Contributions to the Domino Problem:

Seeding, Recurrence and Satisfiability

Nicolás Bitar
March 13, 2024
STACS 2024

Wang Tiles

- Our story begins with Wang tiles:

First introduced by Hao Wang in 1961.

- They can be placed side by side if they share the same color along their common border.

Tilings

Tiling?

≤ 1

Tiling?

$\triangle \sim$? ? ? ? ? ?

Domino Problem

Given a finite set τ of Wang tiles, does τ tile the plane?

Tiling?

$\Delta \sim$? ?

Domino Problem

Given a finite set τ of Wang tiles, does τ tile the plane?

Theorem (Berger '64)

The Domino Problem is undecidable (Π_{1}^{0}-comp.).

Consequences

The Domino Problem has been used to prove the undecidability of

- Seeded Domino Problem,
- Recurrent Domino Problem,
- k-SAT on \mathbb{Z}^{2},
- Injectivity and Surjectivity of 2D CA,
- Infinite Snake Problem,
- Translational Monotilings,
- Spectral gap of quantum many-body systems.
... and more!

Consequences

The Domino Problem has been used to prove the undecidability of

- Seeded Domino Problem,
- Recurrent Domino Problem,
- k-SAT on \mathbb{Z}^{2},
- Injectivity and Surjectivity of 2D CA,
- Infinite Snake Problem,
- Translational Monotilings,
- Spectral gap of quantum many-body systems.
... and more!

Planting the Seeds of Undecidability

Seeded Domino Problem

Given a Wang tileset τ and a tile t_{0}, does there exist a tiling $x: \mathbb{Z}^{2} \rightarrow \tau$ such that $x(0,0)=t_{0}$?

Theorem (Kahr, Moore and Wang '62)
The Seeded Domino Problem is undecidable (Π_{1}^{0}-complete)

Reduction: Halting Problem from blank tape.

Déjà Vu

Recurrent Domino Problem

Given a Wang tileset τ and a tile t_{0}, does there exist a tiling $x: \mathbb{Z}^{2} \rightarrow \tau$ such that t_{0} appear infinitely often?

Theorem (Harel '83)

The Recurrent Domino Problem is undecidable (Σ_{1}^{1}-complete)

Reduction: State Recurrence problem for non-deterministic Turing Machines.

k-SAT

Freedman defined the following infinite generalization of SAT:
Take elements $\left\{v_{i j}\right\} \subseteq \mathbb{Z}^{2}$ and define the formula

$$
\phi=\bigwedge_{i=1}^{m}\left(\left(v_{i 1}\right)^{\prime} \vee \ldots \vee\left(v_{i k}\right)^{\prime}\right)
$$

where v^{\prime} represents v or the negation $\neg v$.

Definition

The k-SAT problem for \mathbb{Z}^{2} asks, given a formula with k literals ϕ and $(p, q) \in \mathbb{N}^{2}$, if there is an assignation of truth values $\alpha: \mathbb{Z}^{2} \rightarrow\{0,1\}$ such that

$$
\bigwedge_{u \in H} \bigwedge_{i=1}^{m}\left(\alpha\left(u+v_{i 1}\right)^{\prime} \vee \ldots \vee \alpha\left(u+v_{i k}\right)^{\prime}\right)=1
$$

where $H=p \mathbb{Z} \times q \mathbb{Z}$.

k-SAT

Take $v_{1}=(0,0), v_{2}=(1,0)$ and $v_{3}=(0,1)$.

$$
\phi=\left(\neg v_{1} \vee v_{2} \vee v_{3}\right)
$$

If we take $H=(2 \mathbb{Z})^{2}$:

k-SAT

Take $v_{1}=(0,0), v_{2}=(1,0)$ and $v_{3}=(0,1)$.

$$
\phi=\left(\neg v_{1} \vee v_{2} \vee v_{3}\right)
$$

If we take $H=(2 \mathbb{Z})^{2}$:

k-SAT

Take $v_{1}=(0,0), v_{2}=(1,0)$ and $v_{3}=(0,1)$.

$$
\phi=\left(\neg v_{1} \vee v_{2} \vee v_{3}\right)
$$

If we take $H=(2 \mathbb{Z})^{2}$:

k-SAT

Take $v_{1}=(0,0), v_{2}=(1,0)$ and $v_{3}=(0,1)$.

$$
\phi=\left(\neg v_{1} \vee v_{2} \vee v_{3}\right)
$$

If we take $H=(2 \mathbb{Z})^{2}$:

k-SAT

Take $v_{1}=(0,0), v_{2}=(1,0)$ and $v_{3}=(0,1)$.

$$
\phi=\left(\neg v_{1} \vee v_{2} \vee v_{3}\right)
$$

If we take $H=(2 \mathbb{Z})^{2}$:

k-SAT

Take $v_{1}=(0,0), v_{2}=(1,0)$ and $v_{3}=(0,1)$.

$$
\phi=\left(\neg v_{1} \vee v_{2} \vee v_{3}\right)
$$

If we take $H=(2 \mathbb{Z})^{2}$:

Theorem (Freedman '99)

The 3-SAT problem on \mathbb{Z}^{2} is undecidable.
Reduction from the Domino Problem.

Where is the Undecidability?

All the previous problems become decidable on \mathbb{Z} ! Why?

Where is the Undecidability?

As was done for the Domino Problem, we study our problems on finitely generated groups.

We can understand these groups by their Cayley graphs. These graphs are infinite, locally finite, regular, transitive, edge labelled.

Groups as Graphs

A Cayley graph is defined from a group G along with a finite generating set S :

- Vertices are elements of G,
- There is an edge from g to h if $h=g s^{ \pm 1}$.

Examples

$$
\mathbb{F}_{2}=\langle a, b \mid\rangle
$$

$\left\langle a, b \mid(a b)^{2}\right\rangle$

A generalization of Wang Tiles

We generalize Wang tiles through the concept of tileset graphs.
Definition
A tileset graph is a finite graph $\Gamma=\left(V_{\Gamma}, E_{\Gamma}\right)$ where $E_{\Gamma} \subseteq V_{\Gamma} \times S \times V_{\Gamma}$. We say a tiling $x: G \rightarrow V_{\Gamma}$ respects Γ if for every $g \in G$, $(x(g), x(g s), s) \in E_{\Gamma}$.

Our Favorite Problems

Seeded Domino Problem

Given a tileset graph Γ and a tile t_{0}, does there exist a tiling $x: G \rightarrow V_{\Gamma}$ that respects Γ such that $x\left(1_{G}\right)=t_{0}$?

Recurrent Domino Problem

Given a tileset graph Γ and a tile t_{0}, does there exist a tiling $x: G \rightarrow V_{\Gamma}$ that respects Γ such that t_{0} appear infinitely often?

We denote these decision problems by $\operatorname{SDP}(G, S)$ and $\operatorname{RDP}(G, S)$ respectively

Results

For the Seeded and Recurrent Domino Problem:

- Their decidability does not depend on the generating set,
- For a subgroup $H \leq G, \operatorname{SDP}(H) \leq_{p} \operatorname{SDP}(G)$,
- For a finite index subgroup, $\operatorname{SDP}(H) \equiv_{p} \operatorname{SDP}(G)$,
- The Domino Problem reduces to $\operatorname{SDP}(G)$.

Theorem

$\operatorname{RDP}\left(\mathbb{F}_{n}\right)$ is decidable.

Balloons

Theorem

$\operatorname{RDP}\left(\mathbb{F}_{n}\right)$ is decidable.

The algorithm consists on finding "balloon" like stuctures on the tileset graph.

Expanding the Conjecture

Joining these facts with
The Domino Conjecture
$\mathrm{DP}(G)$ is decidable iff G is virtually free
we obtain

Corollary

If the Domino Conjecture is true then, TFAE:

- G is virtually free,
- $\operatorname{DP}(G)$ is decidable,
- $\operatorname{SDP}(G)$ is decidable,
- $\operatorname{RDP}(G)$ is decidable.

Our Other Favorite Problem

Take words $\left\{w_{i j}\right\} \subseteq\left(S \cup S^{-1}\right)^{*}$ and define the formula

$$
\phi=\bigwedge_{i=1}^{m}\left(\left(w_{i 1}\right)^{\prime} \vee \ldots \vee\left(w_{i k}\right)^{\prime}\right)
$$

where w^{\prime} represents v or the negation $\neg w$.

Definition

The k-SAT problem for G asks, given a formula with k literals ϕ and $\left\{u_{i}\right\}_{i=1}^{n} \in\left(S \cup S^{-1}\right)^{*}$, if there is an assignation of truth values $\alpha: G \rightarrow\{0,1\}$ such that

$$
\bigwedge_{h \in H} \bigwedge_{i=1}^{m}\left(\alpha\left(h g_{i 1}\right)^{\prime} \vee \ldots \vee \alpha\left(h g_{i k}\right)^{\prime}\right)=1
$$

where $H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$, and $g_{i j}=\bar{w}_{i j}$.

Results

Lemma

The subgroup membership problem (SMP) reduces to 2-SAT (G).

Lemma

If G has decidable SMP, then 2-SAT (G) reduces to $\mathrm{DP}(G)$. In particular, 2-SAT (G) is decidable for virtually free groups.

Results

Theorem

Suppose G admits a strict finite index subgroup $H \lesseqgtr G$ such that $H \simeq G$. Then, $\operatorname{DP}(G)$ reduces to 3 -SAT (G).

Corollary

3-SAT (G) is undecidable for

- $\mathbb{Z}^{d}, d \geq 2$,
- Solvable Baumslag-Solitar groups,
- the Lamplighter group,
- the Heisenberg group,
- $\mathbb{Z}^{d} \rtimes \mathrm{GL}(d, \mathbb{Z})$.

Coding Dominos

Theorem

Suppose G admits a strict finite index subgroup $H \lesseqgtr G$ such that $H \simeq G$. Then, $\operatorname{DP}(G)$ reduces to 3-SAT (G).

For a tileset of size n, take a subgroup of index $\geq\left\lceil\log _{2}(n)\right\rceil$ and code each tile.
If $G=\mathbb{Z}^{2}$ and $n=4$, take $H=\mathbb{Z} \times 2 \mathbb{Z}$ and $v_{0}=(0,0), v_{1}=(0,1)$:

$$
\begin{aligned}
& \square \longmapsto \begin{array}{l}
0 \\
\hline 0 \\
\square
\end{array} \quad \phi_{1}=\neg v_{1} \wedge \neg v_{2} \\
& \square \begin{array}{|c|}
\hline 0 \\
\hline 1
\end{array} \longleftrightarrow \quad \phi_{2}=v_{1} \wedge \neg v_{2} \\
& \square \longmapsto \begin{array}{|c}
\frac{1}{0} \\
\square
\end{array} \phi_{3}=\neg v_{1} \wedge v_{2} \\
& \square \longmapsto \begin{array}{|l}
1 \\
\hline 1 \\
\hline
\end{array} \quad \phi_{4}=v_{1} \wedge v_{2}
\end{aligned}
$$

Coding Dominos

\longrightarrow| 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 |

$$
\varphi=\left(\bigvee_{v \in V_{\Gamma}} \phi_{v}\left(1_{G}\right)\right) \wedge\left(\bigwedge_{(a, b, s) \notin E_{\Gamma}} \neg \phi_{a}\left(1_{G}\right) \vee \neg \phi_{b}\left(f_{m}(s)\right)\right)
$$

Thank you for listening!

Embedding computation

$\left(q^{\prime}, b\right)$
$\delta(q, a)=\left(q^{\prime}, b, 0\right)$

$\delta(q, a)=\left(q^{\prime}, b, 1\right)$

$\delta(q, a)=\left(q^{\prime}, b,-1\right)$

Embedding computation

