--162.

[4] A. Asselah, E. N. Cirillo, B. Scoppola, and E. Scoppola, On diffusion limited deposition,
Electron. J. Probab., 21 (2016), 19.

[5] F. Barra, B. Davidovitch, and I. Procaccia, Iterated conformal dynamics and Laplacian
growth, Phys. Rev. E, 65 (2002), 046144.

[6] F. Benevides and M. Przykucki, Maximum percolation time in two-dimensional bootstrap
percolation, SIAM J. Discrete Math., 29 (2015), pp. 224--251, https://doi.org/10.1137/
130941584.

[7] R. Brady and R. Ball, Fractal growth of copper electrodeposits, Nature, 309 (1984), pp. 225--
229.

[8] J. Chalupa, P. L. Leath, and G. R. Reich, Bootstrap percolation on a Bethe lattice, J. Phys.
C Solid State Phys., 12 (1979), pp. L31--L35, https://doi.org/10.1088/0022-3719/12/1/008.

[9] D. Y. Chan, B. D. Hughes, L. Paterson, and C. Sirakoff, Simulating flow in porous media,
Phys. Rev. A (3), 38 (1988), pp. 4106--4120.

[10] E. Goles, P. Montealegre-Barba, and I. Todinca, The complexity of the bootstraping
percolation and other problems, Theoret. Comput. Sci., 504 (2013), pp. 73--82, https://doi.
org/10.1016/j.tcs.2012.08.001.

[11] R. Greenlaw, H. Hoover, and W. Ruzzo, Limits to Parallel Computation: P-Completeness
Theory, Oxford University Press, 1995.

[12] T. C. Halsey, P. Meakin, and I. Procaccia, Scaling structure of the surface layer of
diffusion-limited aggregates, Phys. Rev. Lett., 56 (1986), pp. 854--858.

[13] Z. Koza, The equivalence of the DLA and a hydrodynamic model, J. Phys. A, 24 (1991),
pp. 4895--4905.

[14] J. Machta and R. Greenlaw, The parallel complexity of growth models, J. Statist. Phys., 77
(1994), pp. 755--781.

[15] J. Machta and R. Greenlaw, The computational complexity of generating random fractals,
J. Statist. Phys., 82 (1996), pp. 1299--1326.

[16] T. Mansour, R. Rastegar, and A. Roitershtein, On Ballistic Deposition Process on a
Strip, preprint, https://arxiv.org/abs/1903.12548, 2019.

[17] P. Meakin, Diffusion-controlled cluster formation in 2-6-dimensional space, Phys. Rev. A, 27
(1983), pp. 1495--1507.

[18] P. Meakin, P. Ramanlal, L. M. Sander, and R. Ball, Ballistic deposition on surfaces,
Phys. Rev. A, 34 (1986), pp. 5091--5103.

[19] C. Moore and J. Machta, Internal diffusion-limited aggregation: Parallel algorithms and
complexity, J. Statist. Phys., 99 (2000), pp. 661--690.

[20] C. Moore and M. Nilsson, The computational complexity of sandpiles, J. Statist. Phys., 96
(1999), pp. 205--224.

[21] L. Niemeyer, L. Pietronero, and H. Wiesmann, Fractal dimension of dielectric breakdown,
Phys. Rev. Lett., 52 (1984), pp. 1033--1036.

[22] J. Nittmann, G. Daccord, and H. E. Stanley, Fractal growth viscous fingers: Quantitative
characterization of a fluid instability phenomenon, Nature, 314 (1985), pp. 141--144.

[23] M. D. Penrose, Growth and roughness of the interface for ballistic deposition, J. Statist. Phys.,

https://doi.org/10.1137/130941584
https://doi.org/10.1137/130941584
https://doi.org/10.1088/0022-3719/12/1/008
https://doi.org/10.1016/j.tcs.2012.08.001
https://doi.org/10.1016/j.tcs.2012.08.001
https://arxiv.org/abs/1903.12548

866 NICOLAS BITAR, ERIC GOLES, AND PEDRO MONTEALEGRE

131 (2008), pp. 247--268.
[24] D. Sutherland, Comments on Vold's simulation of floc formation, J. Colloid Interface Sci.,

22 (1966), pp. 300--302.
[25] M. J. Vold, Computer simulation of floc formation in a colloidal suspension, J. Colloid Sci.,

18 (1963), pp. 684--695.
[26] T. A. Witten and L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenom-

enon, Phys. Rev. Lett., 47 (1981), pp. 1400--1403, https://doi.org/10.1103/PhysRevLett.
47.1400.

https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevLett.47.1400

	Introduction
	Our results
	Related work
	Structure of the article

	Preliminaries
	Complexity classes and circuit value problem
	The DLA model and its restricted counterpart

	DLA-prediction
	Two and three directions
	One direction
	Computational capabilities of the dynamics
	Nondeterministic log-space algorithm

	Shape characterizations and realization
	One direction
	Two directions
	The dependency graph

	Conclusion
	Future work

	References

