The *k*-SAT Problem on Groups

Nicolás Bitar (nicolas.bitar@lisn.upsaclay.fr) Université-Paris-Saclay, LISN–CNRS, équipe GALaC

Generalizing SAT

Let G be a f.g. group and a symmetric generating set S. Take words $\{w_{ij}\} \subseteq S^*$ and define the formula

$$\phi = \bigwedge_{i=1}^{m} ((w_{i1})' \vee ... \vee (w_{ik})'),$$

where w' represents w or the negation $\neg w$.

The k-SAT problem for G asks, given a formula with k literals

Example on \mathbb{Z}^2

For $\mathbb{Z}^2 = \langle a, b | [a, b] \rangle$, take the formula:

 $\phi = (\neg 1_{\mathbb{Z}^2} \lor \mathbf{a} \lor \mathbf{b}),$

and $H = (2\mathbb{Z})^2$:

	0	I	1	1	Γ	0	0^{-}	$\overline{0}$
0	1	1	0	0	1	1	1	0
D	0	0	1	1	0	1	0	0 angle
þ	0	0	0	0	1	0	1	1
0	1	0	0	0	0	0	0	$ 1\rangle$
1	1	0	1	0	0	0	0	Ο
1	1	1	1	1	1	1	1	1
D	0	1	1	1	0	0	0	0
1	0	1	1	1	1	0	0	0

 ϕ and $\{u_i\}_{i=1}^n \subseteq S^*$, if there is an assignation of truth values $\alpha: G \to \{0, 1\}$ such that

$$\bigwedge_{h \in H} \bigwedge_{i=1}^{m} \left(\alpha(hg_{i1})' \vee \ldots \vee \alpha(hg_{ik})' \right) = 1,$$

where $H = \langle \overline{u}_1, ..., \overline{u}_n \rangle$, and $g_{ij} = \overline{w}_{ij}$.

Reductions

The subgroup membership problem of G asks, given words $w, \{u_i\}_{i=1}^n$ in S^* , if $\overline{w} \in \langle \overline{u}_1, ..., \overline{u}_n \rangle$

Proposition

The subgroup membership problem of G reduces to 2-SAT(G).

The **Domino Problem** on G asks, given an alphabet A and a set of forbidden patterns $\mathcal{F} \subseteq A^2 \times S$, if there exists a map $x : G \to A$ such that $(x(g), x(gs), s) \notin \mathcal{F}$.

Proposition

If G has decidable subgroup membership problem, then k-SAT(G) reduces to DP(G) for $k \ge 2$.

This implies **virtually free** groups have decidable k-SAT.

Main Result

Theorem

If G admits a strict finite index subgroup $H \leq G$ such that $H \simeq G$, then DP(G) reduces to 3-SAT(G).

For an alphabet of size n, take a subgroup of index $\geq \lceil \log_2(n) \rceil$ and code each letter. If $G = \mathbb{Z}^2$ and $A = \{ \square, \square, \square, \square \}$, take $H = \mathbb{Z} \times 2\mathbb{Z}$:

$$\square \longmapsto \boxed{\begin{array}{c} 0 \\ 0 \end{array}} \longleftrightarrow \phi_1 = \neg 1_{\mathbb{Z}^2} \land \neg b,$$

If $\mathcal{F} = \{(\blacksquare, \blacksquare, b)\}$, the formula coding the problem is given by, $\left(\bigvee_{i=1}^{4}\phi_{i}(1_{\mathbb{Z}^{2}})\right)\wedge\left(\neg\phi_{3}(1_{G})\vee\neg\phi_{3}(\mathbf{b}^{2})\right).$

which is then transformed into 3-CNF form.

Corollary

3-SAT(G) is undecidable for virtually \mathbb{Z}^d groups for $d \geq 2$, the Heisenberg group, BS(1,n), torus knot groups, free-by-cyclic groups $\mathbb{F}_n \rtimes_{\theta} \mathbb{Z}$, where θ has finite order in $Out(\mathbb{F}_n)$, lamplighter groups, and $\mathbb{Z}^d \rtimes GL(d,\mathbb{Z})$.

References

[1] Bitar, N., Contributions to the Domino Problem: Seeding, Recurrence and Satisfiability, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Vol. 289. LIPIcs., pg.46-59, 2024.

