Snakes, SAWs and Symbolic Dynamics

Nicolás Bitar

joint work with Nathalie Aubrun

February 15, 2024

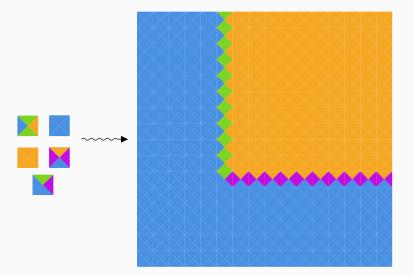
Complexity of Simple Dynamical Systems in honor of Jarkko Kari's 60th birthday

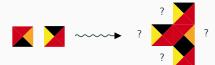
• Our story begins with Wang tiles:

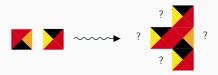
First introduced by Hao Wang in 1961.

• They can be placed side by side if they share the same color along their common border.

Tilings

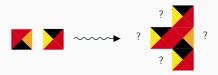






Domino Problem

Given a finite set τ of Wang tiles, does τ tile the plane?



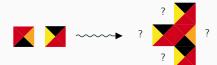
Domino Problem

Given a finite set τ of Wang tiles, does τ tile the plane?

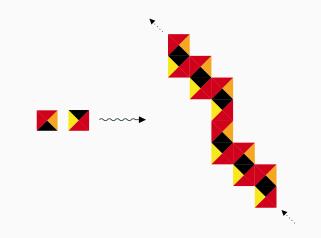
Theorem (Berger '64)

The Domino Problem is undecidable (Π_1^0 -comp.).

Snakes?



Snakes!



6

An a priori weaker version of the Domino Problem:

Infinite Snake

Given a finite Wang tileset τ , does there exist a snake tiled by τ ?

An a priori weaker version of the Domino Problem:

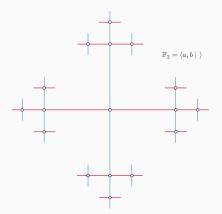
Infinite Snake Given a finite Wang tileset τ , does there exist a snake tiled by τ ?

Theorem (Adleman, J. Kari, L. Kari, Reishus '02) The infinite snake problem in \mathbb{Z}^2 is undecidable (Π^0_1 -comp).

Nevertheless, in $\mathbb Z$ both the Domino Problem and Infinite Snake Problem are decidable. Why?

Where is the Undecidability?

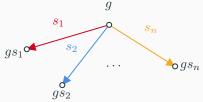
As was done for the Domino Problem, we study our problem in a particular class of graphs: Cayley graphs of finitely generated infinite groups.



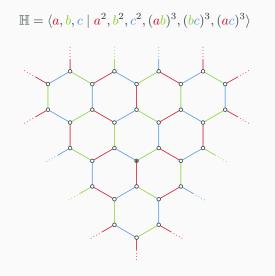
These graphs are infinite, locally finite, regular, transitive, edge labelled.

A Cayley graph is defined from a group G along with a finite symmetric generating set S:

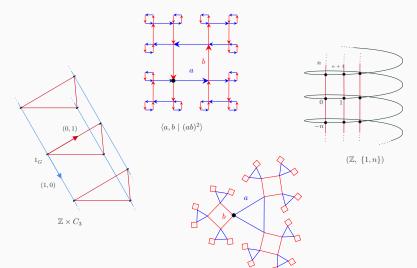
- Vertices are elements of G,
- There is an edge from g to h if h = gs^{±1}.



Examples



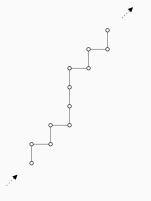
More Examples



 $\langle a,b ~|~ a^3,~ b^4 \rangle$

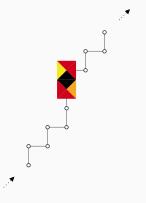
- (Skeleton) $\omega : \mathbb{Z} \to G$ injective s.t. $\omega(i)^{-1}\omega(i+1) \in S$,
- (Scales) ζ : ℤ → τ respecting local adjacency rules.

- (Skeleton) $\omega : \mathbb{Z} \to G$ injective s.t. $\omega(i)^{-1}\omega(i+1) \in S$,
- (Scales) ζ : ℤ → τ respecting local adjacency rules.



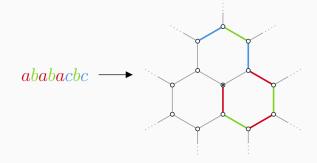
- (Skeleton) $\omega : \mathbb{Z} \to G$ injective s.t. $\omega(i)^{-1}\omega(i+1) \in S$,
- (Scales) ζ : ℤ → τ respecting local adjacency rules.

- (Skeleton) $\omega : \mathbb{Z} \to G$ injective s.t. $\omega(i)^{-1}\omega(i+1) \in S$,
- (Scales) ζ : ℤ → τ respecting local adjacency rules.



Words and Paths

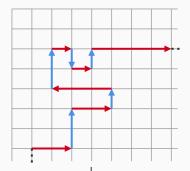
Given a Cayley graph for a group G with generating set S, there is a correspondence between paths and words in S^* .



For instance, cycles are described by the set

$$\mathsf{WP}(G,S) = \{ w \in S^* \mid w =_G \varepsilon \}.$$

This allows us to understand skeletons as bi-infinite words without loops.



 $\dots a \ a \ b \ a \ a \ b \ a^{-1} \ a^{-1} \ a^{-1} \ b \ b \ a \ b^{-1} \ a \ b \ a \ a \ a \ a \dots$

Let G be a finitely generated group with S a set of generators. The skeleton of G with respect to S is

$$\mathbb{X}_{G,S} = \{ x \in S^{\mathbb{Z}} \mid \forall w \sqsubseteq x, \ w \notin \mathsf{WP}(G,S) \},\$$

Examples:

$$\mathbb{X}_{\mathbb{Z}^2,\{a^{\pm 1},b^{\pm 1}\}} = \left\{ x \in \{a^{\pm 1},b^{\pm 1}\}^{\mathbb{Z}} \colon \forall w \sqsubseteq x, |w|_a \neq |w|_{a^{-1}} \lor |w|_b \neq |w|_{b^{-1}} \right\}.$$

For the infinite dihedral group $\mathcal{D}_{\infty} = \langle a, b \mid a^2, b^2 \rangle$,

$$\mathscr{X}_{\mathcal{D}_{\infty},\{a,b\}} = \{(ab)^{\infty}, (ba)^{\infty}\}.$$

Theorem (Aubrun, B. '23)

If $X_{G,S}$ is sofic, then the infinite snake problem for (G,S) is decidable.

Questions

When is $X_{G,S}$ sofic? SFT? Effective? What are its periodic points? What is its entropy?

- A self-avoiding walk (SAW) is a path on a graph that visits each vertex at most once.
- For c(n) = number of SAWs of length n,

$$\mu(G,S) = \lim_{n \to \infty} \sqrt[n]{c(n)}$$

is know as the connective constant of the Cayley graph.

Examples:

- (Duminil-Copin, Smirnov '12) $\mu(\mathbb{H}) = \sqrt{2 + \sqrt{2}}$,
- (Alm, Janson '90) $\mu(\mathbb{L}) = \frac{1}{2}(1 + \sqrt{5}),$

- A self-avoiding walk (SAW) is a path on a graph that visits each vertex at most once.
- For c(n) = number of SAWs of length n,

$$\mu(G,S) = \lim_{n \to \infty} \sqrt[n]{c(n)}$$

is know as the connective constant of the Cayley graph.

Examples:

- (Duminil-Copin, Smirnov '12) $\mu(\mathbb{H}) = \sqrt{2 + \sqrt{2}}$,
- (Alm, Janson '90) $\mu(\mathbb{L}) = \frac{1}{2}(1 + \sqrt{5}),$
- $\mu(\mathbb{Z}^2) =$

- A self-avoiding walk (SAW) is a path on a graph that visits each vertex at most once.
- For c(n) = number of SAWs of length n,

$$\mu(G,S) = \lim_{n \to \infty} \sqrt[n]{c(n)}$$

is know as the connective constant of the Cayley graph.

Examples:

- (Duminil-Copin, Smirnov '12) $\mu(\mathbb{H}) = \sqrt{2 + \sqrt{2}}$,
- (Alm, Janson '90) $\mu(\mathbb{L})=\frac{1}{2}(1+\sqrt{5}),$
- $\mu(\mathbb{Z}^2) = ????$ Open!

- A self-avoiding walk (SAW) is a path on a graph that visits each vertex at most once.
- For c(n) = number of SAWs of length n,

$$\mu(G,S) = \lim_{n \to \infty} \sqrt[n]{c(n)}$$

is know as the connective constant of the Cayley graph.

Examples:

- (Duminil-Copin, Smirnov '12) $\mu(\mathbb{H}) = \sqrt{2 + \sqrt{2}}$,
- (Alm, Janson '90) $\mu(\mathbb{L}) = \frac{1}{2}(1 + \sqrt{5}),$
- $\mu(\mathbb{Z}^2) = ????$ Open!

Best approx so far (Jacobsen, Scullard, Guttman '16):

 $\mu(\mathbb{Z}^2) \approx 2.63815853032790(3)$

More Motivations

In fact, $X_{G,S}$ is the set of labels of bi-infinite SAWs!

It also appears as Problem 108 in Rufus Bowen's notebook of problems:

 $\frac{1}{12} = \prod_{i=1}^{n} (1+t^{n_i})$ $\frac{1}{12}$ 103. How che you write 1+t # 2= Tt (1=t";) ~ ZCHD. 107. Embed anto cost gps as 108 bot op. G be min by generative of with det 104. NEC: Tythere a the my D2-71 V? instructed sugerhe nc. Top, entrojny of Ecolim 106 - ideted to dim - leg flow conjugaryt in. How about

Theorem (Aubrun, B. '24)

G admits S such that $X_{G,S}$ is sofic iff G is a plain group, $\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or $\mathcal{D}_{\infty} \times \mathbb{Z}/2\mathbb{Z}$.

Proposition (Aubrun, B. '24)

For every group G, there exists S such that $X_{G,S}$ is not sofic.

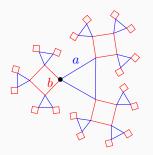
Sofic Snakes and SAWs

Theorem (Aubrun, B. '24)

G admits S such that $X_{G,S}$ is sofic iff G is a plain group, $\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or $\mathcal{D}_{\infty} \times \mathbb{Z}/2\mathbb{Z}$.

A group G is said to be plain if there are finite groups $\{G_i\}_{i=1}^m$ and $n\in\mathbb{N}$ such that

$$G \simeq \begin{pmatrix} m \\ \bigstar \\ i=1 \end{pmatrix} * \mathbb{F}_n.$$



$$G = \mathbb{Z}/3\mathbb{Z} * \mathbb{Z}/4\mathbb{Z},$$
$$= \langle a, b \mid a^3, b^4 \rangle.$$

Theorem (Aubrun, B. '24)

G admits S such that $X_{G,S}$ is sofic iff G is a plain group, $\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or $\mathcal{D}_{\infty} \times \mathbb{Z}/2\mathbb{Z}$.

A group G is said to be plain if there are finite groups $\{G_i\}_{i=1}^m$ and $n\in\mathbb{N}$ such that

$$G \simeq \begin{pmatrix} m \\ \bigstar \\ i=1 \end{pmatrix} * \mathbb{F}_n.$$

Theorem (Aubrun, B. '24)

G admits S s.t. $\mathbb{X}_{G,S}$ is an SFT iff G is a plain group.

First off, by Kőnig's lemma,

$$X_{G,S} = \emptyset \iff G$$
 is finite.

Then,

Theorem (Aubrun, B. '24)

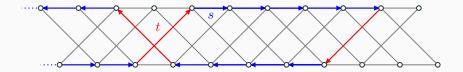
G is a torsion group iff $X_{G,S}$ is aperiodic for (any) all generating sets S.

Torsion groups can never have sofic skeletons!

Proposition (Aubrun, B. '24)

For every group G, there exists S such that $X_{G,S}$ is not sofic.

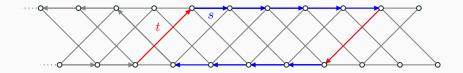
We can use the Pumping Lemma to show being sofic depends on the generating set. For a torsion-free element $g \in G$ we add $s = g^2$ and $t = g^3$ to S so we can find a copy of Cay($\mathbb{Z}, \{\pm 2, \pm 3\}$).



Proposition (Aubrun, B. '24)

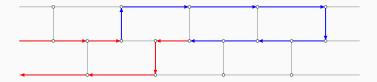
For every group G, there exists S such that $X_{G,S}$ is not sofic.

We can use the Pumping Lemma to show being sofic depends on the generating set. For a torsion-free element $g \in G$ we add $s = g^2$ and $t = g^3$ to S so we can find a copy of Cay($\mathbb{Z}, \{\pm 2, \pm 3\}$).

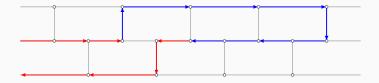


 $\forall n \in \mathbb{N}, \mathcal{L}(\mathbb{X}_{G,S})$ contains the configuration $ts^{n+1}t^{-1}s^{-n}$ on which we use the Pumping Lemma.

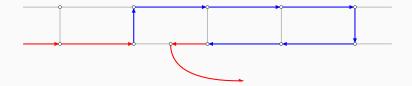
• First we show that all ends are thin and of size at most 2.



• First we show that all ends are thin and of size at most 2.



• If there is an end of size 2, then G is virtually \mathbb{Z} .



Lemma (Aubrun, B. '24)

If $G \notin \{\mathbb{Z}, \mathcal{D}_{\infty}, \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathcal{D}_{\infty} \times \mathbb{Z}/2\mathbb{Z}\}\)$ and virtually \mathbb{Z} , then every Cayley graph of G has ends of size ≥ 3 .

Theorem (Haring-Smith '83 + Lindorfer, Woess '20) G is plain iff it admits a Cayley graph with ends of size 1.

Rigolo Properties

•
$$h_{top}(X_{G,S}) = \log(\mu(G,S)),$$

- G recursively presented $\implies X_{G,S}$ is effective $\forall S$,
- $X_{G,S}$ minimal \implies all proper quotients of G are finite,
- There exists G s.t. for every S, $X_{G,S}$ is effective and has no computable points,
- For some groups and generators (including \mathbb{Z}^d , $d \ge 2$),

$$h_{top}(\mathbb{X}_{G,S}) = \lim_{n \to \infty} \frac{\log(q(n))}{n},$$

for q(n) = number of periodic points of period n.

Thank you for listening!