Sofic Skeletons

Nicolás Bitar, Nathalie Aubrun {name.surname}@lisn.upsaclay.fr Université-Paris-Saclay, LISN–CNRS, équipe GALaC

Skeleton Subshift

Given a f.g. group G and a symmetric generating set S we define the **skeleton subshift** as

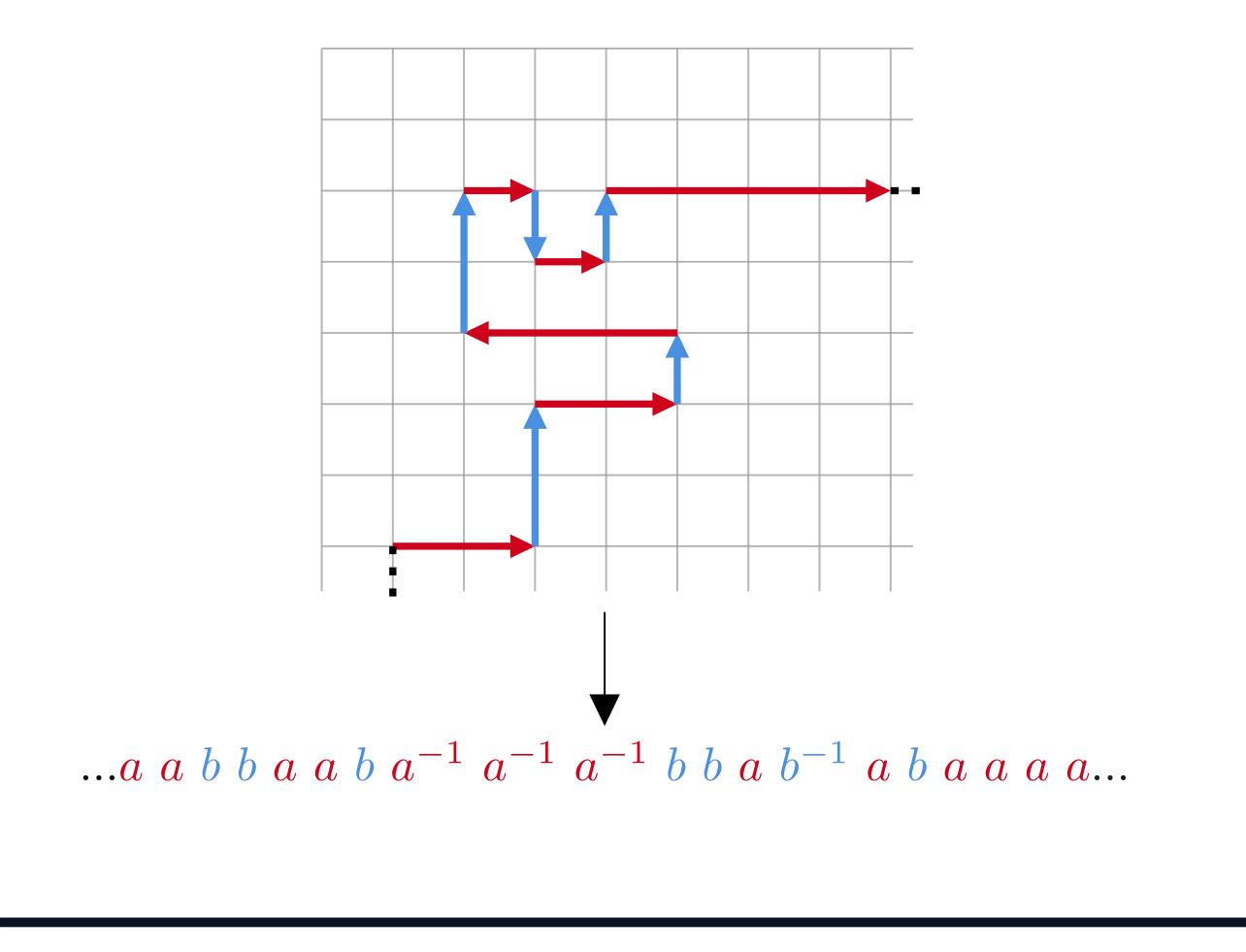
 $X_{G,S} = \{ x \in S^{\mathbb{Z}} \mid \forall w \sqsubseteq x, w \notin WP(G,S) \}.$

We define its **language** as

 $\mathcal{L}(\mathbb{X}_{G,S}) = \{ w \in S^* \mid \exists x \in \mathbb{X}_{G,S}, w \sqsubseteq x \}.$

Self-Avoiding Walks

 $X_{G,S}$ can be equivalently seen as the set of labels of bi-infinite **self-avoiding walks** on the Cayley graph Cay(G,S).



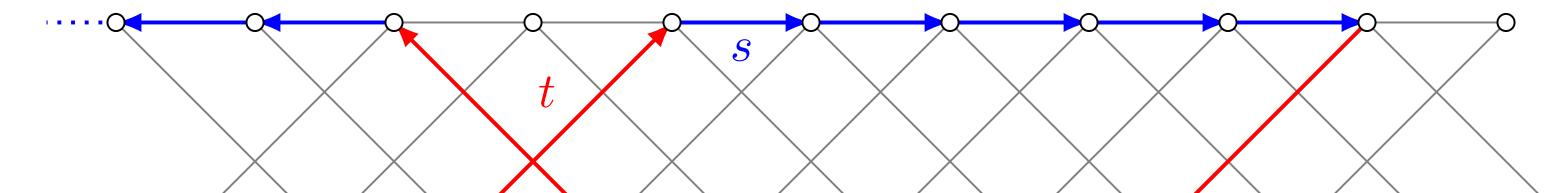
We say the skeleton $X_{G,S}$ is **sofic** if $\mathcal{L}(X_{G,S})$ is a regular language.

Pompes Funèbres Lemma

Our main tool is the **Pumping Lemma**:

For L, a regular language, there exists p > 0 such that every word $w \in L$ with $|w| \ge p$ can be decomposed as w = w'uvwith |u| > 1 and $|uv| \le p$ such that for all $n \in \mathbb{N}$, $w'u^n v \in L$.

We can use the Pumping Lemma to show being sofic depends on the generating set. For a torsion-free element $g \in G$ we add $s = g^2$ and $t = g^3$ to S so we can find a copy of $Cay(\mathbb{Z}, \{\pm 2, \pm 3\})$.



Proposition

For every group G there exists a generating set S such that $X_{G,S}$ is not sofic.

Then, for all $n \in \mathbb{N}$, $\mathcal{L}(X_{G,S})$ contains the configuration $ts^{n+1}t^{-1}s^{-n}$ on which we use the Pumping Lemma.

Plain Groups

A group G is said to be **plain** if there are finite groups G_i such that

 $G \simeq \begin{pmatrix} m \\ \star & G_i \end{pmatrix} * \mathbb{F}_n.$

Characterization

We study thin and thick ends of Cay(G, S) to use the Pumping Lemma to obtain a characterization.

Theorem

Let G be a f.g. group. Then,

To go further...

$\mathbb{Z}/3\mathbb{Z} * \mathbb{Z}/4\mathbb{Z} = \langle a, b \mid a^3, b^4 \rangle$

Theorem

Let G be a f.g. group. Then, $\exists S$ such that $X_{G,S}$ is a **SFT** iff G is a plain group.

- The Infinite Snake Problem is decidable for (G, S)when $X_{G,S}$ is sofic.
- The entropy of $X_{G,S}$ is $\log(\mu(G,S))$, where $\mu(G,S)$ is the connective constant of $\operatorname{Cay}(G,S)$.

References

[1] Aubrun, N., Bitar, N., *Domino Snake Problems on Groups*, Proceedings of Fundamentals of Computation Theory (FCT 2023), pg.46-59, 2023.

[2] Lindorfer, C., Woess, W., The Language of Self-Avoiding Walks, Combinatorica 40.5, pp. 691–720, 2020.