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Abstract

We present a systematic performance assessment of the hardware and software that provides the interface between
applications and emerging high-speed networks. Using LogP as a conceptual framework and Active Messages as
the communication layer, we devise a set of communication microbenchmarks. These generate a graphical
signature from which we extract the LogP performance parameters of latency, overhead, and bandwidth. The
method is illustrated on three diverse platforms: Intel Paragon, Meiko CS-2, and a cluster of SparcStations with
Myrinet. The study provides a detailed breakdown of the differences in communication performance among the
platforms. While the details of our microbenchmark depend on Active Messages, the methodology can be applied
to conventional communication layers.
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1.Introduction

In recent years, we have seen dramatic advances in scalable, low-latency interconnection networks for
parallel machines and workstation clusters. With such “hot interconnects,” the performance of user-to-user
communication is limited primarily by the network interface, rather than the switches and links. The
network interface has a hardware component (the NI) and a software component. A diverse set of hardware
designs have emerged, differing on key issues such as where the NI connects to the processing node and how
much processing power is embedded in the NI, as can be seen in Table 1. We would like to evaluate and
compare these design alternatives, but the hardware must be assessed in conjunction with software that
provides a specific set of communication operations to the user. In principle, it should be possible use any of
the popular communication layers, e.g., TCP/IP, MPI[9], or PVM[10], for this evaluation, however, these
layers impose such large software overheads (several hundred to several thousand instructions per message)
that all other factors become obscured[12]. There has been substantial work in “lean” communication layers,
especially Active Messages[1], which provide simple communication operations with overheads on the
scale of tens of instructions per message. Each Active Message layer is carefully optimized for a particular
hardware platform, although the user communication operations are the same[4][5][6]. This presents the
opportunity to perform a systematic assessment of the combination of fast hardware and fast software in
delivering communication performance to applications.

Our goal is to characterize a range of network interface designs in terms of a few simple performance
parameters, rather than as a litany of block diagrams and design specific timings. This approach is inspired
by Saavedra’s memory system microbenchmarks[2], which attempt to capture the salient features of a
complex system through a focused set of small benchmarks that are analyzed in relation to a simple
conceptual model. We use LogP[3] as our conceptual model of the communication system. It was developed
as a tool for reasoning about parallel algorithm performance, and provides a concise characterization of the
processing overhead, latency, and bandwidth of communication operations.

Specifically, we study three important platforms that represent diverse points in the NI design space – the
Meiko CS-2[7], a cluster of SparcStation 20s with Myrinet[8], and the Intel Paragon[6]. Each machine is
viewed as a “gray box” that supports Active Messages and conforms to the LogP framework. We devise a
simple set of communication microbenchmarks and measure the performance on each platform. Our
microbenchmark generates a graphical signature from which we can extract the LogP communication
performance parameters of the hardware/software tandem.

Section 2 provides the background for our study by explaining the LogP model, the Active Message
communication layer, and the specific hardware platforms under evaluation. Section 3 characterizes short
message performance. It first develops an intuitive understanding of the microbenchmark signature and then
analyzes the signatures of the three platforms to extract their performance parameters. We also show that

TABLE 1. Two key axes in the network interface hardware design space
Connection NI Processing Power

Controller Embedded
Processor

General Purpose
Microprocessor

I/O Bus Sun SAHI ATM
SP-1

Fore SBA
Myrinet

IBM SP-2

Graphics Bus HP Medusa
Memory Bus Cray T3D Meiko CS-2 Intel Paragon
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subtle hardware/software variations of the communication interface can be observed using our
microbenchmark. Section 4 extends the study to characterize bulk transfer performance. While the details of
our microbenchmark depend on Active Messages, the approach applies broadly. In Section 5 we show the
communication signature for an asynchronous RPC layer following exactly our methodology and comment
on the broader use of the approach.

2.Background

This section provides a brief summary of the LogP model, Active Messages, and our hardware platforms.
An in depth treatment of these topics can be found in the references, but the material presented here is
sufficient for understanding the design evaluation in the remainder of the paper.

2.1 LogP Model

LogP was developed as realistic model for parallel algorithm design, in which critical performance issues
could be addressed without reliance on a myriad of idiosyncratic machine details. The performance of a
system is characterized in terms of four parameters, three describing the time to perform an individual point-
to-point message event and the last describing the crude computing capability, as follows.

• Latency – an upper bound on the time to transmit a message from its source to destination.
• overhead – the time period during which the processor is engaged in sending or receiving a message
• gap – the minimum time interval between consecutive message transmissions or consecutive mes-

sage receptions at a processor.
• Processor  – the number of processors.

In addition, the network has finite capacity. The finite capacity of the network can be reached if a processor
is sending messages at a rate faster than the destination processor can receive. If a processor attempts to send
a message that would exceed the finite capacity of the network, the processor stalls until the message can be
sent without exceeding the finite capacity limit.

These parameters are illustrated for a generic parallel system in Figure 1. The total time for a message to get
from the source processor to the destination is . It is useful to distinguish the two components,
because the overhead reflects the time that the main processor is busy as part of the communication event,
whereas the latency reflects the time during which the processor is able to do other useful work. The gap
indicates the time that the slowest stage, the bottleneck, in the communication pipeline is occupied with the
message. The reciprocal of the gap gives the effective bandwidth in messages per unit time. Thus,
transferring small messages in rapid succession from one processor to another requires time

, where each processor expends  cycles and the remaining time is available for
other work. The same formula holds with many simultaneous transfers, as long as the destinations are
distinct. However, if  processors send to the same destination, the effective bandwidth of each sender
reduces to . In other words, the aggregate bandwidth of the  senders is limited by the receiver
bandwidth, i.e. one message every  time units.
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The overhead parameter is generally determined by the communication software and is strongly influenced
by cost of accessing the NI over the memory or I/O bus on which it is attached. The latency is influenced by
the time spent in the NI, the link bandwidth of the network, and the routing delays through the network. The
gap can be affected by processor overhead, the time spent by the NI in handling a message, and the network
link bandwidth. For a very large system, or for a network with poor scaling, the bottleneck can be the
bisection bandwidth of the network. However, in practice the network interface is often the bottleneck for
reasonably sized systems, and that is the main focus of our study.

We make some small extensions to the LogP model. First, we distinguish between the send overhead, os, and
receive overhead, or. Second, we recognize that for bulk data transfer, L, o, and g depend on message size.
By differentiating the overhead, gap, and latency parameters, the LogP model exposes the overlap between
computation and communication.

2.2 Active Messages

The Active Message communication layer provides a collection of simple and versatile communication
primitives. It is generally used in libraries and compilers as a means of constructing higher-level
communication operations, such as traditional message passing[9] or global shared objects[11]. Active
Messages can be thought of as very lightweight asynchronous remote procedure calls, where each operation
is a request/reply pair. In LogP terms, an Active Message request/reply operation includes two point-to-point
messages, giving an end-to-end roundtrip time of 2(os+L+or). A request message includes the address of a
handler function at the destination node and a fixed number of data words, which are passed as arguments to
the handler. Active Messages are handled automatically, either as part of the node initiating its own
communication, via an interrupt, or as part of waiting for responses.Otherwise, a node can also handle
messages via an explicit poll. When the message is received at the destination node it invokes the specified
handler, which can perform a small amount of computation and issue a reply, which consists of an analogous

FIGURE 1. LogP parameters in a generic platform
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reply handler function and its arguments. This basic operation is illustrated in Figure 2 by typical remote
read transaction.

Active messages are efficient to implement because messages can be issued directly into the network from
the sender and, since the code that consumes the data is explicitly identified in the message, processed
directly out of the network without additional buffering and parsing. The handler executes in the context of a
prearranged remote process and a fixed set of primitive data types are supported, so the argument
marshalling and context switching of a traditional RPC are not required. The sender continues execution as
soon as the message is issued; invocation of the reply handler provides notification of completion.

Active Messages has been implemented on the n-Cube/2, CM-5[1], HP workstations with the Medusa FDDI
network[4], Sun workstations connected to an ATM network[5], Intel Paragon[6], Meiko CS-2, and Sun
workstations with Myrinet. Each Active Message implementation is optimized for the particular hardware.
The Generic Active Message (GAM) specification defines a uniform, application programming interface
(API) across these platforms.1 Small messages provide four words of data to the handler and are reliable.
(The request/reply protocol permits inexpensive schemes for deadlock avoidance, flow control and error
recovery.) In addition to small message transfers, bulk transfers are supported as a memory-to-memory copy
in either the request direction or the reply direction; invocation of the handler signifies that the data transfer
is complete. In the bulk transfer case we examine, the requester transfers  bytes of data into the remote
virtual memory before the request handler fires, and the reply handler indicates completion of the entire
transaction.

2.3 Hardware Platforms

We evaluate the communication performance of three platforms: the Intel Paragon, the Meiko CS-2, and a
network of SUN SparcStation 20s connected by Myrinet switches using the LANai S-Bus cards. All of the

1. Generic Active Message Interface Specification v1.1 is available on-line at http://now.cs.berekeley.edu/Papers/gam_spec.ps.

n

FIGURE 2. The two basic primitives of Active Messages are small request and reply active
messages. The grey areas represent control taken as a result of processing an incoming
request/response.

Issue request(read_req,A)

Issue reply(read_response,V)

Source Node Destination Node

V = value at address A

X = V

read_req(A)
continue...

... use X.

wait for value X...

read_response(V)
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platforms follow the generic hardware model in Figure 1, with a collection of essentially complete
computers connected by a scalable communication network. Moreover, they all provide a communication
processor and specialized DMA engines as part of the network interface hardware. However, they differ in
key design aspects, summarized in Table 2, including where the NI connects to the main processor, the
power of the communication processor, and the network link bandwidth. The Paragon uses a general
purpose i860XP RISC processor, identical to the main processor, as a dedicated communication processor.
The two processors communicate via shared memory over a cache-coherent memory bus. In addition, the
communication processor accesses the network link FIFO’s across the memory bus. Two DMA engines
connect to the memory bus and burst data between memory and the network. In the Meiko CS-2, the
communication processor and DMA engine are contained within the Elan network interface chip, which
connects directly to the memory bus and to the network. The two processors communicate via shared
memory and uncached accesses directly to the Elan. The communication processor has a dedicated
connection to the network separate from the memory bus, however, it has only modest processing power and
no general-purpose local memory or cache. The Myrinet NI is a I/O card that plugs into the standard S-Bus.
It contains a 16-bit CISC-based embedded processor, DMA engines, a modest amount of local memory, and
the Myrinet link interface. The Myrinet local memory is used as a staging area for incoming and outgoing
DMA operations. For example, a memory copy request will transfer data from the host memory to the
Myrinet local memory, then to the network. The Myrinet and Meiko CS-2 offer comparable network link
bandwidth at 80 MB/sec and 70 MB/sec respectively. The Myrinet network can be an arbitrary topology
connected via crossbar switches with eight bidirectional ports, while the Meiko CS-2 uses two 4-ary fat
trees. The Paragon has the highest network bandwidth at 175MB/sec although its 2D mesh network is not as
scalable as a fat tree. Moderate sized configurations are used in our measurements since our focus is on the
network interface performance, rather than the scaling of the network itself.

There are some semi-technical forces that influence the performance of these classes of machines, such as
time-to-market. For example, the Meiko CS-2 used in this study was made available only very recently (a
few months before the paper), while the newest Myrinet technology did not make it in time for our study.
Thus, cross-machine comparisons do not reflect a snapshot of the ‘latest-and-greatest’ technology.

3.Small Message Performance

In this section we obtain the LogP parameters for our study platforms using a simple communication
microbenchmark. The natural starting point is the round-trip time (RTT) associated with a single Active
Message request-reply operation. Table 3 shows the minimum and maximum RTT between pairs of nodes
for our platforms in configurations up to sixteen nodes. We can see from this that the NOW communication
time is about 1.5 times that of the two MPP platforms. The RTT reflects the sum of the send overhead,
latency, and receive overhead. As expected, it varies by a small amount with the distance traveled through

TABLE 2. Comparison of the three platforms used in this study

Platform Main Processor NI Location
Communication
Processor

Network
Topology

Peak Network
Bandwidth (MB/s)

Intel Paragon 50MHz i860XP memory bus 50MHz i860XP 2D mesh 175
Meiko CS-2 66 MHz Hyper-

SPARC
memory bus Elan (embedded

processor)
4-ary fat
tree

70

Myrinet 50MHz Super-
SPARC

I/O bus LANai (embedded
processor)

8-port cross-
bar

80
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the network. Other factors such as the speed of the NI and communication overhead dominate the communi-
cation time.

To extract the individual LogP parameters our microbenchmark will issue a sequence of request messages
and measure the average time per issue, which we call message cost. The overhead and gap can be deduced
from the changes in the message cost as a function of the number of messages issued. We first illustrate the
technique in the abstract and then apply it to our study machines.

3.1 Communication Microbenchmark

As a first step towards our communication microbenchmark, consider what should be the time to issue a
sequence of  Active Message requests under LogP, as illustrated by the following pseudo-code. The issue-
phase is defined as the code between the start/stop timer statements.

Start Timer
Repeat M times

Issue Request1
Stop Timer

... handle remaining replies

For small M, the sender will issue all the requests without receiving any replies, as indicated by the top time-
line of Figure 3. Thus, the message cost should be simply os. (This occurs for M less than RTT/os.) For
larger M, a fraction of the replies will arrive during the issue phase and the message cost will increase, as
indicated by the second time-line in the figure, since the processor will spend or for each reply. The replies
will be separated by the time for successive messages to pass through the bandwidth bottleneck, i.e., by g.
As M increases, the number of messages in the network increases. Eventually, the capacity limit of the
network will be reached and a reply must be drained before each new request issued, i.e., when the request
function attempts to inject a message into a full network it will stall. Therefore, the message cost will be
simply the gap, g.

Thus, the average message cost, as a function of , should follow a curve as shown by the bottom-most
curve in Figure 4. It exhibits three regimes, ‘send-only’ for small M, ‘steady-state’ for large M, and a
‘transition’ in between. The average time per message in the ‘send-only’ regime reveals os. The transition
regime will begin at RTT/os when the first replies begin to return, or when the capacity limit is reached;
whichever comes first. It asymptotically reaches g in the steady-state. The RTT measurement gives us the
sum r, if we can obtain we can solve for .

1.  The Active Message request function implicitly handles replies, as noted in Section 2.

TABLE 3. Round-trip time (in microseconds)
Parameter Paragon Meiko CS-2 Myrinet
RoundTrip 2(os + or + L) 19.9 - 20.1 20.3 - 21.6 30.6 - 31.5

M

M

os L or+ + or L
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We can see from the steady-state time-line of Figure 3 that , where Idle is the time the
sender spends waiting to drain a reply from the network. However, we cannot directly measure Idle or or;
since the request function stalls waiting for a reply and then uses or time pulling the reply out of the network.
Therefore, we attempt to find or in a different manner; we add a controlled amount of computation, ",
between messages. As indicated in the bottom time-line in Figure 3 for ">Idle, the sender becomes the bot-
tleneck and the average message cost is , where g’ is the new bottleneck, e.g., the average
time per issue in the steady-state with delay regime. Since we know " and can measure os and g’, we can
solve for or.

3.2 Microbenchmark Signature

Here is the resulting pseudo-code for our communication microbenchmark:

Start Timer
Repeat M times

Issue Request

FIGURE 3. Request issue time-line

Time

Send-only

Transition

Steady-state

os

or

os os os

os os osososos

os osos oror

oror

First response received at RTT, then every g

Idle

g
Steady-state

or os osos oror

g’

"

with Delay

"

Idle

os or Idle+ + g=

os or "+ + g#=
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Compute for " time
Stop Timer

... handle remaining replies

By executing this microbenchmark for a range of M and ", we construct a signature consisting of several
message issue curves, each corresponding to a different value of ", as illustrated by Figure 4. In the figure,
any value of " less than Idle will have a steady state message cost of ‘g’, while any value of " larger than
Idle, e.g. "’, will have a steady state message cost of g’ >g. From this graph we can directly read the
parameters g, os , and or. Then, we can compute latency given the round-trip time.

3.3 Small Message Empirical Results

Since many of our measurements are in the microsecond range, any undesirable events such as cache
misses, context switching, and timer interrupts can lead to significant errors in the measurements. We repeat
the microbenchmark for each point in the signature until we obtain an accuracy of ±5% and a confidence
level of 95%. We process the measurements in batches of 50 samples to minimize the cache effect of the sta-
tistics collection routines.

Figures 5, 6, and 7 give the microbenchmark signatures of our three platforms. The empirical signatures of
our platforms closely model the abstract signature of Figure 4. Each graph exhibits the three regimes of
operation: Send-only, Transition, and Steady-state. Given the signatures, we can extract the LogP parame-
ters. For the Paragon signature in Figure 7, by averaging the first few points corresponding to small M and "
= 0, we find that os is 1.4 microseconds. Next, by taking the asymptotic value of the " = 0 curve we find that
g is 7.6 microseconds. To compute or, we arbitrarily pick a value of " that increases the gap, e.g., the curve
" = 16. Subtracting " + os from g’ =19.6 gives us or to be 2.2 microseconds. Finally, subtracting the over-
head from the one-way time (RTT/2) we get L = 7.5 µsec. Similar analysis finds the LogP characterization
for Meiko to be os =1.7 µsec, or = 1.6 µsec, g= 13.6 µsec, and L= 7.5µsec. On the Myrinet, os =2.0 µsec, or

FIGURE 4. Expected microbenchmark signature

Av
er

ag
e 

Ti
m

e 
pe

r M
es

sa
ge

Number of Messages (M)

os

g

"

"’
"’

os + or

or

send-only steady-statetransition



Small Message Performance

10 LogP Performance Assessment of Fast Network Interfaces

= 2.6 µsec, g= 12.4 µsec, and L= 11.1 µsec. The asymptotic value of the " = 0 curve occurs at very large val-
ues of M for both the Meiko and Myrinet. For clarity we have only shown the message cost up to M=128.

Figure 8 presents a summary of the LogP parameters for our platforms, along with two variations that we
discuss later. The bars on the left show the one-way time divided into overhead and latency, while the ones
on the right show the gap. The Myrinet time is roughly 50% larger than the two MPP platforms, although the
message bandwidth is comparable. The larger overhead on the Myrinet (4.6 µsec) compared to the MPP
platforms (3.3 µsec and 3.7 µsec) reflects the first of the key design choices noted in Table 2. The Meiko and
Paragon NIs connect to the cache-coherent memory bus, so the processor need only store the message into
the cache before continuing. On the Myrinet platform the NI is on the I/O bus, and the processor must move
the message into the NI with uncached stores, resulting in larger overhead.

The latency and gap reflect the second key design issue: the processing power of the NI. The Paragon has the
lowest latency, 6.3 µsec, followed by the Meiko and Myrinet, with latencies of 7.5 and 11.1 µsec, respec-
tively. This indicates the advantage of the microprocessor used in the Paragon over the custom embedded
processors in the Meiko and Myrinet designs. The Paragon also has the lowest gap, 7.6 µsec, compared to
12.4 µsec for the Myrinet 13.6 µsec for the Meiko. The difference between the Meiko and Myrinet is inter-
esting. Even though the Meiko communication processor resides on the memory bus, it has no caches and so
must load messages using uncached reads from the main processor’s cache, affecting the rate at which it can
send messages. On the Myrinet, the main processor has already deposited the messages into NI memory,
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FIGURE 5. Meiko microbenchmark signature



Small Message Performance

LogP Performance Assessment of Fast Network Interfaces 11

where the communication processor can access it quickly. Furthermore, since a substantial part of the
latency is the processing in the NI, rather than the actual network transfer, trade-offs exist between the over-
head and latency components. For example, the Myrinet latency can be reduced with an increase in overhead
by performing the routing lookups on the main processor. While this change might reduce the overall com-
munication cost, since the main processor is faster, bus transfers and other factors might mitigate the advan-
tage. The microbenchmark provides a means of quantifying such trade-offs.

3.4 Evaluating Design Trade-offs

The microbenchmark is a valuable tool for evaluating design changes in the communication hardware and
software. In many cases, the performance impact is unexpected and subtle, as illustrated by two slightly
older variants on our main platforms.

One expects the overhead to track the processor speed, but L and g to be unaffected. When we run the
microbenchmark on an older Meiko with 50 Mhz SuperSparc processors using the same Active Message
implementation, os and or increase slightly while L and g increase by about 30%, as illustrated by the
Meiko50 bars in Figure 8. Part of the reason is that this machine has a slower memory bus (40 vs. 45 MHz),
and the NI processor runs at the memory bus speed. This does not seem to account for the entire difference,
but the microbenchmark has served its role in revealing the anomaly.
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One generally expects program performance to improve with the addition of a large second level cache,
however, this may not be the case for communication. The Myrinet10 bars in Figure 8 summarize the
performance of an alternative Myrinet platform using SparcStation 10s with the same 50MHz SuperSPARC,
and a second-level cache. We see a dramatic increase in overhead, os =3.6 µsec and or = 4.0 µsec! Processor
loads and stores the NI incur an extra delay through the second-level cache controller before reaching the
I/O bus. We believe the I/O bus is slower, as well, accounting for the increase in g, since the NI processor is
clocked at the I/O bus speed.

3.5 Validation of communication scaling

The measurements conducted thus far calibrate the communication performance of a single pair of nodes in
the network. In a scalable network, as assumed by the LogP model, the same performance should be
observed for communication between multiple pairs, as long as there is no contention for the individual
nodes. To validate that our platforms behave in this manner, we repeated the microbenchmark using all the
nodes: half of the nodes as requesters and the other half replying. We see no significant difference in the sig-
natures; the LogP parameters are the same to two significant digits.
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The LogP model asserts that we should see the same performance if a single node issues requests to many
other nodes. Modifying the microbenchmark in this fashion we see that the gap actually decreases by about
30%, and we get roughly 1.4 times the message bandwidth on both the Myrinet and Paragon. This suggests
that handling the request turning around reply is the bottleneck. By increasing the number of receivers, we
mitigate the bottleneck. On the Meiko, however, the receiver is not the bottleneck.

In the presence of prolonged end-point contention, the LogP model asserts that the aggregate bandwidth will
be limited by the bandwidth of the contended receiver. Each sender should see the gap increase in proportion
to the number of senders. In this variation on the microbenchmark, there are K nodes making requests to a
single node. Table 4 shows the observed increase in the gap in the K-to-1 microbenchmark relative to the
1-to-1 microbenchmark for varying numbers of requesters on our three platforms. The results closely fit our
model expectations.

TABLE 4. Contended Validation of g

Meiko Myrinet Paragon
Number of nodes (K) 15 3 7
g K-to-1/g 1-to-1 16.8 3 6
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4.Bulk Transfer Microbenchmark

In this section we extend the methodology used for small messages to evaluate the communication perfor-
mance of bulk transfers. Active Messages provides two bulk operations, store and get. A store operation
copies a block of memory to a remote node and invokes a request handler on the remote node, which will
send a small reply to the requester. Conversely, a get operation copies a block of memory from a remote
node and invokes reply handler on the originating node. The store and get operations function like memory
copies across the network and the handler invocation signals the completion of the copy. The extension to
the microbenchmark is straightforward – each request transfers  bytes of additional data. We can time the
issue of a sequence of requests and we can insert a computation delay between the requests in the sequence.
The natural generalization of the LogP model is to view the overhead and the gap as a function of , rather
than as fixed constants. The microbenchmark signature must also be extended, since each curve becomes a
surface with the additional dimension of transfer length.

4.1 Bulk Transfer Time and Bandwidth.

The equivalent of the “round-trip” measurement for bulk transfers is the time to complete an  byte store
operation and receive the reply. Figure 9 shows the time, , for this operation as a function of transfer

size on our platforms and the corresponding transfer bandwidth delivered, .

Many studies model large message performance using two parameters, the start-up cost, , and a peak rate,

. The time for an  byte transfer is modeled as . Commonly, these values are derived by

fitting a line ( ) to a set of measurements, such as those in Figure 9. is the intercept of the line,

and  the slope. While this method is accurate in obtaining the peak bandwidth, the meaning of the

term is not clear. First, non-linearities and small errors in the data often yield a value of  that has little to
do with the time for a small message. For example, a least-squares fit of the Myrinet data in Figure 9 yields
a negative . Even if the fit is reasonable, there is no indication whether  reflects processing overhead,
communication latency, or some sort of protocol between the sender and receiver, such as the round-trip for
the acknowledgment of the transfer in the active message bulk store operation. The generalization of LogP
provides a framework for articulating these issues.

A more serious shortcoming of the , model is that it does not reveal how busy the processor is during
the transfer. For example, an algorithm designer may wish the know how much computation can by over-
lapped with communication. Much as we need to distinguish o and L in the small message case, we need to
determine for bulk transfers, as distinguished from .

4.2 Bulk Transfer Overhead.

To measure the overhead of a bulk transfer, we use a methodology similar to the small message case. A
sequence of m bulk transfers is issued with a computation time of " between each one. The signature is
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obtained for each given transfer size n. Figure 10 shows the Myrinet signature for a transfer size of 8 bytes.
It exhibits the same three regimes as for the small message case. However, g is 18 µsec compared with 12.4
µsec for the small message case. One can conclude that some part of the system is slower at sending bulk
messages than small messages even when the additional data transfer is small. Indeed, we can attribute this
extra overhead to the cost that the communication processor incurs during the DMA transfer from host
memory. For small messages the compute processor stores the data directly into the NI memory and avoids
the DMA transfer.

Figure 11 shows the Myrinet signature for a 2K byte transfer. The three regimes are no longer identifiable
and the curves for small "’s do not converge. We can conclude in this case that the bulk operation is over-
head limited and the g term is not visible.
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To compute os(n), we take the series of the os from the m, " signatures for increasing values of n. Figure 12
shows the result for each platform for up to 4K byte messages. The Paragon and Meiko have constant send
overhead as a function of the transfer size. These machines allow a program to fully overlap computation
with communication. Figure 12 shows that the overhead on the Myrinet increases linearly with the transfer
size. Thus, less overlap is possible on that platform than on the other two. Because of I/O addressing limita-
tions and the high cost of locking pages in memory, the processor copies data into pinned I/O addressable
regions rather than lock user pages and then map them into I/O space. The microbenchmark signature
clearly shows this cost, thus showing how the lack of integration in the Myrinet platform affects perfor-
mance. However,  is smaller than  showing that a portion can be overlapped. For example, for a
4K byte transfer,  is 143 µsec, and  is 298 µsec.
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5.Conclusion

Communication performance at the application level depends on the synergy of all components in the
communication system, especially the network interface (NI) hardware and the low-level communication
software that bridges the hardware and the application. In this paper, we present a systematic framework to
assess the performance trade-offs in NI and communication software designs. We emphasize the use of a
simple, low overhead communication layer such as Active Messages to expose the performance
characteristics of the communication hardware. We use the LogP model as a conceptual framework to
characterize a range of NI designs in terms of a few simple performance parameters that capture the essential
features of the communication system. The LogP model addresses the overlap between computation and
communication by differentiating the latency, overhead, and bandwidth.

To illustrate our benchmark methodology, we study three interesting platforms that occupy diverse points in
the NI design space – a Meiko CS-2, a cluster of SparcStation 20s with Myrinet, and an Intel Paragon. The
platforms differ in where the NI connects to the processing node and how much processing power is
embedded in the NI. Each machine is viewed as a “gray box” that supports the same Active Message
interface. We devise a simple set of communication microbenchmarks. Our microbenchmark generates a
graphical signature from which we can extract the LogP performance parameters that characterize the
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performance of the hardware/software in combination. Our benchmark results show that our network of
workstations (NOW) connected by Myrinet has competitive communication performance compared to the
Meiko CS-2 and the Intel Paragon. The study provides a detailed breakdown of the communication
performance and how it differs among the platforms. We are also able to calibrate the effects of changes,
such as a faster bus, a new cache level, or new protocol between the main processor and the communication
processor.

Microbenchmarks are a valuable tool for assessing the impact of design trade-offs in communication
hardware and software. While the specifics of our microbenchmark depend on Active Messages, the
methodology applies to any communication layer. For example, Figure 13 shows the microbenchmark
signature for an asynchronous RPC layer on SparcStation 10’s running Solaris 2.4 connected by Ethernet.
(We can see that the high software overhead of RPC is the performance bottleneck, since the first value of "
increases the gap. Thus, the gap is equal to os + or.). Our empirical methodology carries over directly to
RPC, because it is a request/reply operation. Traditional message passing and stream communication models
require a somewhat different microbenchmark formulation. However, we believe that any standard
communication interface should include a performance calibration suite such as the one presented here.
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